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1 Units and Numbers

1.1 International System of Units

The International System of Units, also referred to as the SI system after the abbreviation
from the French name Le Système International d’Unités, is the officially and internationally
recognized system of measurement. The SI system identifies seven base units, which are
defined in terms of the exact value of a corresponding defining constant (see Table 1.1
further below):

1. Second: The second is defined by taking the fixed numerical value of the caesium
frequency ∆νCs, the unperturbed ground-state hyperfine transition frequency of the
caesium-133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal
to s−1.

2. Metre: The metre is defined by taking the fixed numerical value of the speed of light
in vacuum c to be 299 792 458 when expressed in the unit m · s−1, where the second is
defined in terms of the caesium frequency ∆νCs.

3. Kilogram: The kilogram is defined by taking the fixed numerical value of the Planck
constant h to be 6.626 070 15 × 10−34 when expressed in the unit J · s, which is equal
to kg ·m2 · s−1, where the metre and the second are defined in terms of c and ∆νCs.

4. Ampere: The ampere is defined by taking the fixed numerical value of the elementary
charge e to be 1.602 176 634 × 10−19 when expressed in the unit C, which is equal to
A · s, where the second is defined in terms of ∆νCs.

5. Kelvin: The Kelvin is defined by taking the fixed numerical value of the Boltzmann
constant k to be 1.380 649 × 10−23 when expressed in the unit J ·K−1, which is equal
to kg ·m2 · s−2 ·K−1, where the kilogram, metre and second are defined in terms of h,
c and ∆νCs.

6. Mole: One mole contains exactly 6.022 140 76×1023 elementary entities. This number
is the fixed numerical value of the Avogadro constant, NA, when expressed in the unit
mol−1 and is called the Avogadro number.

7. Candela: The candela is defined by taking the fixed numerical value of the luminous
efficacy of monochromatic radiation of frequency 540× 1012 Hz, Kcd, to be 683 when
expressed in the unit lm ·W−1, which is equal to cd · sr ·W−1, or cd · sr · kg−1 ·m−2 · s3,
where the kilogram, metre and second are defined in terms of h, c and ∆νCs.

By combining several SI base units in a unique way, we can formulate so-called derived
units. Examples of derived physical quantities, which are expressed in SI derived units, in-
clude area (m2), energy density (kg ·m−1 · s−2), molality (mol · kg−1), resistivity (kg ·m3 · s−3 ·
A−2), luminous energy (s · cd), and thermal conductivity (kg ·m · s−3 ·K−1).

The SI system furthermore designates special names to the units of measurement of twenty-
two derived physical quantities, which are listed below in Table 1.2.

1
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Table 1.1: The seven SI base units with their corresponding SI defining constants

Physical Quantity Unit Symbol Constant Symbol Value Unit

Time second s
caesium hyperfine

frequency
∆νCs 9 192 631 770 Hz

Length metre m
speed of light in

vacuum
c 299 792 458 m · s−1

Mass kilogram kg Planck constant h 6.626 070 15× 10−34 J · s

Electric current ampere A elementary charge e 1.602 176 634× 10−19 C

Thermodynamic
temperature

kelvin K
Boltzmann
constant

k 1.380 649× 10−23 J ·K−1

Amount of substance mole mol Avogadro constant NA 6.022 140 76× 1023 mol−1

Luminous intensity candela cd
luminous efficacy

of a defined visible
radiation

Kcd 683 lm ·W−1

Table 1.2: The twenty-two SI derived units with special names and equivalent SI base units

Physical Quantity Unit Symbol Base units

Plane angle radian rad 1

Solid angle steradian sr 1

Frequency hertz Hz s−1

Force newton N kg ·m · s−2

Pressure/Stress pascal Pa kg ·m−1 · s−2

Energy/Work/Amount of
heat

joule J kg ·m2 · s−2

Power/Radiant flux watt W kg ·m2 · s−3

Electric charge coulomb C A · s

Electric potential difference volt V kg ·m2 · s−3 ·A−1

Capacitance farad F kg−1 ·m−2 · s4 ·A2

Electric resistance ohm Ω kg ·m2 · s−3 ·A−2

Electric conductance siemens S kg−1 ·m−2 · s3 ·A2

Magnetic flux weber Wb kg ·m2 · s−2 ·A−1

Magnetic flux density tesla T kg · s−2 ·A−1

Inductance henry H kg ·m2 · s−2 ·A−2

Celsius temperature degree Celsius ◦C K

Luminous flux lumen lm cd · sr

Illuminance lux lx cd · sr ·m−2

Activity referred to a
radionuclide

becquerel Bq s−1

Absorbed dose/Kerma gray Gy m2 · s−2

Dose equivalent sievert Sv m2 · s−2

Catalytic activity katal kat mol · s−1

2
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1.2 Dimensional Analysis

The dimensions of a physical quantity can be described as a generalization of the unit of
measurement. That is, the dimensions remain invariable for a particular quantity whereas
the unit in which it is expressed may vary.

For example, the dimension of the distance d between the Andromeda Galaxy and the Milky
Way Galaxy is equal to length, which we write as [L]. Given that 1 light-year is measured as
9.46× 1015 m and 1 parsec (pc) as 3.26 light-years, we can write the distance between both
galaxies in terms of the unit metre, light-year, or parsec: d = 2.32× 1022 m, d = 2.45× 106

light-years, or d = 7.52× 105 pc.

The dimensions of a physical quantity are useful for a number of reasons. In the first place,
they let us verify the validity of a formula. Take for instance the Reynolds number Re,
which is a dimensionless number that reflects the nature of the dynamical pattern of a fluid.
Suppose that we have written down the following formula:

Re =
ρ u

µ

whereby ρ represents the fluid density (in kg ·m−3), u the flow speed (in m · s−1), and µ
the dynamic viscosity (in kg ·m−1 · s−1). To check whether the above formula is correct, we
perform a dimensional analysis. With [M] and [T] the dimension of the physical quantity
mass and time, respectively, the dimensions of the right-hand side of the above formula are
determined as follows:

[ρ] · [u]

[µ]
=

([M ][L]−3) ([L][T ]−1)

([M ][L]−1[T ]−1)
= [L]−1

Since the Reynolds number is a dimensionless quantity, we know that we made a mistake.
The correct formula requires an additional dimension of length in the numerator, so that the
final formula is the following:

Re =
ρ uL

µ

Secondly, the dimensions can be used to formulate a physical law. Suppose we would
like to find an expression for Kepler’s third law, which describes the relationship between,
on the one hand, the orbital period T of an object—the period is the time it takes that
object to complete one revolution—and, on the other hand, the distance r from that object
to the massive object around which it orbits and the mass Mm of that massive object. If
a0 represents a certain numerical constant and given that at such large scales the universal
gravitational constant G, which has a unit kg−1 ·m3 · s−2, also plays a role, we can then
algebraically write:

T = a0G
αMβ

m r
γ

In terms of dimensions, this becomes:

3
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[T ] =
(
[M ]−1[L]3[T ]−2

)α
([M ])β ([L])γ

The above expression is equivalent to solving the following system of three equations:


− α + β = 0

3α + γ = 0

− 2α = 1

The solution is equal to α = β = −1
2

and γ = 3
2
. This means that Kepler’s third law takes

on the following form:

T = a0G
− 1

2 M
− 1

2
m r

3
2 =

a0√
GMm

r
3
2

Finally, the dimensions also allow us to determine the scale of fundamental constants.
Let us for example estimate the strength of the electromagnetic force—one of the four funda-
mental forces of nature—which is reflected by the dimensionless coupling constant α, a.k.a.
the fine-structure constant. With the relevant parameters equal to the Planck constant h,
the speed of light c, the elementary charge e, and the permeability of free space µ0, which
has a unit H ·m−1, the expression for α becomes (with a0 a certain constant):

α = a0 µ
p1
0 cp2 ep3 hp4

The corresponding dimensions are:

1 =
(
[M ][L]2[T ]−2[I]−2[L]−1

)p1 ([L][T ]−1
)p2 ([I])p3

(
[M ][L]2[T ]−1

)p4
This corresponds to the following system of four equations:

p1 + p4 = 0

p1 + p2 + 2p4 = 0

− 2p1 − p2 − p4 = 0

− 2p1 + p3 = 0

Since all the parameters are relevant, we must exclude the solution whereby they are all
equal to zero. If we start with setting, for instance, p1 = 1, we find that p2 = 1, p4 = −1,
and p3 = 2. If you know that a0 = 1

2
, the value of the fine-structure constant α then becomes:

α =
1

2

µ0 c e
2

h
=

1

2

(1.256637062× 10−6) (299, 792, 458) [1.602176634× 10−19]
2

6.62607015× 10−34

=
1

2
(0.0145947) ≈ 7.30× 10−3

4
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This corresponds with a scale of approximately 10−2 or an order of magnitude of -2 (see next
section).

1.3 SI Prefixes and Orders of Magnitude

The SI units can be combined with SI prefixes, which represent decimal submultiples (with
a power < 0) and multiples (with a power > 0) extending from 10−24 to 1024.

For instance, one nanotesla (nT) is equal to 10−9 T, 5.45 exajoule to 5.45 × 1018 J, and
63 femtometer to 63 × 10−15 m. Similarly, a mass density of 2.20 g · cm−3 is equal to 2.20
(10−3 kg) · (10−2 m)

−3
or 2,200 kg ·m−3, and a molar ionic conductivity (for the chloride an-

ion) of 7.642×10−3 S ·m2 ·mol−1 to 7.642×10−3 S · (102 cm)
2 ·mol−1 or 76.42 S · cm2 ·mol−1.

Table 1.3: The SI prefixes with their corresponding powers of ten

Prefix Symbol Factor Prefix Symbol Factor

yocto y 10−24 deca da 101

zepto z 10−21 hecto h 102

atto a 10−18 kilo k 103

femto f 10−15 mega M 106

pico p 10−12 giga G 109

nano n 10−9 tera T 1012

micro µ 10−6 peta P 1015

milli m 10−3 exa E 1018

centi c 10−2 zetta Z 1021

deci d 10−1 yotta Y 1024

The order of magnitude of a number is a measurement of scale and can be found by taking
the logarithm of base 10 of that number—for more details on logarithms see Section 2.2.3—
and rounding it to the nearest integer.

For example, the order of magnitude of 109 is equal to log10 (109) = 9. Going back to the
example about the fine-structure constant in Section 1.2, the logarithm of 7.30 × 10−3 is
equal to log10 (7.30× 10−3) = −2.14. Rounding it off to the nearest integer means that the
order of magnitude is equal to −2 (and not −3). A final example is the number 46,993,
which we could also write as 4.70× 104. Its logarithm is calculated as log10 (46, 993) = 4.67.
This gives us an order of magnitude of 5 (and not 4).

1.4 Ratios and Proportions

A ratio describes the way in which a certain number relates to another number. The
relationship between the numbers can be expressed in plain words, fractions, scales, or
percentages. A fraction is a mathematical expression of a rational number with the general
form n1

n2
whereby n1 and n2 are both integers and n2 6= 0. A scale expresses the numerical

5
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relationship through a colon notation and a percentage reflects the number of parts per
100.

As an example suppose that a large glass bowl standing on your kitchen table contains small
chocolate Easter eggs with a red, silver, and golden paper wrapping, and that for every 3
red-coloured eggs there are 15 golden eggs. This relationship can be expressed as 1 to 5
(words), 1

5
(fractions), 1:5 (scales), or 20% (percentages).

Scales are commonly used when drawing maps of geographical areas. For example, if a map
of the city of Adelaide in Australia shows a scale of 1:500,000 (cm) it means that every 1 cm
on the map corresponds to a distance of 5 km within that city. The number 500,000 is called
the scale factor. Say you measure a straight distance of 8.23 cm on your map between
Aberfoyle Park and Golden Grove. Multiplying that distance with the scale factor leads you
to understand that both locations are approximately 41.2 km apart in the real world.

In the above example of the eggs, the units of the two numbers that are being compared are
the same (i.e., eggs), so that they cancel out in the fractional description of the ratio. If the
units are different, we obtain a special kind of fractional ratio called rate.

For instance, the city of Portsmouth in the United Kingdom has a population density of
129,000 inhabitants per 25 square kilometers. The units of the numbers in the numerator and
denominator of the fraction do not cancel out, so that the rate is written as 129,000 inhabitants

25 km2 .

If the denominator of a rate is equal to 1, the rate is called a unit rate.

For example, a bathtub is filled at a constant rate of 6.5 L per 1.35 minutes. The corre-
sponding unit rate is equal to 6.5×103 mL

(60+0.35·60) s
= 80.2 mL · s−1 or 80.2×10−3 L

1
3,600

hour
= 289 L per hour.

A proportion is defined as the equality of two ratios. In other words, a proportion implies
that the ratios remain invariable.

Let us consider the law of Gay-Lussac, which states that the rate of the pressure P to the
temperature T of a gas (for a given volume and a given amount of gas) remains constant:
P
T

= k. Suppose that the initial temperature T1 of a certain gas is increased by a factor of
1.75, so that the final temperature measures T2 = 1.75T1. The pressure of the gas in the
final situation can then be expressed as P2 = k T2 = k (1.75T1) = 1.75 (k T1) = 1.75P1. We
can now see that the ratios remain constant:

P2

T2

=
1.75P1

1.75T1

=
P1

T1

In the above example of the law of Gay-Lussac, the pressure P is directly proportional to
the temperature T , i.e., both physical quantities vary to the same extent: if the temperature
T1 is driven upwards by a factor of 1.75, then the pressure P1 equally goes up by that same
factor.

A counterexample whereby two quantities are not directly proportional to one another is the
speed v of transverse waves traveling along a stretched cord:

6
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v =

√
T

µ

If the tension force T in the cord is doubled, then the speed v of the wave also increases but
to a lesser extent, i.e., by a factor of

√
2 (< 2).

Figure 1.1: A graphical representation of the law of Gay-Lussac (left) and the speed of transverse
waves on a stretched cord (right)

What the above two examples have in common is that the change of the two related quantities
occurs in the same direction, i.e., if the value of one quantity decreases—or increases—so
does the value of the other quantity (under the assumption that any other quantity remains
constant). However, if the values of two related quantities change in the opposite direction,
we say that these quantities are inversely proportional to one another.

Figure 1.2: A graphical representation of the formula for
the apparent brightness b of a star or galaxy

For instance, the apparent brightness b
of a star or galaxy is inversely related
to the square of the distance d between
the star or galaxy and the Earth. For
a given luminosity L, the formula reads
as follows:

b =
L

4π d2

If the distance d between the star or
galaxy is cut by half, it follows that the
apparent brightness b is enhanced by a
factor of 4.

7
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Proportionality is mathematically represented by the symbol ∝. For the examples with
respect to the law of Gay-Lussac, the wave speed on a cord, and the apparent brightness,
we can thus write: P ∝ T , v ∝ T 1/2, and b ∝ d−2.

Proportions can furthermore be used to solve particular problems. Let us again consider
Kepler’s third law, which we discussed in Section 1.2. Say we have the following problem:
Given that Global Positioning System (GPS) satellites orbit Earth at a height of h1 =
20.2 × 103 km with a period of T1 = 12.0 hours, what is the average period T2 of the
International Space Station (ISS) if you know that its average orbital height is equal to
h2 = 370 km?

From the formula derived in Section 1.2, we see that the term a0√
GMm

(with Mm the mass of

the Earth) is constant. Therefore, we can write the following proportion:

T1

r
3/2
1

=
T2

r
3/2
2

In Kepler’s third law, the distances r1 and r2 represent the orbital radii, measured from the
center of the Earth. If we know that the radius of the Earth is equal to r = 6.38× 106 m, it
follows the orbital radii are equal to r1 = h1 + r = 2.02 × 107 + 6.38 × 106 = 2.66 × 107 m
and r2 = h2 + r = 3.70× 105 + 6.38× 106 = 6.75× 106 m, respectively. The period T2 of the
ISS is then calculated as follows:

T2 = T1

(
r2

r1

)3/2

= 12.0

(
6.75× 106

2.66× 107

)3/2

= 1.54 hours or 1 h 32 min

Finally, let us look a little closer to the concept of percentages. To illustrate the use
of percentages, we would like to calculate the mass percent composition of 1 mole of the
compound glucose (C6H12O6), given that the molar mass of carbon, hydrogen, and oxygen is
equal to MC = 12.01 g ·mol−1, MH = 1.01 g ·mol−1, and MO = 16.00 g ·mol−1, respectively.

Since the molar mass of glucose is equal to Mg = 6× 12.01 + 12× 1.01 + 6× 16.00 = 180.2
g ·mol−1, the relative mass of the element carbon within 1 mole of the compound glucose is
then calculated as 6 × MC

Mg
= 6 × 12.01

180.2
= 0.40. To obtain the percentage, we multiply that

amount by 100: 40%.

Similarly, the relative mass (in percentage) of the elements hydrogen and oxygen is equal to
12 × MH

Mg
× 100 = 12 × 1.01

180.2
× 100 = 6.73% and 6 × MO

Mg
× 100 = 6 × 16.00

180.2
× 100 = 53.3%,

respectively.

For smaller amounts, we can make use of the measures parts per million (ppm) and parts
per billion (ppb). Given that 1% is defined as 1 part per 100 and that 1 ppm is equal to the
ratio 1

1,000,000
, it follows that 1 ppm = 0.0001%. To the same extent, 1 ppb = 0.0000001%.

For instance, an average Canadian adult of 70.0 kg is believed to take in about 2.6 µg of
uranium on a daily basis. Taking into account that 1 kg is equal to 109 µg, the equivalent
amount in terms of ppb is equal to 2.6

70
= 0.037 ppb.

8
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2 Algebra

In general terms, algebra is the subfield within mathematics that describes the relationship
between variables by relying upon mathematical statements.

2.1 Definitions

A mathematical statement is usually written with the help of an algebraic expression,
which consists of any number of terms connected through the mathematical operation of
either addition or subtraction (see also polynomials in section 2.3).

A term is the main component of an algebraic expression and is made up of factors. A
factor can be a numerical coefficient or a combination of coefficients and variables that
are connected through the mathematical operation of either multiplication or division. A
numerical coefficient is any real number with a fixed value and a variable is a letter of
the Roman or Greek alphabet that represents a real number whereby its value can vary. A
term that only contains a numerical coefficient is called a constant.

Let us consider the following example:

3.9 + s− 1.6π t+
α t2

2

The above algebraic expression contains four terms. The first term ”3.9” is a constant. The
second term ”s” is a product of two factors: the numerical coefficient 1 and the variable s.
The third term ”1.6π t” consists of the factor 1.6π, which is the numerical coefficient, and
the factor t, which is the variable. The final term ”α t

2

2
” comprises the numerical coefficient

1/2 and the product of the variable α and two variables t (t2).

A mathematical statement that indicates the equality of two algebraic expressions is called
an equation, whereas any other type of relationship between two expressions is referred to
as an inequality, i.e., not equal to (6=), smaller than (<), greater than (>), smaller than or
equal to (≤), and greater than or equal to (≥). In the below examples, only the second one
qualifies as an equation: 

5x2 − 2 ≥ 3

4
y + z3

344 + 385 = 36

88 t < 2.3 + 5.5 t2

A special kind of equation is the formula, which signals the relationship between two or
more variables. For instance, the formula for the volume of a cone expresses the relation
between the volume V on the one hand and the diameter d of the base and the height h of
the cone at the other hand:

V =
π

12
d2 h

9
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Another special kind of equation is the identity, which is always true regardless of the input
value of the variables. An example of an algebraic identity is the following:

a3 − b3 = (a− b)(a2 + a b+ b2)

2.2 Laws of Indices, Roots, and Logarithms

2.2.1 Indices

An index or a power is a mathematical notation whereby a product of the same real number
or variable, multiplied a certain number of times, is written in a succinct way. That real
number is referred to as the base and the index refers to the number of times that the base
is being multiplied.

For example, the expression 7 × 7 × 7 × 7 × 7 can be written as 75, whereby the base and
the index are equal to 7 and 5, respectively. We read this notation as ‘seven to the power of
five’ or ‘the fifth power of seven’.

The Laws of Indices include a set of rules that are used to manipulate algebraic expres-
sions with the same base. Fig. 2.1 provides a list of these rules, whereby a is a non-zero real
number and r and s are integers.

Figure 2.1: The Laws of Indices

With the help of the above rules, we can for instance simplify the below term as follows:

5 k2 x6 y1 z−3 k (x−2)
4

z0 (52)−3 y−8 y4 x3 z7
=

57 k3 y5

x5 z10

2.2.2 Roots

If n is a (non-zero) natural number and a a real number, then we can define the real number
y as the nth root of a as long as it satisfies the following equation:

yn = a

10
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Every real number a has none, one, or two nth roots. If n is odd, then there is just one
solution, i.e., n

√
a, which is either positive (if a > 0) or negative (if a < 0). In the case that n

is even, there are two possibilities: if a ≥ 0, there are two solutions, i.e., ± n
√
a, or, if a < 0,

there is no solution. If n = 2, the nth root is called the square root, and if n = 3, it is called
the cube root.

For example, the 6th root of -334 ( 6
√
−344) has no real solutions, the cube root of -39,304

( 3
√
−39, 304) has just one solution, i.e., −34, and the 10th root of 32 has two solutions, i.e.,√

2 and −
√

2.

Note furthermore that for every real number a, and with n a (non-zero) natural number, the
following identity applies:

n
√
an =


|a| if n is even

a if n is odd

For instance,
√

(−6.4)2 = | − 6.4| = 6.4 and 5
√

(8.2)5 = 8.2.

For a non-zero real number a and a (non-zero) natural number n, we can write the nth root
of a as follows:

n
√
a = a

1
n

We can now expand the Laws of Indices with one more rule, whereby m is a (non-zero)
natural number:

a
m
n =

(
a

1
n

)m
= (am)

1
n

For example, 3
162
27 =

(
3

1
27

)162

= (3162)
1
27 =

27
√

3162 = 729.

For any real numbers a and b and any (non-zero) natural numbers q, r, and s, Fig. 2.2 lists
a number of general properties of roots, which are valid on the condition that for every
property the corresponding root exists:

Figure 2.2: General properties of roots
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Let us consider two examples:


7
√

229 =
7
√

222 · 227 =
7
√

222 7
√

227 = 22
7
√

222

9

√
63 3
√

92 =
9

√
3
√

69 · 92 =
27
√

69 · 92 =
27
√

29 · 313 =
3
√

2
27
√

313

2.2.3 Logarithms

The logarithm is used to answer the following question: how many times has the value
of a certain quantity been increased or decreased by a pre-determined factor or step size?
Put differently, the logarithm measures the number of times a factor appears in a series of
multiplications that consists only of that factor.

The step size is referred to as the base of the logarithm. In mathematical language, the
base-a logarithm of y is defined as follows, whereby a and y are non-zero real numbers with
a > 0, a 6= 1, and y > 0:

loga y = x ⇔ ax = y

For example, the base-5 logarithm of 15,625 is equal to log5(15, 625) = 6, because 56 =
5 · 5 · 5 · 5 · 5 · 5 = 15, 625. In other words, the value of a certain quantity has been increased
6 times by a factor of 5. Another example is the base-7.5 logarithm of 2.37 × 10−3, which
is calculated as log7.5 (2.37× 10−3) = −3.0, since 7.5−3 = 1

7.5
· 1

7.5
· 1

7.5
= 2.37 × 10−3, and

indicates that the value of a certain quantity has been reduced 3 times with respect to a
step size of 7.5.

Fig. 2.3 provides a list of properties of logarithms, whereby a > 0, a 6= 1, b > 0, b 6= 1, and
r any real number. Assume furthermore that x and y are well-defined for every property.

Figure 2.3: General properties of logarithms

If the base of a logarithm is equal to the number 10, the logarithm is called the common

12
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logarithm, whereas a logarithm with a base equal to Euler’s number e = 2.71828... is re-
ferred to as the natural logarithm. The base 10 of the common logarithm is usually not
written and the natural logarithm has its own unique notation:


log10 y = log y

loge y = ln y

Let us look at three examples:



log5 625 =
log 625

log 5
=

log 54

log 5
=

4 · log 5

log 5
= 4

ln

(
ex

ey

)
= ln (ex)− ln (ey) = x− y

log
(

4
√

5.23× 10−12
)

=
1

4

[
log(5.23) + log

(
10−12

)]
=

1

4
[log(5.23)− 12] = −2.82

2.3 Polynomials

2.3.1 Definitions

Algebraic expressions with a finite number of terms and whereby any exponents of the
variables are non-negative integers are called polynomials. Polynomials with one, two, or
three terms are referred to as monomials, binomials, and trinomials, respectively.

Generally, a polynomial of the variable y takes the following form, with the coefficients
b0, b1, ..., bn real numbers and n a natural number:

b0 + b1 y + b2 y
2 + ...+ bn y

n =
n∑
i=0

bi y
i

The degree of a polynomial is equal to the highest of the degrees of all the terms, whereby
the degree of a term is calculated as the sum of the exponents of all the variables included
within the term. In the standard form of a polynomial the terms are positioned from left
to right in decreasing order of degree.

For instance, the degree of the polynomial 3.4x3y − 5 y4z4 + x3yz3 + 5.5 (not in standard
form) is equal to 8 since the sum of the exponents of the variables of the second term is the
highest of all the terms.

A polynomial is called homogeneous of degree m if the degree of every term of the
polynomial is equal to m.

13
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2.3.2 Long Division

Apart from multiplying polynomials with each other, polynomials can also be divided by
one another through a method called polynomial long division. If a polynomial p(x) =∑m

i=0 bi x
i of degree m is divided by the polynomial s(x) =

∑n
i=0 ci x

i of degree n, whereby
n ≤ m, then we can write:

p(x) = q(x) · s(x) + r(x)

whereby q(x) represents the quotient with a degree equal to m−n and r(x) the remainder
with a degree smaller than or equal to n − 1. The polynomial p(x) and s(x) are called the
dividend and the divisor, respectively.

There are five steps to follow when implementing the method of polynomial long division:

1. Write the dividend p(x) and divisor s(x) in the standard form

2. Divide the first term of the dividend p(x) by the first term of the divisor s(x) and add
the result to the final answer q(x)

3. Multiply the result of step 2 by the divisor s(x) and write the answer below the dividend
p(x)

4. Subtract the answer of step 3 from the dividend p(x), resulting in a new polynomial

5. Repeat the steps 2 to 4, replacing thereby at every cycle the dividend p(x) in the
description by the newly created polynomial of step 4 until the division has ended

In Fig. 2.4, two examples of polynomial long division are provided whereby the dividend p(x)
is displayed in blue, the divisor s(x) in green, the quotient q(x) in orange, and the remainder
r(x) in red.

Figure 2.4: Two examples of polynomial long division

The dividend p(x) in each of the above two examples can thus be reformulated as follows:
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6x5 − 10x4 − 3x3 + 5x2 + 18.9x− 31.5 = (3x− 5)

(
2x4 − x2 + 6.3

)
− 4x3yz + 3xy3 + 4.5 y3 − 6x2z + 1 = (2xy + 3)

(
−2x2z + 1.5 y2

)
+ 4.5 y3 − 4.5 y2 + 1

2.3.3 Factoring Polynomials

The process of writing a polynomial as a product of two or more polynomials is called the
factorization of polynomials. A polynomial is completely factored when all the factors
cannot be further reduced. Note also that the sum of the degrees of the various factors must
be equal to the degree of the initial polynomial. In the first of the above two examples, the
degree of the two factors (3x− 5) and (2x4 − x2 + 6.3) are 1 and 4, respectively, which gives
a total degree of 5, i.e., the degree of the original polynomial.

Factoring polynomials is convenient for a number of reasons: it allows the polynomial to be
written in a more simple form; it greatly facilitates the process of solving equations; and it
helps to better understand the behaviour of polynomials graphically.

Let us look at six methods to factor polynomials: the largest common factor, grouping, split-
ting terms, quadratic trinomials, special products, and roots of polynomials. With respect
to the first method, the largest common factor of a polynomial is isolated from every
term. For instance:

92x6y2z3 + 16x5y2z2 − 48x3yz2 = 4x3yz2
(
23x3yz + 4x2y − 12

)
The second method of grouping can be useful when there are at least four terms in the
polynomial. In a first step, two or more groups of terms are formed. The groups are then
factored by isolating a common factor from each group. If a common factor is present among
all the factored groups of the previous step, then, in a final step, the expression is again fac-
tored. For example:

8x3 − 18x2 + 20x− 45 =
[
8x3 + 20x

]
−
[
18x2 + 45

]
=
[
4x
(
2x2 + 5

)]
−
[
9
(
2x2 + 5

)]
=
(
2x2 + 5

)
(4x− 9)

The third method of splitting terms is typically used for second-degree polynomials of one
variable called quadratic polynomials. The most general form of such a quadratic expression
is equal to:

ac x2 + (ad+ bc)x+ bd

The method of splitting terms consists of splitting the second term (of the first degree) in
such a way so that by resorting to the method of grouping the polynomial can be factored.
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The above general form can be factored as follows:

ac x2 + (ad+ bc)x+ bd = ac x2 + ad x+ bc x+ bd =
[
ac x2 + ad x

]
+ [bc x+ bd]

= [a x (c x+ d)] + [b (c x+ d)]

= (a x+ b) (c x+ d)

Consider the following numerical example:

3x2 − 7x+ 2 = 3x2 + (−6x− x) + 2 =
[
3x2 − 6x

]
+ [−x+ 2]

= [3x (x− 2)] + [− (x− 2)]

= (3x− 1) (x− 2)

The fourth method of quadratic trinomials is similar to the previous method of splitting
terms but does not involve splitting the (first-degree) second term. That is, although it also
takes the general form of a quadratic polynomial ac x2 + (ad+ bc)x+ bd as a starting point,
the method basically consists of applying a trial and error strategy to find the two factors
of the (zero-degree) third term, i.e., bd.

Let us look for example at the quadratic trinomial 12x2 + 17x − 5. In a first step, when
considering the coefficient of the (second-degree) first term ac = 12, we identify three possible
solutions, which have the form (1x+ b) (12x+ d), (3 x+ b) (4x+ d), and (2x+ b) (6x+ d).
In the next step, we try different combinations of the (zero-degree) third term bd = −5 and
insert them in these three possible solutions. Eventually, we find that the only solution to
give 17x as the (first-degree) second term is equal to (3 x+ 5) (4x− 1).

The fifth method that we will discuss to factor polynomials relies upon algebraic identities
also known as special products. Fig. 2.5 lists some of the most used identities, whereby x,
y, and z represent real numbers.

Figure 2.5: Algebraic identities

16



Mathematics Preparation Course Olivier Loose

Let us consider the following example:

54x4 + 27x3 − 16x− 8 =
[
54x4 + 27x3

]
+ [−16x− 8] =

[
27x3 (2x+ 1)

]
+ [−8 (2x+ 1)]

=
(
27x3 − 8

)
(2x+ 1)

=
[
(3x)3 − 23

]
(2x+ 1)

= (3x− 2)
(
9x2 + 6x+ 4

)
(2x+ 1)

The sixth and final method entails finding a root of the polynomial. The root of a
polynomial p(x) is defined as the real number c for which the equation p(c) = 0 holds. This
furthermore means that the term x− c is a divisor of the polynomial p(x), so that p(x) can
be factored by applying the method of polynomial long division.

For instance, with a bit of educated guess work we can see that c = −2 is a root of the
polynomial p(x) = 2x4 +x3 + 2 x2 + 4 x−24. If we divide p(x) by x+ 2, we find the quotient
q(x) = 2x3 − 3x2 + 8x− 12, which can be further factored as follows:

2x4 + x3 + 2x2 + 4x− 24 = (x+ 2)
(
2x3 − 3x2 + 8x− 12

)
= (x+ 2)

[
x2 (2x− 3) + 4 (2x− 3)

]
= (x+ 2) (2x− 3)

(
x2 + 4

)
With respect to quadratic trinomials, the roots can be calculated by resorting to the method
of the discriminant. Given the general form of a quadratic trinomial p(x) = a x2 + b x+ c,
the discriminant D is calculated as D = b2 − 4 ac, whereby the roots of p(x) are equal to:

x =



−b±
√
D

2 a
if D > 0 (2 roots)

−b
2 a

if D = 0 (1 root with multiplicity 2)

∅ if D < 0 (0 roots)

For example, the discriminant of the quadratic trinomial p(x) = 133 x2− 82.5x+ 11 is equal
to D = b2− 4 ac = (−82.5)2− 4 · 133 · 11 = 954.25 > 0. This means that the polynomial has
two roots, which are calculated as follows:


x1 =

−b+
√
D

2 a
=
−(−82.5) +

√
954.25

2 · 133
= 0.426

x2 =
−b−

√
D

2 a
=
−(−82.5)−

√
954.25

2 · 133
= 0.194
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The quadratic trinomial p(x) = 133x2 − 82.5x + 11 is then factored as p(x) = 133 ·
[(x− x1) (x− x2)] = 133 · [(x− 0.426) (x− 0.194)]. Note that we have to multiply the fac-
tored polynomial with the coefficient a = 133, because the above formulas of the roots implic-
itly work with the following adjusted form of the general quadratic trinomial: a

(
x2 + b

a
x+ c

a

)
.

18



Mathematics Preparation Course Olivier Loose

3 Linear Algebra

Within the field of mathematics, the branch of linear algebra studies linear equations,
linear transformations, and vectors as well as their representations in the vector space with
the assistance of matrices.

3.1 Definitions

A linear equation is an equation that has the general form
∑n

i=1 ai xi = b or a1x1 + a2x2 +
. . .+anxn = b, whereby ai refers to the coefficients, xi to the unknown variables of the linear
equation, and b to a constant. It is called linear because the exponent of each variable is
equal to one.

A vector is a geometric object that exhibits both a magnitude (or length) and a direction.
It is noted with an arrow or a dash above a certain letter, such as ~a or ~ω. A vector space
is the mathematical space in which vectors can be added and multiplied by scalars, which
are quantities that only have a magnitude but not a direction (such as the real numbers).

A linear transformation or linear map is a relationship between two vector spaces
whereby the structure of the vector space is preserved, i.e., the operations of vector addition
and scalar multiplication. Every linear transformation is always associated with a matrix, so
that a linear transformation acting on a vector is equivalent to multiplying its matrix with
that vector.

A matrix is a rectangular array of elements aij (with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m})
that are organized in n rows and m columns and represent a mathematical object. A matrix
with n rows and m columns is noted as a n×m-matrix and can be written as (aij). We say
that the order of a matrix is equal to n×m. In linear algebra, the majority of operations
or specific properties of mathematical objects are expressed by way of matrices.

3.2 Types of Matrices

The null matrix is a n×m-matrix whereby the elements aij are all equal to zero.

A square matrix is a n×m-matrix whereby n = m. The order of a square matrix is equal
to its number of rows (or columns). In a square matrix, the main diagonal is composed
of the elements aii. If all the elements of a square matrix are equal to zero except the ones
on the main diagonal, the matrix is called a diagonal matrix. If only the elements below
(above) the main diagonal are all zero, the matrix is known as an upper (lower) triangular
matrix. The identity matrix In is the diagonal matrix whereby aii = 1 (i ∈ {1, . . . , n}).

A row matrix is a matrix with just one row, whereas a column matrix has multiple rows
and just one column. A row (column) matrix is also called a row (column) vector. A
scalar is a 1× 1-matrix.

The transpose of the n × m-matrix A = (aij) is equal to the m × n-matrix AT = (aji).
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In other words, the rows (columns) of A become columns (rows) in AT and vice versa. A
square matrix A is called symmetric if AT = A and antisymmetric if AT = −A.

Figure 3.1: Different types of matrices

3.3 Matrix Properties and Operations

3.3.1 Addition and Multiplication

The scalar multiplication is the multiplication of a matrix A by a scalar s. This means
that every element aij of the matrix A is multiplied with the scalar s.

The addition of matrices is possible only if the matrices are all of the same order, i.e., they
must have the same number of rows and columns. The addition of the p× q-matrix A and
the p × q-matrix B then results in the p × q-matrix C, with the elements cij = aij + bij
whereby aij and bij represent the elements of the matrix A and B, respectively.

The operation of addition allows us to both switch the order of positions of matrices in
a sum—this property is called commutativity—and randomly group matrices without
affecting the result—this second property is referred to as associativity.

The addition of matrices has furthermore the null matrix as the neutral element, i.e., the
addition of matrix A and the null matrix gives back the original matrix A. For the scalar
multiplication, the scalar 1 is the neutral element. Multiplying a matrix A with the scalar 0
always results in the null matrix.

The multiplication of matrices is possible only if the amount of columns of the matrix
on the left-hand side of the product is equal to the amount of rows of the matrix at the
right-hand side. The multiplication of the p× q-matrix A by the q× r-matrix B then results
in the p × r-matrix C, whereby the elements cik are defined as cik =

∑q
j=1 aijbjk, with aij

and bjk the elements of the matrix A and B, respectively, and i ∈ {1, . . . , p}, j ∈ {1, . . . , q},
and k ∈ {1, . . . , r}.

For example, the product of the 3 × 2-matrix A by the 2 × 2-matrix B, which are defined
below, results in the 3 × 2-matrix C. The element c22, for instance, is then calculated as
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c22 =
∑2

j=1 a2jbj2 = a21b12 + a22b22 = 0 · 0 + 1 · (−1) = −1.

A ·B =

 2 3
0 1
−2 6

 · [ 1 0
0 −1

]
=

 2 −3
0 −1
−2 −6


The operation of multiplication of matrices is associative but not commutative. What is
more, the identity matrix is the neutral element and multiplication with a null matrix always
results in a null matrix.

Fig. 3.2 summarizes the different properties of (scalar) multiplication and addition of ma-
trices, whereby the letters r and s represent scalars, the matrices A, B, and C represent
a m × n-matrix, the matrices Om,n and Im are defined as the m × n null matrix and the
m ×m identity matrix, respectively, and the matrices D and E have the form of a n × p-
matrix and a p×q-matrix, respectively. Note that the product D ·A is only defined if p = m.

Figure 3.2: Properties of (scalar) multiplication and addition of matrices
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3.3.2 Transposed, Orthogonal, and Inverse Matrices

Now that we have defined the (scalar) multiplication and addition of matrices, we can look
at the properties of transposed matrices, which are presented in Fig. 3.3. Note that the
letter r represents a scalar, the matrices A and B are m × n-matrices, and the matrix D
represents a n× p-matrix.

Figure 3.3: Properties of transposed matrices

A square p × p-matrix L is called an orthogonal matrix if L · LT = Ip = LT · L. For
example, the 2× 2 matrix L as defined below is an orthogonal matrix.

L · LT =

[ √
3

2
1
2

−1
2

√
3

2

]
·

[ √
3

2
−1

2

1
2

√
3

2

]
=

[
1 0
0 1

]
=

[ √
3

2
−1

2

1
2

√
3

2

]
·

[ √
3

2
1
2

−1
2

√
3

2

]
= LT · L

A square n× n-matrix M is referred to as the inverse matrix of a given n× n-matrix P if
P ·M = In = M ·P . The matrix M is then formulated as M = P−1. Note that only square
matrices can be inverted and that not all square matrices are invertible.

Square matrices for which the inverse is defined are called non-singular matrices, whereas
square matrices that are not invertible are called singular matrices.

In the case that P is an orthogonal matrix, it follows from the definition that P T = P−1.
That is, the inverse of an orthogonal matrix is equal to its transposed matrix. Reversely, if
we find for a given matrix S that ST = S−1, we can conclude that S is an orthogonal matrix.

3.3.3 The Trace and Rank of a Matrix

The trace of a m × m square matrix A is equal to the sum of the elements on its main
diagonal. In other words, Tr(A) =

∑m
i=1 aii. Fig. 3.4 lists the main properties of the trace

operator, whereby A and B are m×m matrices, s and t are scalars, and the matrices C and
D represent a matrix of the form p× q and q × p, respectively.
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Figure 3.4: Properties of the trace operator

The rank of a matrix is equal to the maximum amount of linearly independent rows
(columns) of that matrix. Linearly independent rows (columns) means that a row (col-
umn) cannot be written as a linear combination of other rows (columns). The rank of a
matrix A is denoted by rank(A).

For example, consider the following three matrices L, M , and N :

L =

[
2 3 −1
0 1 7

]
M =

 1 2 −1
−2 2 5
−1 0 2

 N =

[
6 1
−2 3

]

They all have a rank equal to 2. Given that the rows in L and N are linearly independent,
their rank equals 2. Regarding M , the second row is a linear combination of the first and
third row: 3 times the third row plus the first row gives the second row. Therefore, matrix
M only has two linearly independent rows, which gives a rank equal to 2.

(Non-)Singular matrices can also be defined in terms of their rank. If the rank of a
square matrix C is equal to its order (rank(C) = order(C)), C is a non-singular matrix.
Put another way, all the rows of C are linearly independent. Looking back at the above
matrices L, M , and N , the only non-singular matrix is N .

Similarly, for a singular matrix B we have that rank(B) < order(B), which means that
some rows are linearly dependent. From the above example, we know that rank(M) = 2 <
order(M) = 3, so that M is classified as a singular matrix.

3.3.4 Determinants

The determinant of a n× n-matrix is a characteristic scalar value of square matrices. To
calculate the determinant, we will rely on the concepts of minor and cofactor. The minor of
an element aij is equal to the determinant of the matrix that emerges when the ith row and
the jth column are eliminated from the original n× n-matrix. The cofactor of the element
aij is defined as Aij = (−1)i+j × (minor of aij).

The determinant of a n × n-matrix A can then be calculated by applying the technique of
cofactor expansion along the row i or column j in the following way:
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Along row i: det(A) =
n∑
j=1

aijAij =
n∑
j=1

aij
[
(−1)i+j × (minor of aij)

]

Along column j: det(A) =
n∑
i=1

aijAij =
n∑
i=1

aij
[
(−1)i+j × (minor of aij)

]

When applying cofactor expansion along a certain row or column of a 2 × 2-matrix A, we
find that the determinant is calculated as det(A) = a11a22− a12a21. In the above example of
section 3.3.3, the determinant of N is equal to det(N) = 6 · 3− 1 · (−2) = 20.

For a 3 × 3-matrix A, we obtain the general formula det(A) = a11a22a33 + a12a23a31 +
a13a21a32− a11a23a32− a12a21a33− a13a22a31. For instance, the determinant of the matrix M
from section 3.3.3 is equal to det(M) = 1 · 2 · 2 + 2 · 5 · (−1) + (−1) · (−2) · 0− 1 · 5 · 0− 2 ·
(−2) · 2− (−1) · 2 · (−1) = 0.

If det(A) = 0 (det(A) 6= 0), the matrix is (non-)singular. As we have seen in section 3.3.3,
the matrix M is singular, which means that det(M) = 0 as calculated in the previous
paragraph. In contrast, det(N) = 20 6= 0, which implies that N is non-singular as already
established in section 3.3.3.

Fig. 3.5 provides the properties of determinants, whereby A, B, and C are p × p matrices,
C is non-singular, and r is a scalar.

Figure 3.5: Properties of determinants

3.4 Systems of Linear Equations

3.4.1 Definitions

A system of linear equations is a set of n equations with p unknown variables which has
the following general form:
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a11x1 + a12x2 + a13x3 + . . .+ a1pxp = b1

a21x1 + a22x2 + a23x3 + . . .+ a2pxp = b2

...
...

...
...

...
...

an1x1 + an2x2 + an3x3 + . . .+ anpxp = bn

A system of linear equations can be solved for the unknown variables through, for instance,
the substitution method or the combination method, but we will turn to matrices to discuss
the solutions of such systems.

The above set of linear equations can be rewritten as a product of matrices. If A represents
the n × p coefficient matrix, which consists of the coefficients aij (with i ∈ {1 . . . n} and
j ∈ {1 . . . p}), X the p × 1 variable matrix containing the variables xj, and B the n × 1
matrix of the constants whose elements are the constants bi, the set of equations takes
on the form A ·X = B whereby the respective matrices are the following:

A ·X = B ⇐⇒


a11 a12 a13 . . . a1p

a21 a22 a23 . . . a2p
...

...
...

...
...

an1 an2 an3 . . . anp

 ·

x1

x2
...
xp

 =


b1

b2
...
bn



We also define the n × (p + 1) augmented matrix A|B which adds the column matrix
B to the coefficient matrix A:

A =


a11 a12 a13 . . . a1p b1

a21 a22 a23 . . . a2p b2
...

...
...

...
...

...
an1 an2 an3 . . . anp bn



3.4.2 The Rank Method

The rank method allows us to analyze the solutions of our system of linear equations
A · X = B and Fig. 3.6 summarizes the method. Note that p refers to the number of un-
known variables.

If the matrix of the constants B is equal to the null matrix (B = On,1), the system of
linear equations A · X = On,1 is called homogeneous. If rank(A) = rank(A|On,1) = p,
the only solution to the homogeneous system of linear equations is the null matrix Op,1. If
rank(A) = rank(A|On,1) < p, the set of equations includes solutions different from the null
matrix.
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Figure 3.6: The rank method

Let us now suppose for a moment that the coefficient matrix A of the system of linear
equations A · X = B is a square p × p-matrix. If det(A) 6= 0, the matrix A is non-
singular, which means that rank(A) = order(A) = p, so that A · X = B has one unique
solution. Given that the inverse of non-singular matrix is defined, we can write the solution
as X = A−1 · B. However, if det(A) = 0, we know that A is singular, which implies that
rank(A) < order(A) = p, so that the system of linear equations A ·X = B has either zero
or an infinite number of solutions.

3.4.3 Gauss-Jordan Elimination

Consider again the general case whereby A is a n × p-matrix. To actually solve a system
of linear equations A ·X = B, we will discuss the method of Gauss-Jordan elimination,
which relies on elementary row operations. These operations refer to swapping two rows,
multiply one row with a non-zero real number, or adding to a row a multiple of another row.

The starting point of the Gauss-Jordan elimination method is the augmented matrix A|B.
In a first step, the method entails performing elementary row operations until A|B is written
in row echelon form. This means that, starting from the first row, every next non-zero
row starts with strictly more zeros than the previous row. All the zero rows are thus at the
bottom of the matrix. At this point, the rank method will indicate the type of solutions we
are dealing with. Note that, when a matrix is in row echelon form, the rank of a matrix is
equal to the number of non-zero rows.

In a second step, and if rank(A) = rank(A|B), we calculate the solutions to A · X = B
by transforming the row echelon form into a reduced row echelon form. This implies
that all the leftmost non-zero entries of non-zero rows—these entries are called leading
coefficients—must be equal to 1 and that all the values above and below the leading
coefficients are zero. If A is a non-singular matrix, this means that its reduced row echelon
form is equal to the identity matrix.

Let us look at the following example.


2x+ 5y − z + 3u = −1

y + z − u = 2

2x− y + 6z − 2u = 0

⇔ A ·X = B ⇔

 2 5 −1 3
0 1 1 −1
2 −1 6 −2

 ·

x
y
z
u

 =

 −1
2
0
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In a first step, we transform the augmented matrix A|B into its row echelon form.

A|B =

 2 5 −1 3 −1
0 1 1 −1 2
2 −1 6 −2 0

 (R3 → −R1 +R3)

∼

 2 5 −1 3 −1
0 1 1 −1 2
0 −6 7 −5 1



(R3 → 6R2 +R3)

∼

 2 5 −1 3 −1
0 1 1 −1 2
0 0 13 −11 13


Since there are no zero rows in the last matrix, the rank method tells us that rank(A) =
rank(A|B) = 3 < 4, whereby 4 is the number of unknown variables. This system of linear
equations has thus an infinite number of solutions. To write down the solutions, we first
transform the row echelon form into the reduced echelon form.

 2 5 −1 3 −1
0 1 1 −1 2
0 0 13 −11 13

 (R1 → R1

2
& R3 → R3

13

)
∼

 1 5
2
−1

2
3
2
−1

2

0 1 1 −1 2

0 0 1 −11
13

1



(
R1 → −5

2
R2 +R1

)
∼

 1 0 −3 4 −11
2

0 1 1 −1 2

0 0 1 −11
13

1



(R2 → −R3 +R2)

(R1 → 3R3 +R1)
∼

 1 0 0 19
13

−5
2

0 1 0 − 2
13

1

0 0 1 −11
13

1



⇐⇒

 1 0 0 19
13

0 1 0 − 2
13

0 0 1 −11
13

 ·

x
y
z
u

 =

 −
5
2

1

1

 ⇐⇒


x+
19

13
u = −5

2

y − 2

13
u = 1

z − 11

13
u = 1

If the variable u is treated as a parameter, the last set of equations provides the solution to
the system of linear equations A ·X = B.

3.4.4 Cramer’s Rule

In case that the coefficient matrix A of our system of linear equations A · X = B is a
p × p non-singular matrix, we also have the option, besides the method of Gauss-Jordan
elimination, to fall back on Cramer’s rule to solve this set of linear equations.

If the matrix Ai (with i ∈ {1 . . . p}) is defined as the matrix whereby the ith column of A is
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replaced by the matrix of constants B, the solution to A ·X = B according to Cramer’s rule
is equal to: (

det(A1)

det(A)
,
det(A2)

det(A)
, . . . ,

det(Ap)

det(A)

)

Remember that det(A) 6= 0 given that A is non-singular. Let us consider the following ex-
ample: {

− x+ 3y = 2

2x+ 4y = −3
⇔ A ·X = B ⇔

[
−1 3
2 4

]
·
[
x
y

]
=

[
2
−3

]

Since det(A) = −1 · 4− 2 · 3 = −10 6= 0, the coefficient matrix A is non-singular and we can
apply Cramer’s rule. The matrices A1 and A2 are defined as follows:

A1 =

[
2 3
−3 4

]
A2 =

[
−1 2
2 −3

]

Their determinant is equal to det(A1) = 17 and det(A2) = −1, respectively, so that the
solution of our system of linear equations is equal to:


x =

det(A1)

det(A)
= −17

10

y =
det(A2)

det(A)
=

1

10

3.5 Inverse Matrices

We have seen in section 3.3.2 that an inverse matrix is defined for non-singular matrices. In
this section we discuss how to actually calculate the inverse matrix. We will explore two
different methods. Suppose hereby that A is a non-singular p× p-matrix.

3.5.1 Two Methods

With respect to the first method, we start by transforming A into an augmented matrix
A|Ip whereby the part added to the right of A consists of the identity matrix Ip. In a
next step, we apply elementary row operations to the matrix A|Ip so that the matrix A is
converted into its reduced row echelon form—which in the case of a non-singular matrix is
equivalent to the identity matrix. The matrix that appears to the right of the reduced row
echelon form is then equal to the inverse matrix A−1.

Let us look at the following example.
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A =

 1 0 1
−1 2 1
0 1 3

 ⇒ A|I3 =

 1 0 1 1 0 0
−1 2 1 0 1 0
0 1 3 0 0 1


 1 0 1 1 0 0
−1 2 1 0 1 0
0 1 3 0 0 1

 (R2 ↔ R3)

∼

 1 0 1 1 0 0
0 1 3 0 0 1
−1 2 1 0 1 0

 (R3 → R1 +R3)

∼

 1 0 1 1 0 0
0 1 3 0 0 1
0 2 2 1 1 0



(
R3 → 1

2
R3

)
∼

 1 0 1 1 0 0

0 1 3 0 0 1

0 1 1 1
2

1
2

0

 (R3 → −R2 +R3)

∼

 1 0 1 1 0 0

0 1 3 0 0 1

0 0 −2 1
2

1
2
−1



(
R3 → −1

2
R3

)
∼

 1 0 1 1 0 0

0 1 3 0 0 1

0 0 1 −1
4
−1

4
1
2

 (R2 → −3R3 +R2)

(R1 → −R3 +R1)
∼

 1 0 0 5
4

1
4
−1

2

0 1 0 3
4

3
4
−1

2

0 0 1 −1
4
−1

4
1
2


The inverse matrix A−1 is then equal to:

A−1 =


5
4

1
4
−1

2
3
4

3
4
−1

2

−1
4
−1

4
1
2


For the second method, we have to introduce a new type of matrix called the adjacent
matrix. This matrix is found by first replacing every element of A by its corresponding
cofactor (see section 3.3.4) and subsequently taking the transpose. The adjacent matrix of
A is denoted by adj(A).

The inverse matrix A−1 is then calculated as A−1 =
adj(A)
det(A)

. Consider the following example:

A =

 3 5 −7
0 1 0
3 1 −1

 ⇒ adj(A) =

 −1 −2 7
0 18 0
−3 12 3

 ⇒ A−1 =
adj(A)
det(A)

=

 −
1
18
−1

9
7
18

0 1 0

−1
6

2
3

1
6


Let us consider, for instance, the element a32 = 12 of adj(A). This value is calculated as
a32 = [(−1)2+3 × (minor of a23 of matrix A)], whereby the minor of a23 of matrix A is equal
to 1 · 3− 3 · 5 = −12. Given that det(A) = 18, the element a32 of A−1 is then calculated as
12
18

= 2
3
.

3.5.2 Solving Systems of Linear Equations

The inverse matrix can also be used to solve systems of linear equations. If the p × p
coefficient matrix A of the system A ·X = B is non-singular, the solution can be found as
follows:
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A ·X = B ⇔ A−1 · A ·X = A−1 ·B ⇔ Ip ·X = A−1 ·B ⇔ X = A−1 ·B

Let us look at the following example:


y − 6z = −2

x+ y = 3

− 5y + 2z = 7

⇔ A ·X = B ⇔

 0 1 −6
1 1 0
0 −5 2

 ·
 x
y
z

 =

 −2
3
7



Given that det(A) = 28 6= 0, the matrix A is non-singular, so that an inverse is defined.
The inverse A−1 can be calculated through any of the two methods discussed in the previous
section and is equal to:

A−1 =


1
14

1 3
14

− 1
14

0 − 3
14

− 5
28

0 − 1
28


The solution to our system of linear equations is then found when A−1 is multiplied by the
matrix of the constants B:

X = A−1 ·B =


1
14

1 3
14

− 1
14

0 − 3
14

− 5
28

0 − 1
28

 ·
 −2

3
7

 =


61
14

−19
14

3
28



3.6 Eigenvectors and Eigenvalues

If T represents a linear transformation from a vector space to that same vector space, we
can define an eigenvector as a non-null vector that does not change its direction when T
is acting on it. The length of the eigenvector can however change and the amount by which
it does is called the eigenvalue.

If ~x is an eigenvector of T , we can write T (~x) = λ~x, whereby the scalar λ is called the
eigenvalue. Given that every linear transformation is associated with a matrix, the above
equation can be written as A ·X = λ ·X, with A a square n× n-matrix and X the column
matrix containing the coordinates of ~x.

The equation A · X = λ · X is equivalent to the equation (A− λ · In) · X = On,1. As
discussed in section 3.4.2, in order to obtain a solution other than the null matrix to a ho-
mogeneous system of equations (X 6= On,1), we know that the condition rank (A− λ · In) =
rank [(A− λ · In) |On,1] < n must be fulfilled. In other words, the matrix (A− λ · In) must
be singular and thus det (A− λ · In) = 0.

The equation det (A− λ · In) = 0 is called the characteristic equation of the matrix A.
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For the cases n = 2 and n = 3, the characteristic equation can be found through the follow-
ing formulas:

{
n = 2 : λ2 − Tr(A) + det(A) = 0

n = 3 : − λ3 + Tr(A) · λ2 − Tr(adj(A)) · λ+ det(A) = 0

The eigenvalues are found by solving the characteristic equation. Each eigenvalue corre-
sponds with an eigenvector whose coordinates are calculated by inserting the respective
eigenvalue into the equation (A− λ · In) ·X = On,1.

Let us look at the below example. The trace and the determinant of the matrix A is equal
to Tr(A) = 3 and det(A) = −8, respectively. The trace of the adjacent matrix of A is equal
to Tr(adj(A)) = −2.

A =

 1 2 −1
0 1 2
−1 2 1

 and adj(A) =

 −3 −4 5
−2 0 −2
1 −4 1


The characteristic equation of A obtains the following form:

−λ3 + 3 · λ2 − (−2) · λ+ (−8) = 0 ⇔ (λ− 2) ·

(
λ− 1 +

√
17

2

)
·

(
λ− 1−

√
17

2

)
= 0

In other words, the eigenvalues of A are equal to λ1 = 2, λ2 = 1+
√

17
2

, and λ3 = 1−
√

17
2

. Let
us now find the eigenvector ~x1 that corresponds with the eigenvalue λ1 = 2.

(A− λ1 · I3) ·X = O3,1 ⇔

 −1 2 −1
0 −1 2
−1 2 −1

 ·
 x
y
z

 =

 0
0
0



⇔


− x+ 2y − z = 0
− y + 2z = 0
− x+ 2y − z = 0

⇔
{
x = 3z
y = 2z

This means that we can arbitrarily choose a value for z to determine the eigenvector ~x1. If
we set z = 1, then the eigenvector is equal to ~x1 = (3, 2, 1).

If we go through the same process for the eigenvalues λ2 and λ3, we find the eigenvectors

~x2 =
(

1, 1+
√

17
4

, 1
)

and ~x3 =
(

1, 1−
√

17
4

, 1
)

.

The eigenvectors that correspond to different eigenvalues are linearly independent. If the
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n × n-matrix A of the linear transformation T has n distinct eigenvalues, we can say that
A is diagonalizable. This means that A can be written as A = M · D ·M−1, with M a
n × n-matrix whose columns contain the eigenvectors of A and with D a n × n diagonal
matrix whose main diagonal consists of the eigenvalues of A.

In our above example we have 3 distinct eigenvalues, so A is diagonalizable and can be
written as:

A = M ·D ·M−1

=

 3 1 1

2 1+
√

17
4

1−
√

17
4

1 1 1

 ·
 2 0 0

0 1+
√

17
2

0

0 0 1−
√

17
2

 ·


1
2

0 −1
2

−7+
√

17
4
√

17
2√
17

5+3
√

17
4
√

17

7−
√

17
4
√

17
− 2√

17
−5+3

√
17

4
√

17


A square n × n-matrix can still be diagonalizable if the number of distinct eigenvalues is
lower than n, but only if the algebraic multiplicity is equal to the geometric multiplicity for
each eigenvalue. The algebraic multiplicity of an eigenvalue is equal to the multiplicity
of the corresponding root of the characteristic equation and the geometric multiplicity is
the number of eigenvectors that are associated with an eigenvalue.

For example, consider the below matrix A, for which det(A) = −2, Tr(A) = 0, and
Tr(adj(A)) = −3.

A =


−1+

√
13

2
−1 0

1 −1+
√

13
2

0

0 −1 1

 and adj(A) =


−1+

√
13

2
1 0

−1 −1+
√

13
2

0

−1 −1+
√

13
2

−2


The characteristic equation is equal to−λ3+0·λ2−(−3)·λ+(−2) = 0 ⇔ (λ− 1)2·(λ+ 2) =
0. The eigenvalue λ1 = 1 has thus an algebraic multiplicity equal to 2 and that of the
eigenvalue λ2 = −2 is equal to 1.

The eigenvalue λ1 produces just one eigenvector, i.e., ~x1 =
(

3+
√

13
2

, 1, 1
)

, so that its geometric

multiplicity equals 1. Since the geometric and algebraic multiplicity are not equal (1 6= 2),
the matrix A is not diagonalizable.
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4 Plane Geometry

Geometry is the study of the properties of space and Euclidean geometry is geometry
that is based on the five axioms of Euclid. Euclidean geometry encompasses plane geometry
and solid geometry. Plane geometry is geometry of two-dimensional Euclidean spaces,
whereas solid geometry (see section 6) discusses three-dimensional Euclidean spaces. Eu-
clidean spaces are mathematical spaces that aim to represent physical space and consist of
an infinite number of points.

4.1 Vectors

4.1.1 Coordinates and Coordinate Spaces

A Euclidean plane is the two-dimensional Euclidean space whereby the position of a point
is determined by a pair of two values. If the values are real numbers, the set of all pairs is
denoted by R2 and is called a real coordinate space. The elements of this real coordinate
space are referred to as coordinate vectors, which have been introduced in section 3.1,
and the values of these pairs are called coordinates. The real coordinate space is thus a
vector space and we will refer to that space from now on as the Euclidean plane.

A basis of a vector space V is defined as a finite set of vectors within V so that every vector
of V can be uniquely constructed as a finite linear combination of these basis vectors. The
coordinates of a vector are then equal to the coefficients of this linear combination. The
number of basis vectors pertaining to a base is called the dimension of the vector space
and does not change. A basis of the Euclidean plane always contains two basis vectors, so
that it has a dimension of 2.

For example, a basis E of the Euclidean plane could be E = {(3, 2), (−1, 1)}. If ~e1 = (3, 2)
and ~e2 = (−1, 1), then the vector ~a = (2, 4) can be written as ~a = 2~e1 +4~e2. If we would now

choose a second basis B = {(1, 0), (0, 1)} with ~b1 = (1, 0) and ~b2 = (0, 1), we can express the

basis vectors of E in terms of those of B: ~e1 = 3~b1 + 2~b2 and ~e2 = −~b1 +~b2. The vector ~a
with respect to basis B then becomes ~a = 2(3~b1 +2~b2)+4(−~b1 +~b2) = 2~b1 +8~b2 or ~a = (2, 8).

Figure 4.1: The Cartesian coordinate system

To graphically construct vectors in the
Euclidean plane, we need to define the
origin or the null vector of the plane
which is a point that, once chosen, re-
mains fixed and is denoted by ~o with
coordinates ~o = (0, 0). The vector
~v = (a, b) is then constructed by draw-
ing an arrow that starts in the origin
and ends in the point with coordinates
(a, b).

The coordinate axes of a coordinate
system consist of the straight lines that
connect the origin with the respective
points associated with the basis vectors.
If the coordinate axes in the Euclidean

33



Mathematics Preparation Course Olivier Loose

plane are oriented perpendicularly and if the length of the basis vectors is equal to 1, we
refer to the coordinate system as an orthonormal or a Cartesian coordinate system.

4.1.2 Vector Operations and Properties

Given that the Euclidean plane is a vector space, we can add vectors together and perform
scalar multiplication. The sum vector ~c = ~a +~b of two vectors ~a and ~b that do not lie on
the same straight line is drawn as the diagonal, with the starting point in the origin, of the
parallelogram spanned by the two vectors ~a and ~b. If ~a and ~b lie on the same line, the sum
vector ~c = ~a+~b also lies on that line.

Multiplying the vector ~a with a scalar λ ∈ R results in the vector ~b = λ~a, which lies on the
same line as vector ~a.

Figure 4.2: Vector addition and scalar multiplication

From the above it becomes clear that two vectors ~a and ~b are parallel to each other (~a ‖ ~b)
if one vector can be found by applying scalar multiplication to the other vector, i.e., ~a = λ~b
or ~b = µ~a. For instance, the red-coloured vector, let’s call it ~c, in the coordinate system at
the right-hand side in Fig. 4.2 is parallel to the green-coloured vector ~b because ~c = 2~b or
~b = 1

2
~c.

Fig. 4.3 summarizes the properties of vector addition and scalar multiplication whereby λ
and µ represent scalars.

In terms of coordinates, the sum of the two vectors ~a = (a1, a2) and ~b = (b1, b2) is equal to
~c = (a1 + b1, a2 + b2) and the scalar multiplication of ~a = (a1, a2) with the real scalar λ is
defined as λ · ~a = (λa1, λa2).

The norm of a vector ~a indicates its length and is denoted by ‖~a‖. The distance between

two vectors ~a and ~b is written as d(~a,~b). The norm of a vector ~a can also be interpreted as
the distance between the origin and the vector ~a, i.e., d(~o,~a).
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Figure 4.3: Properties of vector addition and scalar multiplication

In terms of coordinates, the norm of vector ~a = (a1, a2) and the distance between vectors

~a = (a1, a2) and ~b = (b1, b2) can be calculated as follows:


‖~a‖ =

√
a2

1 + a2
2

d(~a,~b) =

√
(b1 − a1)2 + (b2 − a2)2

Fig. 4.4 lists the properties of the norm and distance in the Euclidean plane, whereby λ
represents a real scalar (λ ∈ R).

Figure 4.4: Properties of the norm and distance
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The dot product between two vectors ~a and ~b represents a real number and provides
information about their norm and the angle between the two vectors. The dot product is
defined as ~a ·~b = ‖~a‖ · ‖~b‖ · cos θ. If one of the two vectors equals the null vector, the dot
product becomes zero.

The dot product ~a ·~b is greater (less) than zero if and only if the angle θ is acute (obtuse). If

~a 6= ~o, ~b 6= ~o, and ~a ·~b = 0, the two vectors ~a and ~b are oriented perpendicularly, i.e., θ = 90◦.

In terms of coordinates, the dot product between the vectors ~a = (a1, a2) and ~b = (b1, b2) is

equal to ~a ·~b = a1b1 + a2b2.

4.2 Straight Lines

4.2.1 The Equation of a Straight Line

Consider two points ~a and ~b, as depicted in Fig. 4.5. Between the points ~o and ~b−~a we can
construct the line L0, whereby the vector~b−~a is called the directional vector of the line L0.

We can also draw a unique line between the points ~a and ~b, i.e., the line L. A point ~x belongs
to L if the vector ~x−~a belongs to the line L0. Since the directional vector ~b−~a is parallel to
the directional vector ~x−~a, we can write that ~x−~a = λ · (~b−~a), with λ a real scalar. The

vector equation of the straight line L can then be written generally as ~x = ~a+ λ · (~b−~a),

with ~b− ~a the directional vector of L (which is also the directional vector of L0).

Figure 4.5: Straight line L going through points ~a and ~b

When we write the vector equation of the straight line L in terms of the vector components,
we then obtain the parametric equation of L (whereby ~x = (x, y), ~a = (a1, a2), and
~b = (b1, b2)): {

x = a1 + λ · (b1 − a1)

y = a2 + λ · (b2 − a2)
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If we eliminate the parameter λ from the parametric equation of L, we obtain the Cartesian
equation of a straight line:

y = a2 +

(
x− a1

b1 − a1

)
· (b2 − a2)⇔ y =

(
b2 − a2

b1 − a1

)
· x+

[
a2 −

(
b2 − a2

b1 − a1

)
· a1

]

⇔ y = mx+ c

whereby m = b2−a2
b1−a1 is called the slope of L and c = a2 −m · a1 the y-intercept of L.

The Cartesian equation can also be written in a different but equivalent form:

y = a2 +

(
x− a1

b1 − a1

)
· (b2 − a2) ⇔ (b1 − a1) · y = (b1 − a1) · a2 + (x− a1) (b2 − a2)

⇔ (b2 − a2) · x+ (a1 − b1) · y + (b1a2 − a1b2) = 0

⇔ a x+ b y + c = 0

whereby a = b2 − a2, b = a1 − b1, and c is the same y-intercept as above (c = a2 −m · a1).
Notice that (−b, a) is a directional vector of L and that the slope m is equal to m = −a

b
.

In other words, if ~v = (v1, v2) is a directional vector of a line, with v1 = (b1 − a1) and
v2 = (b2 − a2), the slope of the line is equal to m = v2

v1
.

For instance, if we are given the Cartesian equation 2x+ 6y− 1 = 0, we know that (−6, 2) is

a directional vector of the straight line, that the slope is equal to m = −1
3

, and that c = −1.

In a second example, given the two points ~a = (−3.4, 7.0) and ~b = (2.9, −0.1), we can
calculate the slope m of the straight line going through these two points as m = b2−a2

b1−a1 =
−0.1−7.0

2.9−(−3.4)
= −1.1. The Cartesian equation of the line is then written as y = mx+[a2 −ma1] =

−1.1x+ [7.0− (−1.1) · (−3.4)] = −1.1x+ 3.2. The parametric equation is equal to:

{
x = −3.4 + 6.3λ

y = 7.0− 7.1λ

The vector equation of this straight line takes the form of (x, y) = (−3.4, 7.0)+λ·(6.3, −7.1).

4.2.2 Perpendicular and Intersecting Lines

To find the equation of the straight line L⊥ : y⊥ = m⊥ x + c that is perpendicular to a
given straight line L : y = mx+ c, we have to calculate m⊥.

The directional vector of L⊥ and L is equal to ~v⊥ = (1,m⊥) and ~v = (1,m), respectively. The
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lines L and L⊥ are perpendicularly oriented if their directional vectors are perpendicular.
This means that their dot product must be zero: ~v⊥ · ~v = 1 · 1 +m⊥ ·m = 0.

In other words, the slope of L⊥ can be calculated with the assistance of the relationship
m⊥ ·m = −1 ⇔ m⊥ = − 1

m
.

For example, given a straight line with Cartesian equation L : y = 6x − 3.5, the line
L⊥ : y⊥ = m⊥x+ c, which is perpendicular to the given line, must have a slope m⊥ equal to
m⊥ = − 1

m
= −1

6
. The choice of intercept is irrelevant since it is the slope that determines the

direction of a straight line. Therefore, the line L⊥ has the general form of L⊥ : y⊥ = −1
6
x+c.

More generally, let us consider the Cartesian equation ax+by+c = 0 of line L. As discussed
earlier, the directional vector ~v of L is equal to ~v = (−b, a). The coordinates of the directional
vector ~v⊥ = (x, y) of the line L⊥ perpendicular to L can be found through the definition of
the dot product: ~v · ~v⊥ = 0 ⇔ (−b, a) · (x, y) = 0 ⇔ −bx + ay = 0. This means that
(x, y) = (a, b).

The directional vector ~v⊥ that is perpendicular to a given straight line L : ax + by + c = 0
has thus coordinates ~v⊥ = (a, b) and is called the normal vector of L.

If we take for instance the Cartesian equation L : −3x + 5y − 2 = 0, the normal vector ~n
has coordinates ~n = (a, b) = (−3, 5). Given a directional vector ~v = (−b, a) = (−5,−3) of
L, we can indeed see that the dot product between ~n and ~v is zero.

The point of intersection between two straight lines can be found via the method of sub-
stitution, combination, or via matrices.

Let us consider an example. Given two straight lines with Cartesian equation L1 : 3x− 2y+
8 = 0 and L2 : −x + y − 7 = 0 (see Fig. 4.6), we will determine their point of intersection
via the three methods mentioned above.

Figure 4.6: Two intersecting straight lines
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With respect to the substitution method, we can for instance write y in terms of x in the
equation of L1 and substitute it into the equation of L2:

3x− 2y + 8 = 0 ⇔ y =
3

2
x+ 4

in L2====⇒ − x+

[
3

2
x+ 4

]
− 7 = 0

⇔ x = 6

Inserting x = 6 into either L1 or L2 gives us the coordinates of the intersection point: (6,13).
Using the combination method, we obtain the solution as follows:

1× (L1 : 3x− 2y + 8 = 0)

+2× (L2 : −x+ y − 7 = 0)

x− 6 = 0 ⇔ x = 6

Finally, we can also find the solution with the assistance of matrices. If we construct the
augmented matrix A|B, we see that rank(A) = rank(A|B) = 2. Given that 2 is equal to
the number of unknown variables, we know that there is just one unique solution. Since A
is non-singular, it follows that A is invertible, so that we can calculate the solution X via
A ·X = B ⇔ X = A−1 ·B:

A|B =

[
3 −2 −8
−1 1 7

]
⇒ X = A−1 ·B =

[
1 2
1 3

]
·
[
−8
7

]
=

[
6
13

]

4.2.3 Distances between Points and Lines

Suppose there is a point ~q = (q1, q2) and a straight line L : ax + by + c = 0, so that ~q does
not belong to L. The distance d(~q, L) is equal to the shortest distance between ~q and L and
is calculated via the following formula:

d(~q, L) =
|aq1 + bq2 + c|√

a2 + b2

For example, suppose we wish to calculate the distance d(~q, L) between the point ~q = (5, 4)
and the straight line L : 6x+ y − 9 = 0, as shown in Fig. 4.7.

Using the above formula, we obtain the following value for the distance d(~q, L):

d(~q, L) =
|aq1 + bq2 + c|√

a2 + b2
=
|6 · 5 + 1 · 4− 9|√

62 + 12
=

25√
37
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Figure 4.7: Distance between a point and a straight line

In case we wish to calculate the distance between two parallel lines, we can first choose one
point that belongs to one of the two lines and then use the above formula to calculate the
distance from that point to the other straight line.

4.3 Conic Sections

4.3.1 General Properties

Conic sections are curves that are formed when a plane intersects with a three-dimensional
shape that consists of two right circular cones placed in such a way that the two vertices of
the cones touch each other (called a double-napped right circular cone). The possible curves
that emerge from this intersection are a circle, an ellipse, a parabola, and a hyperbola.

The (simplified) general equation for a conic section can be written as follows:

ax2 + by2 + cx+ dy + e = 0

If a conic section exists, we can distinguish three cases (note that in the case of a parabola
either a or b is zero, but not both):

ab > 0 : The conic section is a circle or an ellipse

ab = 0 : The conic section is a parabola

ab < 0 : The conic section is a hyperbola

For instance, the equation −2x2−3y2−x+ 5y+ 2 = 0 represents a circle or an ellipse, given
that ab = (−2) · (−3) = 6 > 0.
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4.3.2 The Circle

If ab > 0 and a = b, the conic section is defined as a circle, but only if the right-hand side
of the equation of the circle in the standard form is greater than zero. The standard form
is the following:

(x−m1)2 + (y −m2)2 = r2

with ~m = (m1,m2) the position vector of the centre of the circle and r the radius of the
circle.

For example, consider the conic equation 4x2 + 4y2 + 2x − y + 1
16

= 0. Since ab = 16 > 0
and a = b = 4, we are dealing with a circle but only if the right-hand side of the standard
form is greater than zero. The standard form is obtained as follows:

4x2 + 4y2 + 2x− y +
1

16
= 0 ⇔

(
4x2 + 2x

)
+
(
4y2 − y

)
= − 1

16

⇔

[
4

(
x+

1

4

)2

− 1

4

]
+

[
4

(
y − 1

8

)2

− 1

16

]
= − 1

16

⇔
(
x+

1

4

)2

+

(
y − 1

8

)2

=
1

16

In other words, given that the right-hand side of the standard form is greater than zero ( 1
16
>

0), the conic equation indeed represents a circle, whose centre is located at ~m =
(
−1

4
, 1

8

)
and whose radius measures r = 1

4
.

As a counterexample, even though ab > 0 and a = b for the conic equation −6x2 − 6y2 −
5x + 7y − 4 = 0, its standard form is equal to

(
x+ 5

12

)2

+
(
y − 7

12

)2

= −11
72

, which does

not correspond to the equation of a circle.

Figure 4.8: The tangent line at a circle

As a different exercise, let us now find
the equation of the tangent line T in
point ~p = (1,−1) at the circle with
equation 2x2 + 2y2 − x + 5y + 2 = 0
(see Fig. 4.8). In a first step, we write
the equation of the circle in its standard

form:
(
x− 1

4

)2

+
(
y + 5

4

)2

= 5
8

.

A directional vector of the line R that
connects the point ~p with the centre of
the circle ~m =

(
1
4
,−5

4

)
is ~v = ~p − ~m =(

3
4
, 1

4

)
. Given that the tangent line T

is perpendicular to the line R, a di-
rectional vector of T is equal to ~v⊥ =(

1
4
,−3

4

)
, which gives a slope equal to

m⊥ = −3.
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The tangent line T has thus the form T : y = −3x + bi. Given that ~p = (1,−1) belongs
to the circle, we find that bi = 2. The final equation of the tangent line T is therefore
T : y = −3x+ 2.

4.3.3 The Ellipse

If ab > 0 and a 6= b, the conic section is defined as an ellipse, but only if the right-hand
side of the equation of the ellipse in the standard form is greater than zero. The standard
form is equal to: 

Horizontal ellipse:
(x−m1)2

r2
1

+
(y −m2)2

r2
2

= 1

Vertical ellipse:
(x−m1)2

r2
2

+
(y −m2)2

r2
1

= 1

with ~m = (m1,m2) the position vector of the centre of the ellipse, r1 the length of the semi-
major axis, and r2 the length of the semi-minor axis. Since the major axis is longer than
the minor axis, we have that r1 > r2.

Note also that a horizontal (vertical) ellipse implies that the major axis is horizontally
(vertically) oriented. We will work in this section with a horizontal ellipse, unless stated
otherwise.

The foci of an ellipse are two fixed points ~f1 and ~f2 located on the major axis at equal
distance fc from the ellipse’s centre with the following property: the sum of the distances
s1 and s2 from any point on the ellipse to the two foci remains constant and is equal to the
length of the major axis. In other words: s1 + s2 = 2r1.

The above property together with the Pythagorean theorem allows us to find the focal
length fc between the centre point ~m and the foci. If we consider the point (m1, r2 +m2) on
the ellipse, we can determine the distances s1 and s2 as s1 = s2 =

√
r2

2 + f 2
c . The distance

fc is then derived as follows:

s1 + s2 = 2r1 ⇔
√
r2

2 + f 2
c +

√
r2

2 + f 2
c = 2r1 ⇔ r2

2 + f 2
c = r2

1

⇔ fc =
√
r2

1 − r2
2

Another property of the ellipse is its eccentricity ec, which is a value between 0 and 1 and
describes how circular an ellipse is. For ec = 0, the ellipse becomes a circle. We can calculate

the value through the formula ec =
fc
r1

=
√

1− (r2
2/r

2
1).

Let us look at the ellipse with the equation E : 3x2+9y2+12x−26 = 0, as depicted in Fig. 4.9.
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Figure 4.9: The ellipse with equation E : 3x2 + 9y2 + 12x− 26 = 0

The standard form of ellipse E is equal to
(x+2)2

38/3
+ y2

38/9
= 1. The centre of the ellipse

has coordinates ~m = (−2, 0) and the length of the semi-major axis r1 and semi-minor axis

r2 is equal to r1 =
√

38
3

and r2 =
√

38
3

, respectively. The focal length fc is calculated as

fc =
√
r2

1 − r2
2 =

√(
38
3

)
−
(

38
9

)
= 2

3

√
19 and the ellipse has an eccentricity of ec =

fc
r1

=(
2
3

√
19
)
/
(√

38
3

)
=
√

2
3
.

Let us check whether the condition of the foci s1 + s2 = 2r1 indeed holds. At the point
(−2,

√
38
3

), we know that s1 = s2. The distance s1 is calculated as s1 =
√
r2

2 + f 2
c , and given

that f 2
c = r2

1 − r2
2 we find that s1 =

√
r2

2 + r2
1 − r2

2 = r1. We see that the condition of the
foci indeed holds, because s1 + s2 = s1 + s1 = 2s1 = 2r1.

4.3.4 The Parabola

If only the x or y variable is squared in the general conic equation, i.e., either a = 0 or b = 0
so that ab = 0, we are dealing with a parabola. The standard form is equal to:

Horizontal parabola: x = s · (y −m2)2 +m1

Vertical parabola: y = s · (x−m1)2 +m2

whereby ~m = (m1,m2) indicates the position of the parabola’s vertex. With respect to a
horizontal parabola, if s > 0 (s < 0) the vertex will be the leftmost (rightmost) point of
the parabola, i.e., it opens up to the right (left). In case of a vertical parabola, if s > 0
(s < 0) the vertex will be the lowest (highest) point of the parabola, i.e., it opens up upwards
(downwards).
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The axis of symmetry of a horizontal (vertical) parabola is equal to y = m2 (x = m1).

Every parabola also has a focus point ~fp, which lies on the axis of symmetry at a distance
p from its vertex, inside the parabola.

The line segment that goes through the focus point and is perpendicular to the axis of
symmetry and whose endpoints belong to the parabola is called the focal chord. The
length of the focal chord is equal to 4p, whereby p = 1

4|s| (we take the absolute value of s,

since we treat p as a distance).

A parabola can be described as the set of points that are at equal distances from the focus
point and the directrix, which is the line perpendicular to the axis of symmetry located at
a distance p from the parabola’s vertex at the opposite side of the focus point.

To find out more about how to manipulate a parabola’s width and position, please refer to
section 7.6.3.

Consider the following example of a parabola with the conic equation P : y2 + 16x− 32y +
320 = 0, which is shown in Fig. 4.10. The standard form is equal to P : x = − 1

16
(y − 16)2−4.

The standard form tells us that we are dealing with a horizontal parabola, whose vortex is
located at the point ~m = (−4, 16). Since s = − 1

16
< 0 the parabola opens up to the left. Its

axis of symmetry is a horizontal line with equation y = 16.

The distance p is found to be p = 1
4|s| = 16

4
= 4. This means that the focus point is

positioned at ~fp = (−4 − p, 16) = (−8, 16) and that the focal chord has a length equal to
4p = 16. The directrix is a vertical line with equation x = −4 + p = 0, i.e., the y-axis.

Figure 4.10: The parabola with equation P : y2 + 16x− 32y + 320 = 0
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4.3.5 The Hyperbola

If ab < 0, the conic section is a hyperbola. The standard form is equal to:


Horizontal hyperbola:

(x−m1)2

d2
1

− (y −m2)2

d2
2

= 1

Vertical hyperbola:
(y −m2)2

d2
1

− (x−m1)2

d2
2

= 1

whereby the centre of the hyperbola is located at ~m = (m1,m2).

With respect to the horizontal (vertical) hyperbola, the transverse axis is a symmetry axis
that is oriented horizontally (vertically) and intersects the two branches of the hyperbola
in two points called the vertices.

The distance d1 is equal to the distance from the hyperbola’s centre ~m to a vertex ~vt. The
coordinates of the vertices of a horizontal hyperbola are equal to ~vt = (m1±d1,m2), whereas
those of a vertical hyperbola are ~vt = (m1,m2 ± d1).

The conjugate axis goes through the hyperbola’s center and stands perpendicular to the
transverse axis. The co-vertices ~vc lie on the conjugate axis at a distance d2 from the
centre ~m. Their coordinates with respect to a horizontal and vertical hyperbola are equal to
~vc = (m1,m2 ± d2) and ~vc = (m1 ± d2,m2), respectively.

Every hyperbola has two foci, which sit on the transverse axis at a distance fc =
√
d2

1 + d2
2

from the centre ~m. The coordinates of the foci for a horizontal hyperbola are ~f1,2 = (m1 ±
fc,m2), whereas the coordinates for a vertical hyperbola are equal to ~f1,2 = (m1,m2 ± fc).

A hyperbola has furthermore two asymptotes (see section 7.3). For a horizontal hyperbola,

the equations of the asymptotes are A1,2 : y − m2 = ±d2
d1

(x − m1), while for a vertical

hyperbola the asymptotes have the equations A1,2 : y −m2 = ±d1
d2

(x−m1).

In general, a hyperbola can be described as the set of points for which the absolute value of
the difference of the distances s1 and s2 between a point on the hyperbola and the foci is
equal to the distance between the two vertices. In other words: |s1 − s2| = 2d1.

Consider as an example the conic equation H : −x2 + 2y2 − 28x + 48y − 64 = 0, which is
depicted in Fig. 4.11. Since ab = (−1) · 2 = −2 < 0, we are indeed dealing with a hyperbola.

The standard form is equal to H :
(y+12)2

78
− (x+14)2

156
= 1, from which we can deduce that

the hyperbola H is a vertical hyperbola with its centre positioned at ~m = (−14,−12).

The transverse axis x = −14 is thus vertically oriented, whereas the conjugate axis y = −12
is a horizontal line.
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Figure 4.11: The hyperbola with equation H : −x2 + 2y2 − 28x+ 48y − 64 = 0

The distances d1 and d2 are equal to d1 =
√

78 and d2 = 2
√

39, respectively. The focal length
fc is calculated as fc =

√
d2

1 + d2
2 =
√

78 + 156 =
√

234, so that the foci are positioned at
~f1 = (m1,m2 − fc) =

(
−14,−12−

√
234
)

and ~f2 = (m1,m2 + fc) =
(
−14,−12 +

√
234
)
.

The vertices have the coordinates ~vt,1 = (m1,m2 − d1) =
(
−14,−12−

√
78
)

and ~vt,2 =

(m1,m2 + d1) =
(
−14,−12 +

√
78
)
, whereas the co-vertices are located at ~vc,1 = (m1 +

d2,m2) =
(
−14 + 2

√
39,−12

)
and ~vc,2 = (m1 − d2,m2) =

(
−14− 2

√
39,−12

)
.

Finally, the asymptotes for this vertical hyperbola are A1 : y−m2 = d1
d2

(x−m1) ⇔ y+12 =
√

78
2
√

39
(x + 14) ⇔ y =

√
2

2
x + 7

√
2 − 12 and A2 : y − m2 = −d1

d2
(x − m1) ⇔ y + 12 =

−
√

78
2
√

39
(x+ 14) ⇔ y = −

√
2

2
x− 7

√
2− 12.
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5 Trigonometry

Trigonometry is the branch within the field of mathematics that studies the sides and
angles in triangles as well as their relationships.

5.1 Definitions

An angle is the figure that is created when two lines come together in a point called the
vertex. If we wish to identify the angle between two points A and C at point B, which is

the vertex, we denote the angle by ]ABC, ∠ABC, ÂBC, or a letter, preferably from the
Greek alphabet.

The angle can be measured according to three different systems: the decimal system, the
sexagesimal system, or the circular system.

In the decimal system, the angle is expressed in degrees (◦) whereby the value of the angle
follows the decimal system. For instance, we can write α = 54.3◦ or ]NMP = 22.0◦.

In the sexagesimal system, every degree (◦) is divided into 60 equal elements called minutes
(′) and every minute is further divided into 60 equal parts called seconds (′′). For example,

consider the angle ĤTA = 45.36◦, which is equal to 45◦+ 0.36◦. The part 0.36◦ corresponds
with 0.36 · 60 = 21.6 minutes and, similarly, the part 0.6 minutes corresponds to 0.6 · 60 =

36 seconds. Therefore, the angle ĤTA = 45.36◦ is written in the sexagesimal system as

ĤTA = 45◦21′36′′.

In the circular system, an angle is expressed in radians (rad), whereby 360◦ = 2π rad. For

instance, an angle β equal to β = 65◦ is written in the circular system as β = 65 · π
180

= 13π
36

rad. Conversely, an angle γ equal to γ = 3π
10

rad is equivalent to γ = 3π
10
· 180
π

= 54◦ in the
decimal system.

Fig. 5.1 provides an example of how to define angles between points. Given that the lines
KL and NM are parallel as well as KN and LM , we know that ]KNM = ]KLM and

that ∠NKL = ∠NML. So, K̂LM = 125◦ or K̂LM = 125◦0′0′′ or K̂LM = 25π
36

rad. The

angle ∠NML is equal to ∠NML = 55◦ or ∠NML = 55◦0′0′′ or ∠NML = 11π
36

rad.

Figure 5.1: Angles between parallel lines
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The angles in Fig. 5.1 are not oriented. The convention that is usually upheld is: the
counterclockwise direction corresponds with positive angles whereas clockwise implies
negative angles. Fig. 5.2 provides an overview of the different types of angles.

Figure 5.2: Overview of different types of angles

Figure 5.3: The trigonometric circle

Consider an orthonormal coordinate system in the
Euclidean plane. The circle with radius equal to
1 and with its centre located in the origin is called
the trigonometric or unit circle.

The coordinate system divides the trigonometric
circle up into 4 equal parts called quadrants,
which are denoted by Roman numbers and ar-
ranged in ascending order in the counterclockwise
direction.
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5.2 Trigonometric Numbers

5.2.1 Angles

Consider a point ~x on the unit circle that makes an angle θ with the horizontal. The
trigonometric numbers cos θ and sin θ are defined as the x-coordinate and y-coordinate
of the point ~x. Applying the Pythagorean theorem, we find the trigonometric identity
cos2 θ + sin2 θ = 1.

Based on the above two trigonometric numbers, we can derive four more trigonometric num-
bers, i.e., the tangent (tan), the cotangent (cot), the cosecant (csc), and the secant (sec).
The definitions are provided below, whereby the number in the respective denominator is
well-defined, in that it does not take on a zero value:

• tan θ =
sin θ
cos θ

• cot θ =
cos θ
sin θ

• csc θ =
1

sin θ

• sec θ =
1

cos θ

Fig. 5.4 shows how to retrieve the six trigonometric numbers from a graph of the unit circle.
The coordinates of the point ~x gives us cos θ and sin θ. The y-coordinate (x-coordinate) of
the point of intersection between the vertical line x = 1 (horizontal line y = 1) and the line
going through ~x and the origin is equal to tan θ (cot θ). The x-intercept (y-intercept) of the
line tangent to the circle at the point ~x is equal to sec θ (csc θ).

Figure 5.4: Trigonometric numbers and the unit circle
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The angle in Fig. 5.4 is equal to θ =
π
6

rad. Under this angle, we find that the point ~x has

the coordinates ~x = (cos θ, sin θ) =
(√

3
2
, 1

2

)
. Using the above definitions for the remaining

four trigonometric numbers, we calculate that tan θ =
√

3
3

, cot θ =
√

3, sec θ = 2
√

3
3

, and
csc θ = 2.

There is another but equivalent way to read the trigonometric numbers off a unit circle and
it is based on right triangles, as shown in Fig. 5.5. Note that here the different trigonometric
numbers represent distances.

Figure 5.5: An alternative way to read trigonometric numbers

From Fig. 5.4 and Fig. 5.5 we see that the trigonometric numbers remain the same with
every full rotation of 2π rad. This means that we can replace the angle θ with the expression
θ + 2kπ (with k a whole number; k ∈ Z) and still obtain the same values.

What is more, for any given angle θ the trigonometric numbers cos θ and sin θ are restricted
to the interval [−1, 1]. The trigonometric numbers sec θ and tan θ (csc θ and cot θ) can take
on any value, as long as the angle θ is not equal to θ = π

2
+ kπ (θ = kπ), with k ∈ Z.

Fig. 5.6 lists the trigonometric numbers of some commonly used angles, whereas Fig. 5.7
depicts the trigonometric numbers of five special angles: opposing angles, complementary
angles, anti-complementary angles, supplementary angles, and anti-supplementary angles.
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Figure 5.6: The trigonometric numbers of some common angles

Figure 5.7: Trigonometric numbers of special angles
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5.2.2 Triangles

In Euclidean geometry, the sum of the angles inside a triangle is always equal to 180◦.

In a right triangle, one of the angles of the triangle is equal to 90◦, which is appropriately
called the right angle. The sum of the two remaining angles is then equal to 90◦, i.e., they
are complementary angles.

If we consider one of the angles in a right triangle other than the right angle, we call the
opposite side the side that does not form part of the chosen angle, the adjacent side the
shortest side of the chosen angle, and the hypotenuse the longest side of the chosen angle.
The hypotenuse is also the longest side in a right triangle.

With these definitions we can construct the so-called trigonometric ratios in terms of
trigonometric numbers (see left-hand side of Fig. 5.8).

Figure 5.8: Trigonometric ratios

We can interpret these ratios more intuitively by looking at the right-hand side of Fig. 5.8.
Since we are dealing with the unit circle, the hypotenuse of the right triangle within the
circle is equal to the radius of the circle, which has a length of 1. As we have seen, the
y-coordinate of the point ~x is equal to the trigonometric number sin θ, which is also equal
to the length of the opposite side—with respect to the angle θ—in the right triangle under
consideration. Similarly, the trigonometric number cos θ is equal to the adjacent side.

Let us now multiply the hypotenuse with length 1 by a factor L, so that its length becomes
1 ·L = L. If we consider the right triangle with hypotenuse L, we see that the opposite side
also has grown by a factor L and is equal to L ·sin θ. This is precisely what the trigonometric
ratio for the sine of θ is telling us, i.e., the length of the opposite side (L · sin θ) is equal to
the length of the hypotenuse (L) multiplied by the trigonometric number related to the sine
of the angle (sin θ). A similar reasoning can be applied to the adjacent side of the angle θ.
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In case we are dealing with a random triangle, there are two sets of trigonometric rela-
tionships on which we can rely to calculate the sides and angles of a triangle: the law of
cosines and the law of sines.

Figure 5.9: Law of cosines and law of sines

Bear in mind that in certain circumstances the law of sines may produce more than one
solution. This occurs when two sides and an angle are given whereby the angle is not the
angle formed by the two sides.

For example, consider Fig. 5.10 whereby we know that A = 5, B = 9, and α = 32◦. We are
asked to find the third side and the two other angles.

Figure 5.10: Example of the law of sines

In a first step, we write the law of sines for the triangle ABC1:
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A

sinα
=

B

sin β1

=
C1

sin γ1

⇔ 5

sin 32◦
=

9

sin β1

=
C1

sin γ1

We then find that sin β1 = 9
5

sin (32◦) ⇔ β1 = sin−1
(

9
5

sin (32◦)
)

= 72.5◦. Since the sum

of the angles in a triangle equals 180◦, the angle γ1 is calculated as follows:

180◦ = α + β1 + γ1 ⇔ γ1 = 180◦ − α− β1 = 180◦ − 32◦ − 72.5◦ = 75.5◦

However, given that supplementary angles produce the same trigonometric number sin, i.e.,
sin β1 = sin (180◦ − β1) (see Fig. 5.7), we find a second angle β2 = 180◦−β1 = 180◦−72.5◦ =

107.5◦ that satisfies the equation sin β2 = 9
5

sin (32◦) . The third angle γ2 is now equal to:

180◦ = α + β2 + γ2 ⇔ γ2 = 180◦ − α− β2 = 180◦ − 32◦ − 107.5◦ = 40.5◦

The length of the third side in both cases is found as follows:


C1 =

5
sin(32◦)

sin γ1 =
5

sin(32◦)
sin (75.5◦) = 9.13

C2 =
5

sin(32◦)
sin γ2 =

5
sin(32◦)

sin (40.5◦) = 6.13

5.3 Trigonometric Formulas

If we divide the Pythagorean trigonometric identity cos2 θ + sin2 θ = 1 by cos2 θ and
sin2 θ, respectively, we find the following equivalent identities (note that cos θ 6= 0 and
sin θ 6= 0 for the respective case):

{
1 + tan2 θ = sec2 θ

cot2 θ + 1 = csc2 θ

Another set of trigonometric formulas are the double-angle formulas, which facilitate
the transition between trigonometric numbers of single and double angles (see Fig. 5.11,
whereby cos 2θ 6= 0 in the expression of the tangent).

Figure 5.11: Double-angle formulas
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Based on the double-angle formula for the cosine, we can derive the Carnot’s formulas as
well as the half-angle formulas (whereby cos θ

2
6= 0 in the expression of the tangent):

Figure 5.12: Half-angle formulas

Another useful set of trigonometric formulas are the angle addition and subtraction
formulas (whereby cos (θ − φ) 6= 0 and cos (θ + φ) 6= 0 for the respective expression of the
tangent) and the Simpson’s formulas:

Figure 5.13: Angle addition, angle subtraction and Simpson’s formulas
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Based on the double-angle formula for the cosine and the half-angle formulas, we find a final
set of trigonometric formulas called the tangent half-angle substitution formulas:

Figure 5.14: The tangent half-angle substitution formulas

5.4 Cyclometric Numbers

As discussed in section 5.2, given a certain angle θ we can find a unique trigonometric num-
ber. However, the reverse operation, i.e., finding an angle given a trigonometric number,
does not produce a unique solution. If we restrict the interval of the angle, we can define
the cyclometric numbers: the arc sine, the arc cosine, the arc secant, the arc cosecant,
the arc tangent, and the arc cotangent:

Figure 5.15: The cyclometric numbers
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For example, y = arcsin
(
−
√

2
2

)
= −π

4
because x = sin

(
−π

4

)
= −

√
2

2
, −1 ≤ −

√
2

2
≤ 1, and

−π
2
≤ −π

4
≤ π

2
.

If we do not restrict the interval of the angle, we find multiple solutions for the cyclometric
numbers. Let us consider, for instance, the equation cos y =

√
3

2
, for which we find that

y = arccos
√

3
2

= π
6
. Given that adding any multiple of 2π to the angle does not change the

trigonometric number, we can write y = π
6

+ 2kπ (with k ∈ Z).

However, Fig. 5.7 tells us that cos y = cos(−y), which means that we have another solution
equal to −y = π

6
+ 2kπ ⇔ y = −π

6
+ 2kπ (with k ∈ Z).

Similarly, Fig. 5.7 also tells us that sec(−y) = sec y, sin (π − y) = sin y, csc (π − y) = csc y,
tan (π + y) = tan y, and cot (π + y) = cot y. We can therefore formulate the following gen-
eral solutions (with a ∈ [−1, 1], b ∈ ]−∞,−1] ∪ [1,∞[, c ∈ R, and k ∈ Z):

Figure 5.16: Multiple solutions for the cyclometric numbers

Another kind of example is the equation sec(4x + 2)− sec(x− 2) = 0, which we would like
to solve for x. We find one solution by setting the arguments equal to each other, keeping in
mind that any multiple of 2π is also a solution: 4x + 2 = x− 2 + 2kπ ⇔ x = 1

3
(2kπ − 4)

(with k ∈ Z).

However, given that sec(−y) = sec y, we also have a second solution, which is equal to

4x+ 2 = −(x− 2) + 2kπ ⇔ x = 2
5
kπ (with k ∈ Z).
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Since cyclometric numbers are angles, we can calculate the trigonometric numbers of cy-
clometric numbers. The trivial cases are, for instance, sin (arcsin x) = x or csc (arccscx) =
x.

Let us consider a non-trivial example, such as sin (arcsec x). Given that sec (arcsecx) = x,
we need to find a way to express the trigonometric number sin in terms of the trigonometric
number sec:

sin2 θ + cos2 θ = 1 ⇔ sin2 θ +
1

sec2 θ
= 1 ⇔ sin θ = ±

√
1− 1

sec2 θ

In our example θ = arcsecx and from the definitions (see Fig. 5.15) we know that θ =
arcsecx ∈ [0, π] \ {π

2
}. This means that the sine of θ will always be positive, because

the angle θ is located in the first or second quadrant. We can therefore write (with x ∈
]−∞,−1] ∪ [1,∞[ ):

sin (arcsecx) =

√
1− 1

sec2 (arcsecx)
=

√
1− 1

x2

For instance, if we are asked to calculate sin (arcsec(−6.5)), we simply use the above expres-

sion with x = −6.5, so that sin (arcsec(−6.5)) =
√

1− 1
(−6.5)2

= 0.988.

Applying the same method to other cyclometric numbers, we find for instance the following
expressions (whereby x is considered well-defined for the respective trigonometric number):

• sin (arccscx) =
1
x

• cos (arcsinx) =
√

1− x2

• tan (arcsinx) =
x√

1−x2

• sin (arctanx) =
x√

1+x2

• cos (arctanx) =
1√

1+x2

• tan (arccosx) =

√
1−x2
x

• sin (arccos x) =
√

1− x2

• cos (arcsecx) =
1
x

• tan (arccsc x) = ± 1√
x2−1

• sin (arccot x) =
1√

1+x2

• cos (arccot x) =
x√

1+x2

• tan (arcsec x) = ±
√
x2 − 1

Another useful application is the case where one finds a linear combination of a cosine
and a sine of the same angle. The linear combination can then be rewritten in terms of
just a cosine: a cos θ + b sin θ = c cos (θ + φ), with a 6= 0.

The coefficient c is equal to c = sgn(a)
√
a2 + b2, whereby sgn(a) indicates the sign of the

coefficient a, and the angle φ, called the phase shift, is equal to φ = arctan
(
− b
a

)
.

For example, the linear combination −3 cos θ+9 sin θ can be written as −3
√

10 cos (θ + 1.25),
whereby c = −

√
(−3)2 + 92 = −3

√
10 and φ = arctan

(
− 9
−3

)
= 1.25 rad.
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5.5 Polar Coordinates

Based on the trigonometric ratios, as discussed in section 5.2.2, we can define the polar
coordinates, which are characterized by the distance r and the angle θ.

If a Cartesian coordinate system is chosen, the distance r represents the distance between
the origin and a point ~p (with ~p 6= ~o), while the angle θ is measured from the positive side
of the x-axis in counterclockwise direction.

If a point ~p has Cartesian coordinates ~p = (x, y), the polar coordinates are equal to ~p =
(r, θ) and the relationship between the Cartesian and polar coordinates are provided by the
trigonometric ratios: x = r cos θ and y = r sin θ.

The norm of the vector ~p, which represents the distance between the origin and the point ~p,
is equal to ‖~p‖ =

√
x2 + y2 =

√
(r cos θ)2 + (r sin θ)2 =

√
r2(cos2 θ + sin2 θ) =

√
r2 · 1 = r.

In other words, the distance r, which is the first coordinate of the polar coordinates (r, θ),
is equal to r =

√
x2 + y2.

The angle θ can then be found through one of the following expressions (with θ ∈ [0, 2π[ ):

θ = arccos
(x
r

)
= arccos

(
x√

x2 + y2

)

θ = arcsin
(y
r

)
= arcsin

(
y√

x2 + y2

)

θ = arctan
(y
x

)
Note that the angle θ can only be found through the cyclometric number arctan if x 6= 0,
i.e., the point cannot be located on the y-axis.

Figure 5.17: Polar coordinates

Let us, for instane, find the polar coordinates ~p =
(r, θ) of the point ~p with Cartesian coordinates
~p = (−2,−4).

The distance r is equal to r =
√
x2 + y2 =√

(−2)2 + (−4)2 = 2
√

5.

The angle θ is calculated as θ = arccos
(
−2

2
√

5

)
=

arccos
(
− 1√

5

)
= 2.03 rad. Since cos(−θ) = cos θ,

the other solution is equal to θ = −2.03 rad, but
given that θ ∈ [0, 2π[, the second solution becomes
θ = −2.03+2π = 4.25 rad. As we know that point
~p lies in the third quadrant, the angle θ must be
equal to θ = 4.25 rad.

The polar coordinates of ~p are thus ~p = (r, θ) =
(2
√

5, 4.25).
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We can describe curves in the Euclidean plane not only with Cartesian coordinates, but also
with polar coordinates. The equation of a curve expressed in polar coordinates is called a
polar equation.

For instance, let us look at the polar equation r =
√

36
1+5 cos(2θ)

. To understand with which

type of curve we are dealing with, we transition from polar coordinates to Cartesian coordi-
nates via the trigonometric ratios:

r =

√
36

1 + 5 cos (2θ)
⇔ r2 =

36

1 + 5 cos (2θ)
⇔ r2 =

36

1 + 5
(
cos2 θ − sin2 θ

)
⇔ r2 =

36

1 + 5
(
x2

r2
− y2

r2

)

⇔ 1 =
36

(x2 + y2) + 5 (x2 − y2)

⇔ x2

6
− y2

9
= 1

This is the equation of a horizontal hyperbola, whereby its center is located at the origin.
The denominator of the polar equation becomes zero if θ = 1

2
arccos

(
−1

5

)
+ kπ = 0.886 + kπ

rad or if θ = −1
2

arccos
(
−1

5

)
+ kπ = −0.886 + kπ rad. This means that if we let the angle θ

take on all the values in the interval ] 0.886, 7.17 [ \ {2.26, 4.03, 5.40}, the polar equation will
display the entire curve.
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6 Solid Geometry

As already alluded to in the introduction of section 4, solid geometry is Euclidean geometry
in three spatial dimensions. The basic concepts of plane geometry are still applicable in solid
geometry, including the Pythagorean theorem, the definition of the distance between two
points and the norm of a vector, the dot product between two vectors, the perpendicular
position between vectors, and the concept of parallel vectors.

6.1 The Equation of Straight Lines and Euclidean Planes

Three non-collinear points, i.e., points that do not lie on the same straight line, define
a unique Euclidean plane. Consider, for instance, the points ~v1 and ~v2, which are neither
the null vector nor a multiple of each other. Together with the origin ~o of our orthonormal
coordinate system, these three points define a plane α. The vectors ~v1 and ~v2 are referred
to as the directional vectors of α.

We can express a point ~q ∈ α as ~q = λ~v1 + µ~v2 with λ and µ real scalars. Take now another
point ~p /∈ α. There is a unique plane β with the same directional vectors ~v1 and ~v2 as α and
whereby ~p ∈ β. We can now find the point ~x ∈ β so that ~x − ~p = ~q = λ~v1 + µ~v2 ⇔ ~x =
~p+ λ~v1 + µ~v2. This last equation is called the vector equation of plane β.

Figure 6.1: Two parallel Euclidean planes α and β

If instead of two directional vectors and the origin, we are given three non-collinear points
~a, ~b, and ~c, we can construct the vector equation of the plane γ defined by these three points
as follows:

~x = ~a+ λ(~b− ~a) + µ (~c− ~a)

whereby (~b− ~a) and (~c− ~a) are two directional vectors of the plane γ.
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The vector equation of a straight line between two points ~a and ~b in three-dimensional space
remains the same as discussed in section 4.2.1, i.e., ~x = ~a+ λ(~b− ~a).

The parametric equation of the plane γ is constructed by writing out the individual
components of the vector equation, whereby ~x = (x, y, z), ~a = (ax, ay, az), ~b = (bx, by, bz),
and ~c = (cx, cy, cz): 

x = ax + λ(bx − ax) + µ(cx − ax)
y = ay + λ(by − ay) + µ(cy − ay)
z = az + λ(bz − az) + µ(cz − az)

The parametric equation of a straight line in three-dimensional space also remains the same
as in section 4.2.1, but with an additional dimension:


x = ax + λ(bx − ax)
y = ay + λ(by − ay)
z = az + λ(bz − az)

The Cartesian equation of plane γ is found by eliminating the parameters λ and µ from
the parametric equation:

(x− ax) · [(by − ay)(cz − az)− (bz − az)(cy − ay)] + (y − ay) · [(bz − az)(cx − ax)− (bx − ax)(cz − az)]

+ (z − az) · [(bx − ax)(cy − ay)− (by − ay)(cx − ax)] = 0

If we look closely, we see that the above equation can be written with the assistance of the
determinant (see section 3.3.4), whereby we use the notation det(A) = |A| and whereby we
apply the technique of cofactor expansion along the first row:

∣∣∣∣∣∣
x− ax y − ay z − az
bx − ax by − ay bz − az
cx − ax cy − ay cz − az

∣∣∣∣∣∣ = 0

If we would make the substitutions a = (by − ay)(cz − az) − (bz − az)(cy − ay), b =
(bz − az)(cx − ax) − (bx − ax)(cz − az), c = (bx − ax)(cy − ay) − (by − ay)(cx − ax), and
d = −axa− ayb− azc, we find the general Cartesian equation of a plane:

ax+ by + cz + d = 0

The above general equation can also be found if we consider a normal vector ~n = (a, b, c) of
the plane γ. Any directional vector of the plane must be perpendicular to ~n, so that their
dot product equals zero (see section 4.1.2). If we choose the vector ~x − ~a as a directional
vector, we obtain:
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~n · (~x− ~a) = 0 ⇔ (a, b, c) · (x− ax, y − ay, z − az) = 0

⇔ a(x− ax) + b(y − ay) + c(z − az) = 0

⇔ ax+ by + cz + (−axa− ayb− azc) = 0

⇔ ax+ by + cz + d = 0

Similarly, the set of Cartesian equations of a straight line in three-dimensional space is found
by eliminating the parameter λ from its parametric equation:

x− ax
bx − ax

=
y − ay
by − ay

=
z − az
bz − az

This system of Cartesian equations can also be written as:{
(by − ay)x+ (ax − bx)y = ax(by − ay) + ay(ax − bx)
(bz − az)y + (ay − by)z = ay(bz − az) + az(ay − by)

In other words, the above set of two Cartesian equations, i.e., the equation of a straight line,
can be interpreted as the intersection of two planes.

Let us, for example, find the system of Cartesian equations that describes the straight line L
formed by the intersection of plane α and β, given that ~a1 = (−1,−2, 0), ~a2 = (6,−4,−1),

and ~a3 = (1, 0, 3) belong to α and that ~b1 = (0,−2, 8), ~b2 = (2, 0, 1), and ~b3 = (−3, 3,−7)
belong to β.

Figure 6.2: Two intersecting planes α and β

In a first step, we determine some directional vectors of plane α and β:
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α :

{
~vα1 = ~a2 − ~a1 = (6,−4,−1)− (−1,−2, 0) = (7,−2,−1)
~vα2 = ~a3 − ~a1 = (1, 0, 3)− (−1,−2, 0) = (2, 2, 3)

β :

{
~vβ1 = ~b2 −~b1 = (2, 0, 1)− (0,−2, 8) = (2, 2,−7)

~vβ2 = ~b3 −~b1 = (−3, 3,−7)− (0,−2, 8) = (−3, 5,−15)

The Cartesian equations of plane α and β can be found via the method of the discriminant:

α :

∣∣∣∣∣∣
x+ 1 y + 2 z

7 −2 −1
2 2 3

∣∣∣∣∣∣ = 0 ⇔ 4x+ 23y − 18z + 50 = 0

β :

∣∣∣∣∣∣
x y + 2 z − 8
2 2 −7
−3 5 −15

∣∣∣∣∣∣ = 0 ⇔ 5x+ 51y + 16z − 26 = 0

The system of Cartesian equations that represents the line L is then equal to:{
4x+ 23y − 18z + 50 = 0

5x+ 51y + 16z − 26 = 0
⇔ x =

(
y + 166

643

− 77
643

)
=

(
z − 1574

643
89

1286

)

In other words, the point ~p =
(
0,−166

643
, 1574

643

)
is a point that belongs to L and the vector

~v =
(
1,− 77

643
, 89

1286

)
is a directional vector of L. Note that the starting point of vector ~v in

Fig. 6.2 is the point ~p, not the origin ~o.

6.2 Relative Position of Straight Lines and Planes

6.2.1 Straight Lines

Two straight lines in three-dimensional space are parallel if their directional vector are a
multiple of each other.

Consider, for example, the lines L1 and L2 with the following parametric equation:

L1 :


x = 1− 5

3
t

2y = 3 + 5t
z = −1− 2t

L2 :


3x = 1 + 4r
y = −2r
5z = −3 + 8r

The directional vector of L1 and L2 is equal to ~v1 =
(
−5

3
, 5

2
,−2

)
and ~v2 =

(
4
3
,−2, 8

5

)
,

respectively. The lines L1 and L2 are parallel given that ~v1 = −5
4
· ~v2.

To determine whether two lines intersect, there are a couple of methods we can apply. Let
us examine the various methods with an example. Consider the parametric equations of the
straight lines R1 and R2:
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R1 :


x = 2 + 3t
y = 3− t
z = −1 + 2t

R2 :


x = 5− r
y = −3 + 2r
z = −19 + 6r

One method is to set the respective equations of both lines equal to each other and if we
find a solution for both parameters t and r, the lines intersect. We first set the x- and y-
equations equal to each other:x : 2 + 3t = 5− r ⇔ t = 1− 1

3
r

y : 3− t = −3 + 2r ⇔ t = 6− 2r
⇒ 1− 1

3
r = 6− 2r ⇔ r = 3

This gives us a value of the parameter t equal to t = 0. The lines intersect if this set of
values for r and t does not produce contradictions with respect to the z-equations:

−1 + 2t = −19 + 6r ⇔ −1 + 2 · 0 = −19 + 6 · 3 ⇔ −1 = −1

This result means that the lines intersect. Inserting the values t = 0 and r = 3 in the
equations gives us the point of intersection ~p = (2, 3,−1).

Suppose instead that we are given the system of Cartesian equations for the lines R1 and R2:

R1 :

{
x+ 3y − 11 = 0
2y + z − 5 = 0

R2 :

{
2x+ y − 7 = 0
3y − z − 10 = 0

The second method is similar to the first one: we find a value for the x- and y-coordinate
and see whether it produces any contradictions with respect to the z-coordinate. From the
first equation in both sets of equations, we obtain, for instance, a y-coordinate:

x = −3y + 11

x = −1

2
y +

7

2

⇒ − 3y + 11 = −1
2
y + 7

2
⇔ y = 3

This gives us an x-coordinate equal to x = 2. Given these two values, both sets of equations
produce a z-coordinate equal to z = −1, so that we find no contradictions and the lines R1

and R2 indeed intersect.

A final method is a criteria to determine whether two lines intersect and relies on the deter-
minant. If two lines intersect, there is always a plane we can construct to which both lines
belong. In a first step, we then identify two points on each line and create three directional
vectors. We know that these vectors have to be linearly dependent, because only two direc-
tional vectors span a Euclidean plane. In other words, if two lines intersect, the determinant
of the matrix with the three directional vectors introduced as rows (or columns) must equal
zero.

Regarding line R1, we choose the points ~p1 = (2, 3,−1) and ~p2 = (5, 2, 1), while for line R2 we
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pick the points ~p3 = (1, 5, 5) and ~p4 = (0, 7, 11). Next, we create, for instance, the directional
vectors ~v1 = ~p2− ~p1 = (5, 2, 1)− (2, 3,−1) = (3,−1, 2), ~v2 = ~p3− ~p1 = (1, 5, 5)− (2, 3,−1) =
(−1, 2, 6), and ~v3 = ~p4 − ~p1 = (0, 7, 11) − (2, 3,−1) = (−2, 4, 12). We now calculate the
determinant of the matrix constructed with these three directional vectors:∣∣∣∣∣∣

3 −1 −2
−1 2 4
2 6 12

∣∣∣∣∣∣ = 0

This result means that the four points ~p1, ~p2, ~p3, and ~p4 are co-planar, so the lines R1 and
R2 must intersect. We can then use one of the first two methods to calculate the point of
intersection.

Two lines in three-dimensional space are perpendicular to each other if they intersect and
if the dot product of their directional vectors produces a value equal to zero.

Let us for example find the straight line S2 that is perpendicular to S1 and intersects with
S1 at the point ~p = (−3, 0, 5). The line S1 is described by the following set of equations:

S1 :

{
x+ 3y + 3 = 0

7y + z − 5 = 0

We rewrite this as:

y =
−x− 3

3
=
−z + 5

7

A directional vector of S1 is equal to ~v1 = (−3, 1,−7). Line S2 is perpendicular to S1 if the
dot product of their directional vectors is zero, i.e., ~v1 · ~v2 = (−3, 1,−7) · (v2x, v2y, v2z) = 0.
We can, for instance, set ~v2 equal to ~v2 = (−1, 4, 1). The parametric equation of S2 is then
equal to:

S2 :


x = −3− λ
y = 4λ

z = 5 + λ

Finally, lines that are not parallel and do not intersect are called skew lines.

Let us consider the straight lines E1 and E2:

E1 :

{
x− 6y + 1 = 0
− y + 8z − 15 = 0

E2 :

{
− 3x+ 13y − 2 = 0
6y − 18z + 5 = 0

We will apply the criteria based on the determinant to determine whether these lines intersect
or not. With respect to line E1, we choose the points ~p1 = (5, 1, 2) and ~p2 = (−1, 0, 15

8
), and

regarding line E2, we identify the points ~p3 = (2, 8
13
, 113

234
) and ~p4 = (0, 2

13
, 77

234
).
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We then create, for instance, the directional vectors ~v1 = ~p1 − ~p2 = (5, 1, 2)− (−1, 0, 15
8

) =

(6, 1, 1
8

), ~v2 = ~p1 − ~p3 = (5, 1, 2) − (2, 8
13
, 113

234
) = (3, 5

13
, 355

234
), and ~v3 = ~p1 − ~p4 = (5, 1, 2) −

(0, 2
13
, 77

234
) = (5, 11

13
, 391

234
).

The determinant of the matrix composed of the directional vectors as row vectors is calcu-
lated to be: ∣∣∣∣∣∣∣∣∣

6 1 1
8

3 5
13

355
234

5 11
13

391
234

∣∣∣∣∣∣∣∣∣ = −140

117

Given that the determinant is not equal to zero, the four points ~p1, ~p2, ~p3, and ~p4 are not
co-planar so that the lines E1 and E2 do not intersect.

However, they can still be parallel. Let us rewrite the equations of E1 and E2 as follows:

E1 : y =
x+ 1

6
= 8z − 15 E2 : y =

3x+ 2

13
=

18z − 5

6

A directional vector of E1 and E2 is, for instance, ~v1 = (6, 1, 1
8

) and ~v2 = (13
3
, 1, 1

3
), re-

spectively. Since both vectors are not a multiple of each other, the lines E1 and E2 are not
parallel. We can thus conclude that the lines are skew.

6.2.2 Planes

Two planes α : a1x+a2y+a3z+ d1 = 0 and β : b1x+ b2y+ b3z+ d2 = 0 are parallel if any
two respective normal vectors ~nα and ~nβ are parallel. In other words, α and β are parallel
if ~nα and ~nβ are a multiple of each other.

As discussed in section 6.1, the coefficients of the variables x, y, and z in the equation of a
plane make up the coordinates of a normal vector. As such, we can write that ~nα = (a1, a2, a3)
and ~nβ = (b1, b2, b3).

For example, consider the planes α : −x+ 3y− 5z + 3 = 0 and β : 3x− 9y + 15z − 11 = 0.
We choose two normal vectors ~nα = (−1, 3,−5) and ~nβ = (3,−9, 15). The planes α and β
are parallel, given that (−3) · ~nα = ~nβ.

Two planes α and β intersect if they are not parallel. This means that α and β intersect
if any two respective normal vectors ~nα and ~nβ are not a multiple of each other.

For example, the planes α : x+ 2y − 3z + 29 = 0 and β : −3x+ 2y + z − 29 = 0 intersect,
since ~nα = (1, 2,−3) and ~nβ = (−3, 2, 1) are not a multiple of each other.

Two planes α and β are perpendicular if any two respective normal vectors ~nα and ~nβ are
perpendicular, i.e., their dot product must equal zero.
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For instance, the planes α : 3x−y+5z+5 = 0 and β : x−2y−z−26 = 0 are perpendicularly
oriented, because ~nα · ~nβ = (3,−1, 5) · (1,−2,−1) = 3 · 1 + (−1) · (−2) + 5 · (−1) = 0.

A straight line L is parallel to a plane α : a1x + a2y + a3z + d1 = 0 if any directional
vector ~v = (vx, vy, vz) of L is perpendicular to any normal vector ~nα = (a1, a2, a3) of α. In
other words, L is parallel to α if the dot product of ~v and ~nα equals zero, i.e., ~v · ~nα =
vxa1 + vya2 + vza3 = 0.

For example, consider the line L described by the below set of Cartesian equations and the
plane α : x− 3y − z + 34 = 0.

L :

{
x+ 3y + 1 = 0

6y + z − 14 = 0

Let us first rewrite the above set of equations as follows:

y =
−x− 1

3
=
−z + 14

6

A directional vector of L is then equal to ~v = (−3, 1,−6). We find that the dot product
between ~v and ~nα is equal to ~v · ~nα = (−3, 1,−6) · (1,−3,−1) = −3− 3 + 6 = 0. The line L
and the plane α are thus parallel to each other.

A straight line L is perpendicular to a plane α if any directional vector ~v = of L is parallel
to any normal vector ~nα of α. This means that L and α are perpendicular if ~v and ~nα are a
multiple of each other.

Consider, for instance, the line R with the below system of Cartesian equations and the
plane α : 12x+ 14y − 10z + 1 = 0.

R :

{
7x− 6y + 1 = 0

5x+ 6z − 1 = 0

We rewrite this set of equations in the following way:

x =
6y − 1

7
=
−6z + 1

5

A directional vector of R is equal to ~v = (1, 7
6
,−5

6
) and a normal vector of α is ~nα =

(12, 14,−10). Given that ~nα = 12 · ~v, we know that the line R and the plane α are oriented
perpendicularly.

6.2.3 Angles

The angle between two non-parallel lines can be found through the definition of the
dot product (see section 4.1.2) of the two respective directional vectors of the straight lines.
The angle is always an acute or a right angle.

For example, consider the lines L1 and L2 with the following parametric equations:
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L1 :


x = 1 + 8t
y = 4− 11t
z = −6 + 9t

L2 :


x = −7− 15r
y = 21 + r
z = −1 + 16r

Given the directional vectors ~v1 = (8,−11, 9) and ~v2 = (−15, 1, 16) of L1 and L2, respec-
tively, we find the angle θ between the two lines as follows:

~v1 · ~v2 = ‖~v1‖‖~v2‖ cos θ ⇔ θ = arccos

(
~v1 · ~v2

‖~v1‖‖~v2‖

)
= arccos

(
13√

266 ·
√

482

)
= 87.9◦

The angle between two intersecting planes is equal to the angle between two respective
normal vectors, whereby the angle is either acute or right.

Consider, for instance, the planes α1 : 2x− 7y + 8z + 4 = 0 and α2 : x+ y − 14z − 4 = 0.
We choose a normal vector ~n1 = (2,−7, 8) and ~n2 = (1, 1,−14) for the planes α1 and α2,
respectively. The angle θ between the two planes is equal to:

θ = arccos

(
~n1 · ~n2

‖~n1‖‖~n2‖

)
= arccos

(
− 117√

117 ·
√

198

)
= 140.2◦

However, given that the angle must be acute or right, the correct angle θ is equal to θ =
180◦ − 140◦ = 39.8◦.

The angle between an intersecting line and plane is equal to the complement of the
angle between a directional vector of the line and a normal vector of the plane. Bear in mind
that we always have to make sure that the angles under consideration are acute or right.

Consider, for example, the line E with the below set of Cartesian equations that intersects
the plane β : x− y + z + 5 = 0.

E :
x− 5

2
=
y + 1

3
=
z + 6

−5

A directional vector of E is ~v = (2, 3,−5) and a normal vector of β is ~n = (1,−1, 1). The
angle θ1 between ~v and ~n is calculated to be:

θ1 = arccos

(
~v · ~n
‖~v‖‖~n‖

)
= arccos

(
− 6√

38 ·
√

3

)
= 124.2◦

This angle is not acute, so the adjusted angle θ1 is equal to θ1 = 180◦− 124.2◦ = 55.8◦. The
angle θ2 between the line E and the plane β is then equal to θ2 = 90◦ − 55.8◦ = 34.2◦.
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6.3 The Cross Product

6.3.1 Definition

An orthonormal (Cartesian) coordinate system is an example of a right-handed or pos-
itively oriented coordinate system, whereby the three coordinate axes x, y, and z are
perpendicular to one another and positioned according to the right-hand rule.

The right-hand rule states that when the thumb, the index finger, and the middle finger of
the right hand are oriented perpendicular with respect to each other, the thumb points in
the positive x-direction, the index finger in the positive y-direction, and the middle finger in
the positive z-direction.

The vector ~cp is defined as the cross product of the vectors ~a and ~b, which is denoted by

~cp = ~a×~b, whereby:

1. the vector ~cp is perpendicular to both ~a and ~b; put differently, the vector ~cp is a normal

vector of the plane spanned by the vectors ~a and ~b

2. the vector ~cp is oriented in such a way so that the set (~cp,~a,~b ) forms a right-handed
system

3. the norm of the vector ~cp is equal to the area of the parallelogram spanned by the

vectors ~a and ~b

Fig. 6.3 tells us that the area A of the parallelogram spanned by the vectors ~a and ~b is equal
to A = h · ‖~b‖. Based on right-angle trigonometry, we also see that h = ‖~a‖ sin(π − θ).
Moreover, as we have seen in section 5.2.1, the trigonometric number sin(π − θ) is equal to

sin θ. Therefore, we can write the area A of the parallelogram as A = ‖~a‖‖~b‖ sin θ.

Since the norm of the cross product ~cp = ~a × ~b is equal to the area A, we find that

‖~cp‖ = ‖~a×~b‖ = ‖~a‖‖~b‖ sin θ.

Figure 6.3: The norm of a cross product
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6.3.2 Properties and Applications

Fig. 6.4 provides some of the main properties of the cross product. Note that k ∈ R.

Figure 6.4: Properties of the cross product

Consider a Cartesian coordinate system with ~ix, ~iy, and ~iz the unit vector of the respect
coordinate axis. We then find the following results for the cross product of the different
combinations between the unit vectors:

• ~ix ×~ix = ~o

• ~iy ×~iy = ~o

• ~iz ×~iz = ~o

• ~ix ×~iy =~iz

• ~iy ×~iz =~ix

• ~iz ×~ix =~iy

• ~ix ×~iz = −~iy

• ~iy ×~ix = −~iz

• ~iz ×~iy = −~ix

If we write the vectors ~a and ~b in terms of their coordinates, i.e., ~a = a1
~ix + a2

~iy + a3
~iz and

~b = b1
~ix + b2

~iy + b3
~iz, the cross product obtains the following form:

~a×~b =
(
a1
~ix + a2

~iy + a3
~iz

)
×
(
b1
~ix + b2

~iy + b3
~iz

)
= a1

~ix × b1
~ix + a1

~ix × b2
~iy + a1

~ix × b3
~iz + a2

~iy × b1
~ix + a2

~iy × b2
~iy + a2

~iy × b3
~iz

+ a3
~iz × b1

~ix + a3
~iz × b2

~iy + a3
~iz × b3

~iz

=
(
a2
~iy × b3

~iz − b2
~iy × a3

~iz

)
+
(
a1
~ix × b3

~iz − b1
~ix × a3

~iz

)
+
(
a1
~ix × b2

~iy − b1
~ix × a2

~iy

)
= (a2b3 − b2a3)

(
~iy ×~iz

)
+ (a1b3 − b1a3)

(
~ix ×~iz

)
+ (a1b2 − b1a2)

(
~ix ×~iy

)
=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣~ix − ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣~iy +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣~iz
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=

∣∣∣∣∣∣
~ix ~iy ~iz
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
In other words, the cross product of ~a and ~b is found by calculating the determinant of
the above matrix, so that we can write ~a×~b = (a2b3 − b2a3, b1a3 − a1b3, a1b2 − b1a2).

If we want to calculate the dot product (~a×~b) · ~c, we find the following result:

(~a×~b) · ~c =

(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ ,− ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ , ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣) · (c1, c2, c3)

=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c1 −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c2 +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c3

=

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
The expression (~a×~b)·~c can be interpreted geometrically. The volume V of the parallelepiped

shown in Fig. 6.5 is equal to V = ‖~a×~b‖·h. Based on right-triangle trigonometry, we see that

the height h is equal to h = ‖~c‖ cos θ. The volume V then becomes: V = ‖~a ×~b‖‖~c‖ cos θ,

which is the definition of the dot product between the vectors ~a×~b and ~c.

In other words, the absolute value of the expression (~a×~b) · ~c is equal to the volume of the

parallelepiped spanned by the non co-planar vectors ~a, ~b, and ~c : V = |(~a×~b) · ~c |.

Figure 6.5: The geometric interpretation of (~a×~b) · ~c
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The dot product and the cross product can also be expressed with the assistance of the
Kronecker delta and the Levi-Civita symbol, respectively. They are defined as follows:

Kronecker delta symbol δij =

{
1 ⇔ i = j
0 ⇔ i 6= j

Levi-Civita symbol εijk =


1 for an even number of permutations of the indices
− 1 for an odd number of permutations of the indices

0 if at least two indices are equal

whereby i, j, k ∈ {1, 2, 3} and we define ε123 = 1. For example, δ23 = 0, δ11 = 1, ε122 = 0,
ε312 = 1, and ε213 = −1.

If ~e1, ~e2, and ~e3 represent the three unit vectors of an orthonormal coordinate system, we
can write their dot product and cross product as follows:


~ei · ~ej = δij

~ei × ~ej =
3∑

k=1

εijk~ek

For instance, ~e2 ·~e1 = δ21 = 0 and ~e3×~e1 = ε311~e1 + ε312~e2 + ε313~e3 = 0 ·~e1 +1 ·~e2 +0 ·~e3 = ~e2.

The dot product and the cross product between two vectors ~a = a1~e1 + a2~e2 + a3~e3 and
~b = b1~e1 + b2~e2 + b3~e3 can be written in the following way:

~a ·~b =

(
3∑
i=1

ai~ei

)
·

(
3∑
j=1

bj~ej

)

=
3∑
i=1

3∑
j=1

aibj(~ei · ~ej)

=
3∑
i=1

3∑
j=1

aibjδij

~a×~b =

(
3∑
i=1

ai~ei

)
×

(
3∑
j=1

bj~ej

)

=
3∑
i=1

3∑
j=1

aibj(~ei × ~ej)

=
3∑
i=1

3∑
j=1

3∑
k=1

εijkaibj~ek

6.4 Distances

6.4.1 Distance between a Point and a Straight Line

The distance between a point ~p and a straight line L in three-dimensional space can
be found as follows. We first construct the plane α to which both the point ~p and the line L
belong. Next, we identify the directional vector ~v⊥ that is perpendicular both to the normal
~n of the plane and to a directional vector ~v of the line. We then write down the set of
equations that describes the line L⊥, which has the vector ~v⊥ as directional vector and goes
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through point ~p. In a next step, we determine the point of intersection ~s between L and L⊥.
Finally, we calculate the distance between ~p and ~s.

Let us consider an example. We wish to calculate the distance between the point ~p =
(−1, 5,−7) and the straight line L with the following Cartesian equations:

L :
x− 2

−1
=
y + 1

−3
=
z − 9

4

Figure 6.6: Calculating the distance from ~p to line L

A directional vector of L is ~v = (−1,−3, 4). To construct the plane α, we need a second di-
rectional vector ~v2 that is linearly independent from ~v. If we consider a random point ~x ∈ L
with coordinates ~x = (0,−7, 17), we calculate ~v2 as ~v2 = ~x− ~p = (0,−7, 17)− (−1, 5,−7) =
(1,−12, 24). We can now construct the plane α:

α :

∣∣∣∣∣∣
x+ 1 y − 5 z + 7
−1 −3 4
1 −12 24

∣∣∣∣∣∣ = 0 ⇔ −24x+ 28y + 15z − 59 = 0

A normal vector ~n of α is equal to ~n = (−24, 28, 15). In a next step, we identify the direc-
tional vector ~v⊥. Based on the definition of the cross product, we find ~v⊥ as ~v⊥ = ~n × ~v =
(−24, 28, 15) × (−1,−3, 4) = (157, 81, 100). The line L⊥ is then described by the following
set of Cartesian equations:
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L⊥ :
x+ 1

157
=
y − 5

81
=
z + 7

100

The point of intersection ~s between L and L⊥ is equal to ~s = (131
26
, 211

26
,−41

13
). The distance

d between ~s and ~p is then calculated to be:

d =

√
(sx − px)2 + (sy − py)2 + (sz − pz)2

=

√(
131

26
− (−1)

)2

+

(
211

26
− 5

)2

+

(
(−41

13
)− (−7)

)2

=

√
1585

26

Figure 6.7: Calculating the distance from ~p to
line L

An alternative and shorter way to find the
distance between a point and a straight line is
based on the geometric interpretation of the
norm of a cross product.

From Fig. 6.7 we can see that the vector ~v =
~b− ~a = ~c− ~p, which is a directional vector of
line L, and that ~w = ~a− ~p = ~b− ~c. The area
A of the parallelogram spanned by the vectors
~v and ~w is equal to A = ‖~v × ~w‖.

The area A can also be calculated when taking
the product of the length of the directional
vector ~v and the distance d, i.e., A = ‖~v‖ · d.

Setting these two expressions for the area of
A equal to each other, we find a new expres-
sion that allows us to calculate the distance d
between a given point ~p and the straight line
L:

‖~v × ~w‖ = ‖~v‖ · d ⇔ d =
‖~v × ~w‖
‖~v‖

If we apply this to our previous example, whereby ~a = (4, 5, 1), ~b = (3, 2, 5), and

~c = (−2, 2,−3), ~v = ~b − ~a = (3, 2, 5) − (4, 5, 1) = (−1,−3, 4), and ~w = ~a − ~p =
(4, 5, 1)− (−1, 5,−7) = (5, 0, 8), we find the distance d as follows:

d =
‖~v × ~w‖
‖~v‖

=
‖(−1,−3, 4)× (5, 0, 8)‖

‖(−1,−3, 4)‖
=
‖(−24, 28, 15)‖
‖(−1,−3, 4)‖

=

√
1585

26
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6.4.2 Distance between Two Skew Lines

The distance between two skew lines S1 and S2 is equal to the distance between the
two points of intersection ~p1 and ~p2 that are found when the two skew lines intersect with
their common perpendicular L⊥, i.e., the line that is perpendicular to both skew lines.

We apply the following method. In a first instance, we identify a directional vector ~v⊥ of L⊥
by looking for a vector that is perpendicular to both the directional vector ~v1 of S1 and the
directional vector ~v2 of S2. Next, we construct the plane α that contains both S1 and L⊥. In
a next step, we identify the point of intersection ~p2 between α and S2. After writing down
the set of equations that describes L⊥, we can find the point of intersection ~p1 between the
lines S1 and L⊥. In a final step, we calculate the distance between ~p1 and ~p2.

Figure 6.8: Calculating the distance between two skew lines S1 and S2

For example, let us calculate the distance between the skew lines S1 and S2 as given by the
following parametric equations (see Fig. 6.8):

S1 :


x = −2 + 9t
y = 6− t
z = 11 + t

S2 :


x = 3 + 3r
y = −2− 2r
z = 1 + r

A directional vector of the lines S1 and S2 is equal to ~v1 = (9,−1, 1) and ~v2 = (3,−2, 1),
respectively. The directional vector ~v⊥ is found by taking the cross product of ~v1 and ~v2:
~v⊥ = ~v1 × ~v2 = (9,−1, 1)× (3,−2, 1) = (1,−6,−15).
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To construct the plane α, we first identify a normal vector ~n of α by taking the cross prod-
uct of ~v1 and ~v⊥, which span the plane α: ~n = ~v⊥ × ~v1 = (1,−6,−15) × (9,−1, 1) =
(−21,−136, 53). The plane α has then the form α : −21x − 136y + 53z + d = 0. Given
that S1 lies within α, we find d by inserting, for instance, the point (−2, 6, 11) ∈ S1 into the
equation of α:

α : −21x− 136y + 53z + d = 0 ⇔ −21 · (−2)− 136 · 6 + 53 · 11 + d = 0 ⇔ d = 191

The equation of α is then α : −21x − 136y + 53z + 191 = 0. Inserting the parametric
equations of S2 into the equation of α allows us to find the value of the parameter r that
corresponds to the point of intersection ~p2:

α :− 21x− 136y + 53z + 191 = 0

⇔ −21(3 + 3r)− 136(−2− 2r) + 53(1 + r) + 191 = 0

⇔ r = −453

262

⇒ ~p2 =

(
−573

262
,
191

131
,−191

262

)
Given the directional vector ~v⊥ = (1,−6,−15) and the point ~p2, we can write down the
equation of the line L⊥:

L⊥ :



x = −573

262
+ s

y =
191

131
− 6s

z = −191

262
− 15s

The intersection between S1 and L⊥ produces the parametric values s = −203
262

and t = − 14
131

,

which correspond to the point of intersection ~p1 = (−388
131

, 800
131

, 1427
131

). Finally, the distance
between ~p1 and ~p2 is equal to:

d =

√
(p1x − p2x)

2 + (p1y − p2y)
2 + (p1z − p2z)

2

=

√[
−388

131
−
(
−573

262

)]2

+

[
800

131
− 191

131

]2

+

[
1427

131
−
(
−191

262

)]2

=

√
41209

262

6.4.3 Distance between a Point and a Plane

Consider a plane α : ax + by + cz + d∗ = 0, a point ~p = (px, py, pz) /∈ α and a point ~x =
(x, y, z) ∈ α, whereby ~x is the orthogonal projection of ~p onto the plane α and ~n = (a, b, c)
is a normal vector of α. We wish to determine the distance d between the point ~p and
the plane α, which is equivalent to the distance between ~p and ~x, i.e., d = ‖~p− ~x‖.
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Figure 6.9: Distance between ~p and α

Given that d is always defined as the shortest
distance from ~p to the plane α, we know that the
line segment between ~p and α must be parallel
to any normal ~n of the plane α. In other words,
the vector ~p − ~x must be parallel to ~n, which
means that the angle θ between ~p − ~x and ~n
must be θ = 0◦.

Based on the definition of the dot product, we
can therefore write:

(~p− ~x) · ~n = ‖~p− ~x‖‖~n‖ cos θ

= ‖~p− ~x‖‖~n‖ cos(0◦)

= ‖~p− ~x‖‖~n‖

⇔ d = ‖~p− ~x‖ =
(~p− ~x) · ~n
‖~n‖

=
[(px, py, pz)− (x, y, z)] · (a, b, c)√

a2 + b2 + c2

=
(apx + bpy + cpz)− (ax+ by + cz)√

a2 + b2 + c2

=
|(apx + bpy + cpz) + d∗|√

a2 + b2 + c2

In the above last step, we have introduced an absolute value sign, given that a distance must
always be positive.

Let us, for example, consider the plane α : −14x + 21y − 3z + 44 = 0 and the point
~p = (11,−12, 4). The distance d between ~p and α is then calculated as follows:

d =
|(apx + bpy + cpz) + d∗|√

a2 + b2 + c2

=
|((−14) · 11 + 21 · (−12) + (−3) · 4) + 44|√

(−14)2 + 212 + (−3)2

=
|−374|√

646
=

374√
646
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6.4.4 Distance between Two Parallel Planes

To find the distance between two parallel planes α and β, it suffices to identify one
point ~p ∈ α (~p ∈ β) and then use the formula of the previous section 6.4.3 to calculate the
distance from ~p to the plane β (plane α).

Consider the planes α : 2x + 5y − 31z − 11 = 0 and β : −6x − 15y + 93z + 43 = 0. If we
for instance select the point ~p = (−1, 47

3
, 2) ∈ β, we then find the distance between the two

planes by calculating the distance between ~p and the plane α:

d =
|(apx + bpy + cpz) + d|√

a2 + b2 + c2

=

∣∣∣(2 · (−1) + 5 · 47
3

+ (−31) · 2)− 11
∣∣∣√

22 + 52 + (−31)2

=

10
3√
990

=

√
110

99
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7 Real Analysis

Within the field of mathematics, the subfield of real analysis deals with the study of real
numbers, real functions, and sequences and series.

7.1 Functions: An Introduction

7.1.1 Definitions

Given two non-empty sets A and B of real numbers, a (real) function f describes a unique
map between an element of A and an element of B, whereby each element of A can only be
mapped to just one element of B.

Mathematically, this relation is written as f : A→ B, whereby A is called the domain of f
and B the codomain of f .

If x ∈ A and y ∈ B, f evaluated in x is equal to y, or f(x) = y. Therefore, the function
f can also be mathematically displayed as f : A → B : x 7→ f(x) = y. The element x is
referred to as the argument or the variable of f , whereas y represents the value of f .

The image of a function f is equal to the subset of B that consists of the elements y ∈ B
for which there exists at least one x ∈ A whereby y = f(x). So, the image of f is not
necessarily equal to its codomain. For example, the function f : R → R : x 7→ f(x) = x2

has the codomain B = R while its image is equal to R+.

Figure 7.1: Graphic representation of a function

Note that the definition of a function allows a function to map different elements of A to
the same element of B. For example, the function f : R→ R+ : x 7→ f(x) = |x| maps both
the argument x = −5 and x = 5 to the value y = 5.

A counterexample is the horizontal parabola with equation x = s · (y − m2)2 + m1 (see

section 4.3.4). If we rewrite this equation as y = m2±
√

x−m1

s
, we see that each argument x

(except x = m1) corresponds with two values y, which is in contradiction with the definition
of a function. That is, a horizontal parabola is not a function.
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To know whether a curve can be defined as a function, we apply the vertical line test. If
the vertical line intersects the curve only once for every x-value, then the curve represents a
function.

In the case of the horizontal parabola, the vertical line intersects the curve twice for each
value of x (except x = m1), so that, as we have seen, the horizontal parabola does not
represent a function. Neither does a circle, for the same reasons.

A function is furthermore called even if f(−x) = f(x) and odd if f(−x) = −f(x). Examples
of even functions are f(x) = |x|, f(x) = cos x, f(x) = sec x, f(x) = ax2 + b, and f(x) =
ax2+bx4+c, whereas the functions f(x) = sinx, f(x) = cscx, f(x) = tan x, f(x) = ax3+bx,
and f(x) = x are classified as odd functions.

Note that functions do not necessarily have to be even or odd. For instance, the function
f(x) = cotx + x2 is neither even nor odd, because f(−x) = − cotx + x2 6= f(x) and
f(−x) = − cotx+ x2 6= −f(x) = − cotx− x2.

If a function is described by two or more functions, it is called a piecewise function. For
each individual function, a domain interval is defined, whereby the intervals cannot overlap.
Consider for example the below piecewise function:

f : R→ R : x 7→ f(x) =



√
x− 3 if x ≥ 3

1

x(x− 3)
if 0 < x < 3

(x− 1)
√
−x if x ≤ 0

A function f that returns a scalar value is called a scalar function. A scalar function
with two variables is written as f : R2 → R : (x, y) 7→ f(x, y), and in the general case of n
variables we write f : Rn → R : (x1, x2, . . . , xn) 7→ f(x1, x2, . . . , xn).

An example of a scalar function f of three variables x, y, and z is f : R3 → R : (x, y, z) 7→
f(x, y, z) = 2xy2 − 3y3z + xyz − z.

A function that returns a vector is known as a vector function. In the case of one parameter
t, we can write ~r : R → Rm : t 7→ ~r(t) = (f1(t), f2(t), . . . , fm(t)). The elements fi(t) are
called the component functions of ~r and are scalar functions. If we consider the general case
whereby a vector function ~F is described by n parameters, ~F is defined as ~F : Rn → Rm :
(t1, t2, . . . , tn) 7→ ~F (t1, t2, . . . , tn) = (f1(t1, t2, . . . , tn), f2(t1, t2, . . . , tn), . . . , fm(t1, t2, . . . , tn)).

An example of a vector function with two parameters u and v and four component functions
is ~F : R2 → R4 : (u, v) 7→ ~F (u, v) = (uv + 1, 4− u, 4− v, 2 + u2v).

The graph of a scalar function of one variable is defined as the set of all the pairs
(x, f(x)) = (x, y) and represents a curve in the two-dimensional Euclidean space. The graph
of f can also be denoted by {(x, f(x))|x ∈ R} ⊂ R2. Within a two-dimensional Euclidean
plane, each point on the graph of f corresponds to one unique pair, whereby each pair
represents Cartesian coordinates.
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The graph of a scalar function of two variables x and y represents a two-dimensional
surface in three-dimensional Euclidean space and can be written as {(x, y, f(x, y))|(x, y) ∈
R2} ⊂ R3. For more than two variables, we are unable to draw any graph. In the general
case of n variables, the function f represents a n-dimensional hypersurface in the (n + 1)-
dimensional space.

The graph of a vector function with one and two parameters represents a curve and a sur-
face in the m-dimensional space, respectively, and is denoted by {(f1(t), f2(t), . . . , fm(t))|t ∈
R} ⊂ Rn and {(f1(u, v), f2(u, v), . . . , fm(u, v))|(u, v) ∈ R2} ⊂ Rm, respectively. We are only
able to draw a graph if m = 2 or m = 3.

As an example, Fig. 7.2 shows four graphs of different functions. Note that the domain of
the vector function ~F = (12 sin(u),−6 cos(v), 6u2v2) is restricted to [−1.5, 1.5]× [0, 3], other-
wise the equation of the surface would not represent a function (i.e., we would get different
function values for the same couples of (u,v)).

Figure 7.2: The graph of four different functions
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The functions that are discussed in the remainder of section 7 are scalar functions of one
variable, unless stated otherwise.

7.1.2 Roots

The zeros or roots of a function f : A → B : x 7→ f(x) are equal to all the arguments
x ∈ A for which their function value is zero, i.e., f(x) = 0.

Graphically, a root x = x0 is identified as the point of intersection between the curve of the
function and the x-axis of the Cartesian coordinate system. The coordinates of the root are
therefore of the form (x0, 0).

Consider, for instance, the function f : R→ R : x 7→ f(x) = 2x2 +
√

17x− 4. The roots are
found as follows:

f(x) = 0 ⇔ 2x2 +
√

17x− 4 = 0 ⇔ x =
−
√

17±
√

17− 4 · 2 · (−4)

2 · 2

=
−
√

17± 7

4

This function has thus two roots: x = −
√

17+7
4

and x = −
√

17+7
4

.

A second example is the function f : R \ {kπ} → R : θ 7→ f(θ) = cot θ with k ∈ Z. The
roots of f are found when f(θ) = cot θ = 0, i.e., θ = π

2
+ kπ.

7.1.3 Function Operations

If we consider the functions f : A ⊂ R→ R, g : A ⊂ R→ R, and h : A ⊂ R→ R, whereby
∀x ∈ A : h(x) 6= 0, and the scalar k ∈ R, Fig. 7.3 defines the scalar product as well as the
sum, the product, and the quotient of two functions.

Figure 7.3: Some basic operations of functions

For example, if we consider the functions f : R → [2,+∞[: x 7→ f(x) = 5x2 + 2 and
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h : R \ {π
2

+ mπ} → [−1, 1] : x 7→ h(x) = cos(x), with m ∈ Z, we can define the quotient

function
f
h

as
f
h

: R \ {π
2

+mπ} → R : x 7→ f
h

(x) = 5x2+2
cos(x)

.

The composite function is a function that uses another function as its argument. If
f : A ⊂ R → B ⊂ R and g : B ⊂ R → C ⊂ R are two functions, we can define the
composite function g ◦ f as g ◦ f : A ⊂ R → C ⊂ R : x 7→ (g ◦ f)(x) = g(f(x)), whereby
∀x ∈ A.

Consider, for instance, the functions f : [−1, 1] → [0, 1] : x 7→ f(x) =
√

1− x2 and g :
[0, 1] → [0, 1] : x 7→ g(x) =

√
1− x2. The composite function g ◦ f is then defined as

g ◦ f : [−1, 1]→ [0, 1] : x 7→ g(f(x)) =

√
1−

(√
1− x2

)2
=
√
x2 = |x|.

If we wish to change the position of the graph of a function f : R → R : x 7→ f(x) within
our Cartesian coordinate system, there are two basic operations we can perform.

For a vertical translation of the graph of f , we define a new function g : R → R : x 7→
g(x) = f(x) + a, with a ∈ R. If a > 0 (a < 0), the graph of f moves upwards (downwards)
over a distance |a|.

For a horizontal translation of the graph of f , we define a new function g : R→ R : x 7→
g(x) = f(x+ a), with a ∈ R. If a > 0 (a < 0), the graph of f moves to the left (right) over
a distance |a|.

We might also be interested in rescaling the graph of the function f .

For a vertical rescaling of the graph of f , we define a new function g : R → R : x 7→
g(x) = af(x), with a ∈ R. If |a| > 1, the graph of f is stretched in the direction away from
the x-axis over a factor |a|, whereas if |a| < 1 the graph of f is compressed towards the
x-axis. If a < 0, the graph of f will be reflected over the x-axis.

For a horizontal rescaling of the graph of f , we define a new function g : R → R : x 7→
g(x) = f(ax), with a ∈ R. If |a| > 1, the graph of f is compressed towards the y-axis over
a factor |a|, whereas if |a| < 1 the graph of f is stretched in the direction away from the
y-axis. If a < 0, the graph of f will be reflected over the y-axis.

Fig. 7.4 demonstrates the effects of a linear rescaling of the graph of a function f . On the
left, the gray dashed line represents the function f : R → R : x 7→ f(x) = x3 − x + 4. The
function of the red graph is equal to g1 : R → R : x 7→ g1(x) = (0.5x)3 − (0.5x) + 4, which
implies a horizontal stretch of the graph of f by a factor 0.5. The function of the green
graph is equal to g2 : R→ R : x 7→ g2(x) = [0.5(x− 4)]3 − [0.5(x− 4)] + 4, which implies a
horizontal translation to the right of the graph of g1 over a distance of 4.

On the right, the gray dashed line represents the function f : R → R : x 7→ f(x) =
(0.5x)4 − x2 + 4. The function of the red graph is equal to g1 : R → R : x 7→ g1(x) =
−0.5 [(0.5x)4 − x2 + 4], which implies a vertical compression of the graph of f by a factor
0.5 and a reflection over the x-axis.

84



Mathematics Preparation Course Olivier Loose

Figure 7.4: Linear rescaling of functions

Additional examples of linear rescaling of functions is found in section 7.6.3.

7.2 Limit of Functions

7.2.1 Definitions

The limit of a function f : A ⊂ R → R for a number a ∈ R is equal to L ∈ R, if the
function value f(x) moves increasingly closer to L as x moves increasingly closer to a. The
limit L of a function f at an input value a is denoted by lim

x→a
f(x) = L. Note that the

function does not need to be defined in a.

Figure 7.5: The definition of a limit of a function

We can reformulate the above definition of a
limit L of a function f for an argument a as
follows. If for any real number ε > 0, which
determines the interval [L− ε, L+ ε] on the
y-axis, we can find a real number δ > 0,
which determines the interval [a− δ, a+ δ]
on the x-axis, so that for any argument x
belonging to the domain of f that lies at a
smaller distance than δ from a (with x 6=
a) we find that the function value f(x) lies
closer to L than ε, then we can say that the
limit of f for the argument a is equal to L.

In mathematical language, this definition
becomes the following:

lim
x→a

f(x) = L ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : 0 < |x− a| < δ ⇒ |f(x)− L| < ε

The limit of a function f at a certain argument a need not take on a finite value L, but can
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be infinite, either in the positive or the negative direction of the y-axis. We can define these
infinite limits as follows:

• lim
x→a

f(x) = +∞ ⇔ ∀α ∈ R,∃δ > 0, ∀x ∈ A : 0 < |x− a| < δ ⇒ f(x) > α

• lim
x→a

f(x) = −∞ ⇔ ∀α ∈ R,∃δ > 0,∀x ∈ A : 0 < |x− a| < δ ⇒ f(x) < α

Fig. 7.6 provides two examples of infinite limits. On the left-hand side, the graph in blue
represents the function f : R \ {0, 1} → R+ : x 7→ f(x) = ex

|x2−x| . For the function f , we

find that lim
x→0

f(x) = +∞ and lim
x→1

f(x) = +∞.

On the right-hand side, the graph in green represents the function g :
]
π
2
, 3π

2

[
→ R : x 7→

g(x) = tan(x). For the function g, we find that lim
x→π

2

g(x) = −∞ and lim
x→ 3π

2

g(x) = +∞.

Figure 7.6: Two examples of infinite limits

A limit at infinity is a finite limit L of a function f that is obtained when we consider the
limit of f at a region of infinity instead of a real number a. Since we can situate the region
of infinity either at the negative or the positive side of the x-axis, we formulate the following
two definitions of a limit at infinity:

• lim
x→+∞

f(x) = L ⇔ ∀ε > 0,∃α ∈ R,∀x ∈ A : x > α ⇒ |f(x)− L| < ε

• lim
x→−∞

f(x) = L ⇔ ∀ε > 0,∃α ∈ R,∀x ∈ A : x < α ⇒ |f(x)− L| < ε

Two examples of limits at infinity are shown in Fig. 7.7. On the left, the graph in orange

represents the function f : R \ {1} → R : x 7→ f(x) = 3x3−2x+5
x3−1

. For the function f , we
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find that lim
x→+∞

f(x) = 3 and lim
x→−∞

f(x) = 3.

On the right, the graph in purple represents the function g : R → R : x 7→ g(x) =
cos (xe−2x) + 1. For the function g, we find that lim

x→+∞
g(x) = 2.

Figure 7.7: Two examples of limits at infinity

A left-hand (right-hand) limit of a function f evaluated at a real number a is equal to the
limit of f when only considering arguments x of f that are strictly smaller (greater) than a.
The left-hand (right-hand) limit L1 (L2) of f is denoted by lim

x→a
<

f(x) = L1 (lim
x→a
>

f(x) = L2).

We can write down their definitions as follows:

• lim
x→a
<

f(x) = L1 ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : a− δ < x < a ⇒ |f(x)− L1| < ε

• lim
x→a
>

f(x) = L2 ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : a < x < a+ δ ⇒ |f(x)− L2| < ε

We can now also define the limit L of a function f at a real number a as follows: the limit
L of f at a real number a is equal to L if the left-hand limit L1 is equal to the right-hand
limit L2 at a, i.e., L1 = L2 = L.

Consider Fig. 7.8, which provides two examples of left-hand and right-hand limits. On

the left-hand side, the graph in green represents the function f :
]
−π

2
, 3π

2

[
\ {π

2
} →

R : x 7→ f(x) =
| cos(x)|
cos(x)

. For the function f , we find that L1 = lim
x→π

2
<

f(x) = 1 and

L2 = lim
x→π

2
>

f(x) = −1. Given that L1 6= L2, it follows that the limit L = lim
x→π

2

f(x) is not

defined.

On the right-hand side, the graph in red represents the piecewise function g, which is defined
as follows:
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g : R→ R : x 7→ g(x) =


x3 − 3x2 − 2x+ 7 if x < 2

0 if x = 2

e0.5x − 1− e if x > 2

For the function g, we find that L1 = lim
x→2
<

g(x) = −1 and L2 = lim
x→2
>

g(x) = −1. Given that

L1 = L2, it follows that the limit L = lim
x→2

g(x) is defined and equal to L = −1. Note that

g(2) = 0 and did not come into play during the calculation of the limits.

Figure 7.8: Two examples of left-hand/right-hand limits at a real number a

Left-hand and right-hand limits also exist in the context of infinite limits, which are defined
as follows:

• lim
x→a
<

f(x) = +∞ ⇔ ∀α ∈ R,∃δ > 0, ∀x ∈ A : a− δ < x < a ⇒ f(x) > α

• lim
x→a
>

f(x) = +∞ ⇔ ∀α ∈ R,∃δ > 0, ∀x ∈ A : a < x < a+ δ ⇒ f(x) > α

• lim
x→a
<

f(x) = −∞ ⇔ ∀α ∈ R,∃δ > 0,∀x ∈ A : a− δ < x < a ⇒ f(x) < α

• lim
x→a
>

f(x) = −∞ ⇔ ∀α ∈ R,∃δ > 0,∀x ∈ A : a < x < a+ δ ⇒ f(x) < α

Fig. 7.9 shows two examples of infinite left-hand and right-hand limits. On the left, the

graph in red represents the function f : R \ {−4} → R : x 7→ f(x) = x2−x+3
x+4

. For the

function f , we find that lim
x→−4
<

f(x) = −∞ and lim
x→−4
>

f(x) = +∞. Given that the left- and

right-hand limit are not equal, the limit lim
x→−4

f(x) is undefined.
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On the right, the graph in blue represents the function g : R\{−π
4

+kπ} → R+ : x 7→ g(x) =
e−0.1x

| sin(x)+cos(x)| , with k ∈ Z. For the function g, we find, for instance, that lim
x→− 17π

4
<

g(x) = +∞

and lim
x→− 17π

4
>

g(x) = +∞. Since the left-hand and right-hand limits are equal, the limit

lim
x→− 17π

4

g(x) is well-defined and equal to +∞.

Figure 7.9: Two examples of infinite left-hand/right-hand limits

7.2.2 Limit Operations

Fig. 7.10 lists the basic operations of limits, whereby lim
x→a

f(x) = L and lim
x→a

g(x) = M with

L,M ∈ R and a can be a real number, +∞, or −∞. Note furthermore that k ∈ R.

Figure 7.10: Basic operations of limits
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For example, given a function f : R→ R : x 7→ f(x) = 2x2 + 6 and lim
x→2

f(x) = 14, we have

that lim
x→2

[f(x)]2 = 142 = 196 with n = 2 ∈ N0.

Consider a second example whereby f : R→ R : x 7→ f(x) = 3x2− 9 and g : R→ R+ : x 7→
g(x) = e3x+1. Since lim

x→−1
f(x) = −6 and lim

x→−1
g(x) = e−2, we find that lim

x→−1
f(x) · g(x) =

−6 · e−2.

A useful tool is the squeeze theorem. Given three functions f , g, and h that are well-
defined in the vicinity of a ∈ R, the squeeze theorem states that if lim

x→a
f(x) = lim

x→a
g(x) and

if ∃δ > 0 so that for 0 < |x − a| < δ we have that f(x) ≤ h(x) ≤ g(x), it follows that
lim
x→a

f(x) = lim
x→a

h(x) = lim
x→a

g(x).

For instance, consider the functions f : R→ [0, 2] : x 7→ f(x) = sin(−x) + 1, g : R \ {−1} →
R : x 7→ g(x) = 1

x+1
, and h : R→ R+ : x 7→ h(x) = e−x. Given that lim

x→0
f(x) = lim

x→0
g(x) = 1

and that for, for instance, δ = 1 we have that 0 < |x| < 1 : f(x) ≤ h(x) ≤ g(x), the squeeze
theorem says that lim

x→0
h(x) = 1.

Figure 7.11: An example of the squeeze theorem

When calculating limits, it is also useful to keep in mind the following rules (with k ∈ R):

• (±∞) + (±∞) = ±∞

• k + (±∞) = ±∞

•
(

k
±∞

)
= 0

• (±∞) · (∓∞) = −∞

• (±∞) · (±∞) = +∞

• k·(±∞) =

{
±∞ if k > 0

∓∞ if k < 0
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Note hereby that the following expressions are undefined:

• ±∞±∞

• (+∞)± (∓∞)

• 00

• ±∞∓∞

• 0 · (±∞)

• 0
0

• ∓∞±∞

• 1±∞

7.2.3 Examples

Let put the basic calculation rules of the previous section into practice by looking at some
examples.

• Example 1: lim
x→0

(
sinx
x

)
If we directly substitute 0 for x in the limit, we obtain lim

x→0

sin(x)
x

= 0
0

, which is undefined.

In order to solve this limit, we will invoke the squeeze theorem.

Figure 7.12: The unit circle

Consider Fig. 7.12 and let us in the first
place compare the area of the red trian-
gle with the area of the purple circle sec-
tor (which lies underneath the red trian-
gle) and with the area of the right trian-
gle in green (which lies underneath both
the purple circle sector and the red trian-
gle). Given that h = 1 · tan(x), we find
that:

sin(x) · 1
2

< π · 12 · x
2π

<
(1 · tan(x)) · 1

2

⇔ sin(x) < x < tan(x)

⇔ 1 <
x

sin(x)
<

1

cos(x)

⇔ 1 >
sin(x)

x
> cos(x)

If we choose δ = 0.5, we find for any x, whereby 0 < |x| < 0.5, that cos(x) <
sin(x)
x

< 1.

Given that lim
x→0

1 = lim
x→0

cos(x) = 1, the squeeze theorem tells us that lim
x→0

sin(x)
x

= 1.
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• Example 2: lim
x→±∞

(
sinx
x

)
Directly substituting ±∞ for x in the limit does not produce any conclusive result—not
even an undefined limit—because lim

x→±∞
sin(x) does not exist as sin(x) is a cyclical function.

Again, we will rely on the squeeze theorem to find a solution.

We start with writing down the co-domain of the sine function and subsequently dividing
that expression by x 6= 0:

−1 ≤ sin(x) ≤ 1 ⇔ −1

x
≤ sin(x)

x
≤ 1

x

Given that for any interval in the vicinity of ±∞, the above inequalities hold and that

lim
x→±∞

− 1
x

= lim
x→±∞

1
x

= 0, we find according to the squeeze theorem that lim
x→±∞

sin(x)
x

= 0.

• Example 3: lim
x→−2

(
3+ 3√x−25

x+2

)
If we directly substitute −2 for x, we find the undefined expression 0

0
. In order to solve

this limit, we need to remember the special product a3 + b3 = (a + b)(a2 − ab + b2) (see
section 2.3.3). We can then see that:

33 +
(

3
√
x− 25

)3
=
(
3 + 3
√
x− 25

) (
32 − 3 3

√
x− 25 +

(
3
√
x− 25

)2
)

⇔ 3 + 3
√
x− 25 =

33 +
(

3
√
x− 25

)3

32 − 3 3
√
x− 25 +

(
3
√
x− 25

)2

=
x+ 2

32 − 3 3
√
x− 25 +

(
3
√
x− 25

)2

If we insert the above expression for 3+ 3
√
x− 25 into our limit, we obtain the following result:

lim
x→−2

3 + 3
√
x− 25

x+ 2
= lim

x→−2

[
x+ 2

32 − 3 3
√
x− 25 +

(
3
√
x− 25

)2

]
· 1

x+ 2

= lim
x→−2

1

32 − 3 3
√
x− 25 +

(
3
√
x− 25

)2

=
1

32 − 3 3
√

(−2)− 25 +
(

3
√

(−2)− 25
)2

=
1

27
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• Example 4: lim
x→+∞

(
43x+2
4+62x

)
If we directly substitute +∞ for x in the above limit, we stumble upon the undefined form
+∞
+∞ . Instead, we solve the limit as follows:

lim
x→+∞

43x + 2

4 + 62x
= lim

x→+∞

62x · [43x · 6−2x + 2 · 6−2x]

62x · [4 · 6−2x + 1]

= lim
x→+∞

43x · 6−2x + 2 · 6−2x

4 · 6−2x + 1

=
(+∞) + 0

0 + 1

= +∞

• Example 5: lim
x→−∞

(√
9x2 − x− 5 + 3x

)
Directly substituting −∞ for x in the limit produces the undefined form (+∞) + (−∞). We
solve this limit as follows:

lim
x→−∞

√
9x2 − x− 5 + 3x = lim

x→−∞

[(√
9x2 − x− 5 + 3x

)
·
(√

9x2 − x− 5− 3x√
9x2 − x− 5− 3x

)]

= lim
x→−∞

(√
9x2 − x− 5

)2 − (3x)2

√
9x2 − x− 5− 3x

= lim
x→−∞

−x− 5√
9x2 − x− 5− 3x

= lim
x→−∞

(−x− 5

−3x

)
·

 1

1−
√

9x2−x−5
3x



=

(
lim

x→−∞

−x− 5

−3x

)
·

 lim
x→−∞

1

1−
√

9x2−x−5
3x



=

(
lim

x→−∞

−1− 5
x

−3

)
·

 lim
x→−∞

1

1−
|x|
√

9− 1
x
− 5
x2

−3|x|



=

(
1

3

)
·

 1

1−
√

9−0−0
−3


=

1

6
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7.3 Asymptotes

7.3.1 Horizontal Asymptotes

A horizontal asymptote of a function f is equal to the finite limit L that f approaches
when x→ ±∞. It is common practice to graphically represent the horizontal asymptote as
a line with equation y = L.

Note that a function f can only have 0, 1, or 2 horizontal asymptotes. Moreover, with respect
to rational functions (see section 7.6.5), the function only displays horizontal asymptotes if
the degree of the numerator, i.e., the growth rate, is less than or equal to the degree of the
denominator.

For example, consider the rational function f : R \ {−5} → R : x 7→ f(x) =
(−x−3)
|−x−5| . The

limit for x→ +∞ is equal to:

lim
x→+∞

(−x− 3)

| − x− 5|
= lim

x→+∞

(−x− 3)

x+ 5
= lim

x→+∞

(−1− 3
x

)

1 + 5
x

= −1

The limit for x→ −∞ is equal to:

lim
x→−∞

(−x− 3)

| − x− 5|
= lim

x→−∞

(|x| − 3)

||x| − 5|
= lim

x→−∞

(1− 3
|x| )

1− 5
|x|

= 1

In other words, the rational function f has two horizontal asymptotes, i.e., y = −1 and
y = 1. Fig. 7.13 depicts this function together with the two horizontal asymptotes.

Figure 7.13: An example of a rational function with two horizontal asymptotes

7.3.2 Vertical Asymptotes

A vertical asymptote is equal to the real number a at which the limit of a function f
approaches ±∞. In other words, a function f has vertical asymptotes if lim

x→a
f(x) = ±∞,
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lim
x→a
<

f(x) = ±∞, or lim
x→a
>

f(x) = ±∞.

Graphically, a vertical asymptote is typically represented by a vertical line with equation
x = a. With respect to rational functions, a function f only has vertical asymptotes if the
roots of the denominator are not shared with those of the numerator or if the multiplicity
of any shared roots is larger in the denominator.

Consider the rational function f : R \ {−4, 1, 7} → R : x 7→ f(x) = −x2+10x−21
x4−11x3+3x2+203x−196

.

If we factor the polynomial in the numerator and the denominator, the function f obtains
the following form:

f(x) =
−x2 + 10x− 21

x4 − 11x3 + 3x2 + 203x− 196
=

(x− 7)(3− x)

(x+ 4)(x− 7)2(x− 1)
=

(3− x)

(x+ 4)(x− 7)(x− 1)

We find that lim
x→−4
<

f(x) = −∞, lim
x→−4
>

f(x) = +∞, lim
x→7
<

f(x) = +∞, lim
x→7
>

f(x) = −∞,

lim
x→1
<

f(x) = +∞, and lim
x→1
>

f(x) = −∞.

As a result, the function f has three vertical asymptotes, i.e., x = −4, x = 1, and x = 7,
which are shown in Fig. 7.14.

Figure 7.14: An example of a rational function with three vertical asymptotes

7.3.3 Oblique Asymptotes

An oblique or slant asymptote of a function f is represented by the line y = ax+ b (with
a 6= 0) if lim

x→±∞
[f(x)− (ax+ b)] = 0.
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In the case of rational functions, a function f has an oblique asymptote if the degree of the
numerator is equal to n+ 1 (with n ∈ N), given a degree n of the denominator.

To determine the equation of the oblique asymptote, we can follow two different procedures.

The first procedure consists of first checking whether the limit lim
x→±∞

f(x)
x

is equal to a

non-zero real number. If so, we set that number equal to a and calculate the limit b =
lim

x→±∞
[f(x)− ax]. The equation of the oblique asymptote is then equal to y = ax+ b.

The second procedure is only valid for rational functions. If we apply polynomial long
division to the given fraction of the function (see section 2.3.2), the equation of the oblique
asymptote is equal to the quotient.

Let us consider two examples to demonstrate both procedures. In a first example, we are

given the function f : R \ {−2
√

2, 2
√

2} → R : x 7→ f(x) = −3x3+4x2−5x+1
x2−8

. If we perform
long division, we find that:

p(x) = q(x) · s(x) + r(x) ⇔ −3x3 + 4x2 − 5x+ 1 =
(
x2 − 8

)
(−3x+ 4) + (−29x+ 33)

Since the quotient q(x) is equal to q(x) = −3x+ 4, the equation of the oblique asymptote is
equal to y = −3x+ 4.

As a second example, we consider the function f : R\ ]-
√

5,
√

5[→ R : x 7→ f(x) =√
6
5

(x2 − 5). We first calculate the coefficient a:

a = lim
x→+∞

f(x)

x
= lim

x→+∞

√
6
5

(x2 − 5)

x
= lim

x→+∞

√
6

5

(
1− 5

x2

)
=

√
6

5

In a next step, we calculate the following limit to obtain the coefficient b:

b = lim
x→+∞

[f(x)− ax] = lim
x→+∞

[√
6

5
(x2 − 5)−

√
6

5
· x

]

=

√
6

5
· lim
x→+∞

[√
(x2 − 5)− x

]

=

√
6

5
· lim
x→+∞

[(√
(x2 − 5)− x

)
·

(√
(x2 − 5) + x√
(x2 − 5) + x

)]

=

√
6

5
· lim
x→+∞

[
−5√

(x2 − 5) + x

]

=

√
6

5
·

[
−5√

((+∞)2 − 5) + (+∞)

]

= 0
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If x → +∞, the equation of the oblique asymptote is equal to y = ax + b =
√

6
5
· x. If we

perform a similar calculation for x→ −∞, we find another oblique asymptote with equation

y = −
√

6
5
· x.

Figure 7.15: Two examples of a function with oblique asymptotes

7.4 Continuity

Consider the function f : A ⊂ R → R and the limit lim
x→a

f(x) with a ∈ A. The function f

is continuous in the point a if the following three conditions are met:

1. The function f is well-defined in the point a

2. The limit lim
x→a

f(x) exists

3. The limit lim
x→a

f(x) is equal to the function value of a, i.e., lim
x→a

f(x) = f(a)

In mathematical language, the condition of continuity of f in the point a is expressed as
follows:

f is continuous in a ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : x ∈ ]a− δ, a+ δ[⇒ |f(x)− f(a)| < ε

The function f is continuous if f is continuous in every point a ∈ A. The function f is
discontinuous if f is not continuous in at least one point a ∈ A.

As an example, consider the piecewise function f :
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f : R→ R : x 7→ f(x) =


sin(5x+ 2)

x
if x 6= 0

0 if x = 0

Even though the function is well-defined in the point x = 0, the function is not continuous in
x = 0 because the limit lim

x→0
f(x) does not exist, since lim

x→0
<

f(x) = −∞ and lim
x→0
>

f(x) = +∞.

Another example is the below piecewise function g:

g : R+
0 → R+ : x 7→ g(x) =


∣∣∣∣ lnx

x− 1

∣∣∣∣ if x 6= 1

1 if x = 1

Given that the function g is well-defined in x = 1, that the limit lim
x→1

g(x) exists, and that

lim
x→1

g(x) = 1 = g(1) (the left-hand and right-hand limit are calculated with the assistance of

the L’Hôpital Rule; see section 7.5.2), we can conclude that g is continuous in x = 1.

Figure 7.16: Functions and continuity

The definition of a function f being continuous in a point a can also be expressed in terms
of left-continuity and right-continuity, which are defined as follows:

• f is left-continuous in a ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : x ∈ ]a− δ, a] ⇒ |f(x)− f(a)| < ε

• f is right-continuous in a ⇔ ∀ε > 0,∃δ > 0,∀x ∈ A : x ∈ [a, a+δ[⇒ |f(x)−f(a)| < ε

A function f is then continuous in a point a, if f is both left-continuous and right-continuous
in a, i.e., lim

x→a
<

f(x) = lim
x→a
>

f(x) = f(a).
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A function f is continuous over the closed interval [a, b] if f is continuous in each point
of the open interval ]a, b[, right-continuous in a, and left-continuous in b.

As an example, suppose we wish to examine the continuity over the closed interval [3, 6] of
the below piecewise function f :

f : R→ [1,+∞[ : x 7→ f(x) =


0.3(x− 3)2 + 2 if x < 3

x− 2 if 3 ≤ x < 6

4e2(x−6) if x ≤ 6

Over the open interval ]3, 6[, the function f represents the straight line y = x− 2, which is
continuous in every point of that open interval. The function f is right-continuous in a = 3,
if lim
x→3
>

(x− 2) = f(3). This is indeed the case given that lim
x→3
>

(x− 2) = 1 = f(3) = 3− 2. The

function f is also left-continuous in a = 6, because lim
x→6
<

(x− 2) = 4 = f(6) = 4e2(6−6).

If f and g are continuous functions in point a, and k ∈ R, the scalar product k · f , the
sum f + g, the product f · g, and the absolute value |f | are also continuous functions in

a. If g(a) 6= 0, we have that the quotient
f
g

is equally continuous in a. In case that g is

continuous in f(a), we find that the composite function g ◦ f is also continuous in a.

Consider as an example the function g : R→ [−1,+∞[ : x 7→ g(x) = x2 − 1 and the below
piecewise function f :

f : R→ R : x 7→ f(x) =


√
x2 + x− 2 if x /∈ ]− 2, 1[

0 if x ∈ ]− 2, 1[

Given that f is continuous in x = 1 and that g is continuous in f(1) = 0, we know that g ◦ f
is continuous in x = 1, whereby g ◦ f is defined as follows:

g ◦ f : R→ [−1,+∞[ : x 7→ g(f(x)) =

{
x2 + x− 3 if x /∈ ]− 2, 1[

− 1 if x ∈ ]− 2, 1[

Finally, a theorem with respect to composite functions states that if lim
x→a

f(x) = L

and the function g is continuous in L, we can write the following:

lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)

= g(L)

If we take the previous example, we find that lim
x→3

f(x) =
√

10 and that g is continuous in

x =
√

10. Therefore, we can write that lim
x→3

g(f(x)) = 9 = g(
√

10).
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7.5 Differential Calculus

7.5.1 Derivatives and Differentials

Consider the function f that is well-defined around the point x = a. If we now take the point
x = a + h in the near vicinity of x = a, the straight line through the points ~a = (a, f(a))

and ~b = (a+ h, f(a+ h)) represents approximately the graph of f around point x = a. The
equation of this straight line is equal to:

y =

[
f(a+ h)− f(a)

(a+ h)− a

]
(x− a) + f(a) =

[
f(a+ h)− f(a)

h

]
(x− a) + f(a)

=
∆y

∆x
(x− a) + f(a)

The slope
∆y
∆x

of the straight line is called the difference quotient. If we now let ∆x = h
become infinitesimally small, we define the derivative of the function f at the point a ,
which is denoted by f ′(a), as:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

∆x→0

f(a+ ∆x)− f(a)

∆x
= lim

∆x→0

∆y

∆x

Figure 7.17: Graphic representation of the derivate and the differential

100



Mathematics Preparation Course Olivier Loose

We call the function f differentiable at point a , if the following limit exists and is finite,
i.e., the limit is equal to a real number:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
∈ R

A function is furthermore called differentiable if it is differentiable at every point of its
domain.

We define the differential of the function f at the point a as:

dy = f ′(a)∆x

The differential dy of f in point a can thus be interpreted as the total amount of change of
f given a certain change ∆x of the input variable x and the rate of change f ′(a), which is
defined as the derivative of f in a.

If we consider the function f : R → R : x 7→ f(x) = x, we find that dy = d(x) = 1 · ∆x,
with f ′(a) = 1. Therefore, we can see that dx = ∆x and we can write the derivative of f in
point a as follows, which is known as the Leibniz notation:

f ′(a) =
dy

dx
=
df

dx
(a)

If a function f is differentiable in point a, it follows that f is continuous in a , as shown
below:

lim
x→a

[f(x)− f(a)] = lim
x→a

[
f(x)− f(a)

x− a
· (x− a)

]
= lim

x→a

[
f(x)− f(a)

x− a

]
· lim
x→a

(x− a)

= f ′(a) · lim
x→a

(x− a)

= 0

⇔ lim
x→a

f(x) = f(a)

We can also define the left-hand and right-hand derivative of f in point a , which are
denoted by f ′<(a) and f ′>(a), respectively:

f ′<(a) = lim
h→0
<

f(a+ h)− f(a)

h

f ′>(a) = lim
h→0
>

f(a+ h)− f(a)

h

If the left-hand derivative of the function f in point a is equal to the right-hand derivative,
we can conclude that f is differentiable in point a.
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Let us now calculate the derivative of some functions based on the limit definition of the
derivative. As a first example, consider the function f : R → [−1, 1] : x 7→ f(x) = cos(x).
To calculate its derivative, we will make use of the results of Example 1 of section 7.2.3,
i.e., lim

x→0

sinx
x

= 1, and the trigonometric formulas cos(2x) = 1 − 2 sin2 x and cos(a + b) =

cos(a) cos(b)− sin(a) sin(b) from section 5.3:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

cos(x+ h)− cos(x)

h

= lim
h→0

(cos(x) cos(h)− sin(x) sin(h))− cos(x)

h

= lim
h→0

cos(x)

(
cos(h)− 1

h

)
− lim

h→0
sin(x)

sin(h)

h

= cos(x) · lim
h→0

(
−

sin2(h
2

)
h
2

)
− sin(x) · lim

h→0

sin(h)

h

= cos(x) ·
(
− lim

h→0
sin

(
h

2

))
·

(
lim
h→0

sin(h
2

)
h
2

)
− sin(x) · lim

h→0

sin(h)

h

= cos(x) · (−0) · (1)− sin(x) · 1

= − sin(x)

A second example is the function f : R \ {−1} → R : x 7→ f(x) =
√
x2+1
x+1

. We calculate its
derivative as follows:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

[√
(x+ h)2 + 1

h(x+ h+ 1)
−
√
x2 + 1

h(x+ 1)

]

= lim
h→0

(x+ 1)
√

(x+ h)2 + 1− (x+ h+ 1)
√
x2 + 1

h(x+ 1)(x+ h+ 1)

= lim
h→0

(x+ 1)
[√

(x+ h)2 + 1−
√
x2 + 1

]
− h
√
x2 + 1

h(x+ 1)(x+ h+ 1)

= lim
h→0

√
(x+ h)2 + 1−

√
x2 + 1

h(x+ h+ 1)
− lim

h→0

√
x2 + 1

(x+ 1)(x+ h+ 1)

= lim
h→0

[(√
(x+ h)2 + 1−

√
x2 + 1

h(x+ h+ 1)

)
·

(√
(x+ h)2 + 1 +

√
x2 + 1√

(x+ h)2 + 1 +
√
x2 + 1

)]
−
√
x2 + 1

(x+ 1)2
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= lim
h→0

2x+ h

(x+ h+ 1)
(√

(x+ h)2 + 1 +
√
x2 + 1

) − √x2 + 1

(x+ 1)2

=
x

(x+ 1)
√
x2 + 1

−
√
x2 + 1

(x+ 1)2

=
x− 1

(x+ 1)2
√
x2 + 1

If we perform the same procedure as above for the most common functions, we obtain
the list as shown in Fig. 7.18. Note hereby that c, k, a ∈ R, with a > 0 and a 6= 1. Assume
furthermore that each function is well-defined in x.

Figure 7.18: Common derivatives
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7.5.2 Calculation Rules and Applications

If we define two functions f : A ⊂ R → B ⊂ R : x 7→ f(x) and g : C ⊂ R → D ⊂ R :
x 7→ g(x) that are differentiable in a point a ∈ R, Fig. 7.19 shows how to calculate the
derivative of a linear combination, of a product, of a quotient, of a composite function, and
of an inverse function.

Note that α, β ∈ R. With respect to the derivative of a quotient, we need g(a) 6= 0. Re-
garding the composite function, an extra condition applies: g must be differentiable in f(a).
Finally, when it comes to the derivative of an inverse function f , we need f to be invertible
(see section 7.6.7), continuous over A, differentiable in f−1(b) = a ∈ A, and f ′(a) 6= 0.

Figure 7.19: Basic operations with derivatives

The calculation rule to determine the derivative of the product of two functions is also known
as the chain rule.

We can express the above rules also in terms of differentials, whereby we use z = g(f(x))
and y = f(x) for the derivative of the composite function and x = f−1(y) for the inverse
function:

• d(αf + βg) = αdf + βdg

• d(fg) = df · g + f · dg

• d
(
f
g

)
=
df ·g−f ·dg

g2

• dz =
dz
dy
dy =

dz
dy

dy
dx
dx

• dx =
1
dy
dx

dy

Let us look at four examples. Consider the function f : R+\{
(π

2
+ kπ

)2} → R : x 7→ f(x) =

5x sec (
√
x), with k ∈ R. The derivative of f is calculated as follows:

f ′(x) =
(
5x sec

(√
x
))′

= (5x)′ · sec
(√

x
)

+ 5x ·
(
sec
(√

x
))′

= [5x ln(5)] sec
(√

x
)

+ 5x ·
[
tan
(√

x
)

sec
(√

x
)
· 1

2
√
x

]

= 5x sec
(√

x
) [

ln(5) +
tan (
√
x)

2
√
x

]
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In a second example, we will use the rule for inverse functions to calculate the derivative
of the function f : ]-∞,-1] ∪ [1,+∞[→ [-π

2
, π

2
] \ {0} : x 7→ f(x) = arccsc(x). Given that

y = arccsc(x) ⇔ x = csc(y) and that cot(x) =
√

csc2(x)− 1 (see section 5.3), we can write:

f ′(x) =
1

(csc)′ (arccsc(x))
=

1

− cot (arccsc(x)) csc (arccsc(x))

=
1

−
(√

csc2 (arccsc(x))− 1
)

csc (arccsc(x))

=
−1

x
√
x2 − 1

A third example is the function f : R+
0 → R : x 7→ f(x) = xx, whose derivative is equal to:

f ′(x) =
(
xx
)′

=
(
eln(xx)

)′
=
(
ex lnx

)′
= ex ln(x) · (x lnx)′

= xx ·
(

1 · lnx+ x · 1
x

)
= xx · (lnx+ 1)

As a final example, consider the function f : ]kπ, π
2

+ kπ[→ R : x 7→ f(x) =
log7(sin(2x))

sec(2x)
,

with k ∈ Z. Its derivative is calculated as follows:

f ′(x) =

(
log7 (sin(2x))

sec(2x)

)′
=

2 cos(2x)
sin(2x) ln(7)

· sec(2x)− log7 (sin(2x)) · tan(2x) sec(2x) · 2

sec2(2x)

=
2 cot(2x) cos(2x)− 2 ln (sin(2x)) sin(2x)

ln(7)

=
2

ln(7)
[cot(2x) cos(2x)− ln (sin(2x)) sin(2x)]

If f : ]x0, x1[⊂ R → R : x 7→ y = f(x) is differentiable over ]x0, x1[ and f ′(x) is again dif-
ferentiable, we can formulate the second differential, which is denoted by d2y, as follows,
bearing hereby in mind that we take the change in the variable x, i.e., dx = ∆x, to be
constant at every differentiation step:

d2y = d(dy) = d (f ′(x)dx) = (f ′(x)dx)
′
dx = (f ′′(x)dx+ f ′(x)d(dx)) dx

= (f ′′(x)dx+ f ′(x) · 0) dx

= f ′′(x)dx2
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The expression f ′′(x) is called the second derivative and takes the following form:

f ′′(x) =
d2y

dx2
=
d2f

dx2
(x)

Take, for instance, the function f : [−1, 1] → R : x 7→ f(x) =
√

1− x2. The first derivative
is equal to:

f ′(x) =
(√

1− x2
)′

=
−x√
1− x2

The function f ′ : ]-1, 1[→ R : x 7→ f ′(x) is differentiable in every point of the interval ]-1, 1[
(you can verify this with the help of the limit definition of the derivative) so that the second
derivative becomes:

f ′′(x) =

(
−x√
1− x2

)′
=
−
√

1− x2 − (−x)(−2x)

2
√

1−x2

(1− x2)
=

−1

(1− x2)
√

1− x2

Generally, the nth derivative of a function f exists if f is (n− 1) times differentiable. We
write the nth derivative as follows:

f (n)(x) =
d(n)y

dx(n)
=
d(n)f

dx(n)
(x)

If we wish to calculate the nth derivative of the product of two functions f and g, we can
use the Leibniz formula:

(f(x)g(x))(n) =
n∑
i=0

(
n

i

)
f (i)(x)g(n−i)(x) with

(
n

i

)
=

n!

i!(n− i)!

Let us for example calculate the third derivative of the product of the functions f : R+
0 →

R : x 7→ f(x) = log9(x) and g : R→ R+ : x 7→ g(x) = 9x:

(log9(x) · 9x)(3) =
3∑
i=0

(
3

i

)
(log9 x)(i) (9x)(3−i)

= 1 · log9 x · 9x (ln 9)3 + 3 · 1
x ln 9
· 9x (ln 9)2 + 3 · (−1)

x2 ln 9
· 9x ln 9 + 1 · 2

x3 ln 9
· 9x

= 9x
[
4 (ln 3)2 lnx+

6 ln 3

x
− 3

x2
+

1

x3 ln 3

]

L’Hôpital’s rule is a useful tool that can be used when we encounter undefined expressions
during the calculation of limits (see section 7.2.2). If two functions f and g are differentiable
in a vicinity of a (but not necessarily at point a), and g′(x) 6= 0 in that interval, and if the

limit lim
x→a

f ′(x)
g′(x)

exists, we know that:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
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Consider, for example, the following function h for which we wish to examine the limit
lim
x→π

4

h(x):

h : R \ {−7π

4
+ 2kπ,−π

4
+ 2mπ} → R : x 7→ h(x) =

− cotx+ ex−
π
4

sin(2x)− 2 tanx+
√

2
2

cscx

whereby k,m ∈ Z and k 6= 1. Directly substituting π
4

for x in the limit produces the unde-

fined expression 0
0

. We find the limit by applying L’Hôpital’s rule:

lim
x→π

4

(
− cotx+ ex−

π
4

sin(2x)− 2 tanx+
√

2
2

cscx

)
= lim

x→π
4

(
csc2 x+ ex−

π
4

2 cos(2x)− 2 sec2 x−
√

2
2

cot(x) csc(x)

)

=
2 + 1

2 · 0− 2 · 2−
√

2
2
· 1 ·
√

2

= −3

5

Figure 7.20: The graphical representation of lim
x→π

4

h(x)

Finally, when solving limits, it can be useful to know that Euler’s number e = 2.718281828...
can be written as the following limit:

e = lim
x→±∞

(
1 +

1

x

)x
or e = lim

x→0
(1 + x)

1
x
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If we take, for instance, the following function f , for which we wish to calculate the limit
lim
x→1

f(x):

f : ]−∞, 2] \ {1} → R : x 7→ f(x) = (1 + ln 2− x ln 2)
1

1−x

If we make the substitution s = (1− x) ln 2, we solve the limit as follows:

lim
x→1

(1 + ln 2− x ln 2)
1

1−x = lim
s→0

(1 + s)
ln 2
s

=

(
lim
s→0

(1 + s)
1
s

)ln 2

= eln 2

= 2

7.5.3 Taylor’s Theorem

If p : R → R : x 7→ p(x) is a polynomial of degree n (see section 2.3), Taylor’s formula
rewrites p(x) in terms of derivatives in the following way:

p(x) =
n∑
i=0

p(i)(a)

i!
(x− a)i

whereby a ∈ R, p(i) represents the ith derivative of p(x), and i! = 1 · 2 · . . . · (i− 1) · i refers
to the factorial of i.

Based on Taylor’s formula, we can state Taylor’s theorem, which provides an approxi-
mation of a function f around a certain point a by expressing f as a polynomial and a
remainder term. Because a function is rewritten as a sum of many terms, applying Taylor’s
theorem is also referred to as a Taylor series expansion.

Taylor’s theorem says that if f is n times differentiable over an interval ]x0, x1[, whereby
a, x ∈ ]x0, x1[, there exists a real number c ∈ ]a, x[ so that f can be written as:

f(x) =
n∑
i=0

f (i)(a)

i!
(x− a)i + rn(x) with rn(x) =

f (n+1)(c)

(n+ 1)!
(x− a)n+1

The remainder term rn(x) formulated in this way is known as the Lagrange form.

Consider for example the function f : R+ → R+ : x 7→ f(x) =
√
x. If we wish to write down

the Taylor series expansion of f for a = 8, we obtain:

f(x) =
√
x =
√

8 +
1

2
√

8
(x− 8)− 1

64
√

8
(x− 8)2 +

1

1024
√

8
(x− 8)3 + . . .+

[
(−1)n−1

2n

(
n∏
s=1

|2s− 3|

)
8−

(2n−1)
2

]
(x− 8)n

n!
+ rn(x)
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whereby
∏n

s=1 |2s− 3| = (|2 · 1− 3|) · (|2 · 2− 3|) · (|2 · 3− 3|) · . . . · (|2 · n− 3|) and n ≥ 1.
Fig. 7.21 shows how the 3rd-order Taylor polynomial (in green), which is represented by the
function g : R→ R, approximates the function f (in purple) around the point a = 8.

Figure 7.21: The 3rd-order Taylor expansion of the function f around a = 8

If a = 0 in Taylor’s series expansion, the expression of Taylor’s theorem is often referred to
as the Maclaurin formula, which is written as follows:

f(x) =
n∑
i=0

f (i)(0)

i!
xi + rn(x) with rn(x) =

f (n+1)(θx)

(n+ 1)!
xn+1 and 0 < θ < 1

Let us, for instance, write down the Maclaurin formula for the function f : R → R : x 7→
f(x) = cos (sin(x)) to the 4th order. We first calculate the first four derivatives of f in point
a = 0:

• f ′(x) =− sin (sin(x)) cos(x)

⇒ f ′(0) = 0

• f ′′(x) =− cos (sin(x)) cos2(x) + sin (sin(x)) sin(x)

⇒ f ′′(0) = −1

• f ′′′(x) = sin (sin(x)) cos(x)
[
cos2(x) + 1

]
+ 3 cos (sin(x)) sin(x) cos(x)

⇒ f ′′′(0) = 0

• f (4)(x) = cos (sin(x))
[
cos4(x) + cos2(x) + 3 cos(2x)

]
−

sin (sin(x)) sin(x)
[
6 cos2(x) + 1

]
⇒ f (4)(0) = 5
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The Maclaurin formula of the function f to the 4th order, whereby f(0) = cos (sin(0)) = 1,
is then equal to:

f(x) = cos (sin(x)) = 1− 1

2
x2 +

5

24
x4 +

f (6)(θx)

720
x6

Note that the remainder term is of order 6 and not 5, because the Taylor polynomial of this
particular function f contains only terms of even degrees. Fig. 7.22 demonstrates how the
Taylor polynomial (in green) approximates the function f (in purple) at the point a = 0.

Figure 7.22: The 4th-order Taylor expansion of the function f around a = 0

If the remainder term in Taylor’s theorem takes on the Liouville form instead of the
Lagrange form, rn(x) is expressed in the following manner:

f(x) =
n∑
i=0

f (i)(a)

i!
(x− a)i + rn(x) with rn(x) =

λ(x)

n!
(x− a)n and lim

x→a
λ(x) = 0

For example, consider the function f : R→ R+ : x 7→ f(x) = 52x. The Taylor expansion of
f at the point a = −1 with a Liouville remainder term has the following form:

f(x) = 52x =
1

25
+

2 ln 5

25
(x+ 1) +

2 (ln 5)2

25
(x+ 1)2 + . . .+

2n (ln 5)n

25 · n!
(x+ 1)n +

λ(x)

n!
(x+ 1)n

Fig. 7.23 shows how the 3rd-order Taylor polynomial (in green) approximates the function f
(in purple) at the point a = −1.
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Figure 7.23: The 3rd-order Taylor expansion of the function f around a = −1

Instead of using L’Hôpital’s rule to calculate limits of undefined expressions, we can also
rely on Taylor’s theorem (with a Liouville remainder). Consider, for example, the following
function f (see Fig. 7.24), whereby k ∈ Z:

f : R \ {−4 + 16k,−3

2
, 2, 4 + 16k} → R : x 7→ f(x) =

sin
(

3π
4
x
)

+ tan
(
π
8
x
)

e(x2−4) − e(
x
2
−1)

If we would like to find the limit lim
x→2

f(x), directly substituting 2 for x produces the undefined

expression 0
0

. Instead, we replace every term, both in the numerator and the denominator,

with its corresponding, say, 2nd-order Taylor polynomial expanded around the point a = 2.
The limit lim

x→2
f(x) is then found as follows:

lim
x→2

sin
(

3π
4
x
)

+ tan
(
π
8
x
)

e(x2−4) − e(
x
2
−1)

= lim
x→2

[
−1 + 9π2

32
(x− 2)2 + λ(x)

2
(x− 2)2

]
+
[
1 + π

4
(x− 2) + π2

32
(x− 2)2 + λ(x)

2
(x− 2)2

]
[
1 + 4(x− 2) + 9(x− 2)2 + λ(x)

2
(x− 2)2

]
−
[
1 + 1

2
(x− 2) + 1

8
(x− 2)2 + λ(x)

2
(x− 2)2

]
= lim

x→2

π
4
(x− 2) + 5π2

16
(x− 2)2 + λ(x)(x− 2)2

7
2
(x− 2) + 71

8
(x− 2)2

= lim
x→2

π
4

+ 5π2

16
(x− 2) + λ(x)(x− 2)
7
2

+ 71
8

(x− 2)

=
π

14

Fig. 7.24 depicts the function f , whereby we can see that f approaches the value of π
14

when
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x gets ever closer to x = 2.

Figure 7.24: The graphical representation of lim
x→2

f(x)

7.5.4 Extremum Points, Tangent Lines, and Inflection Points

Extremum points are points of a function f : A ⊂ R → R at which f attains a (local)
minimum or (local) maximum. If a ∈ A and we can identify an interval Oa =]a− δ, a + δ[,
we can say that, ∀x ∈ Oa:

{
if f(x) ≤ f(a) ⇒ f attains a (local) maximum in a

if f(x) ≥ f(a) ⇒ f attains a (local) minimum in a

Figure 7.25: The graph of f(x)

If f attains an extremum in point a and f is differen-
tiable in a, it follows that f ′(a) = 0. The points a for
which f ′(a) = 0 are called stationary points.

But the existence of stationary points does not nec-
essarily imply that these stationary points are ex-
tremum points. Consider, for example, the function
f : R→ R : x 7→ f(x) = 5(x− 1)5 + 1. We find that
f ′(x) = 25(x − 1)4, so that f ′(1) = 0, but Fig. 7.25
shows clearly that f does not attain an extremum in
the stationary point x = 1.

Therefore, we need the following condition to make
sure we are dealing with an extremum point.
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if

{
f ′(x) > 0 for x < a

f ′(x) < 0 for x > a
⇒ f attains a (local) maximum in a

if

{
f ′(x) < 0 for x < a

f ′(x) > 0 for x > a
⇒ f attains a (local) minimum in a

For the above example, we can see that the sign of f ′(x) does not change for any chosen
interval around the stationary point x = 1. For instance, for δ = 0.5, we find that f ′(0.5) =
f ′(1.5) = 1.5625 > 0, so that no extremum is found at x = 1.

From Fig. 7.17 (see section 7.5.1) we can see that the derivative of f in point a represents
the slope of the tangent, which is the line tangent to f at point a.

Since the derivative of f at an extremum point a is equal to zero, the tangent through a is a
horizontal line, i.e., its slope is zero. However, if the derivative of f at a certain point x = c
is equal to ±∞, the tangent is a vertical line. Moreover, from section 7.3.2 we know that if
lim
x→c

f ′(x) = ±∞, x = c represents a vertical asymptote of the function f ′(x).

As an example, let us consider the function f : R→ R : x 7→ f(x) = 3
√
−x3 + 6x2 − 11x+ 6,

whose graph is shown in orange in Fig. 7.26.

Figure 7.26: An example of horizontal and vertical tangent lines
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The derivative of f is equal to:

f ′(x) =
−3x2 + 12x− 11

3 3

√
(−x3 + 6x2 − 11x+ 6)2

The graph of f ′(x) is shown in green in Fig. 7.26. The polynomial in the numerator of f ′(x)

becomes zero if x = a1 = 2 +
√

3
3

or x = a2 = 2 −
√

3
3

. The corresponding function values
are y = b = 0.727 and y = −b = −0.727.

If we choose δ = 0.1, we find that f ′(a1 − 0.1) > 0 and f ′(a1 + 0.1) < 0, so that the point
~a1 = (a1, b) corresponds with a local maximum. Similarly, we find that f ′(a2 − 0.1) < 0 and
f ′(a2 + 0.1) > 0, so that ~a2 = (a2,−b) represents a local minimum.

The horizontal orange lines y = b and y = −b in Fig. 7.26 are the tangents of f at the
extremum points ~a1 and ~a2, respectively.

The function f is not differentiable at the points x = 1, x = 2, and x = 3. This means
that at these points the function f ′(x) has vertical asymptotes (the blue dashed lines in
Fig. 7.26), which at the same time represent vertical tangents of the function f(x).

In a second example, we will address a different kind of problem. Given is the function

f : R \ {4} → R : x 7→ f(x) = x2−3
x+4

and we wish to find the equation of the line(s) tangent

to f and going through the external point ~x = (−12,−5).

If we define the point ~x0 = (x0, y0) as the point at which the line is tangent to f , we know
that ~x0 belongs to f , so that we can write:

y0 =
x2

0 − 3

x0 + 4

Next, we calculate the derivative of f :

f ′(x) =
2x(x+ 4)− (x2 − 3)(1)

(x+ 4)2
=
x2 + 8x+ 3

(x+ 4)2

The slope of f at x = x0 is then equal to f ′(x0) =
x20+8x0+3

(x0+4)2
. By writing down the equation

of the tangent with slope f ′(x0) and going through the point ~x = (−12,−5), we find the
value(s) of x0:

y − y0 = f ′(x0)(x− x0) ⇔ (−5)−
(
x2

0 − 3

x0 + 4

)
=

[
x2

0 + 8x0 + 3

(x0 + 4)2

]
(−12− x0)

⇔ − 5(x0 + 4)2 − (x2
0 − 3)(x0 + 4) = (x2

0 + 8x0 + 3)(−12− x0)

⇔ 11x2
0 + 62x0 − 32 = 0

The solutions to this quadratic equation are x01 = −31+
√

1313
11

and x02 = −31−
√

1313
11

. We
therefore have two tangents L1 and L2 with a slope equal to f ′(x01) = 0.351 and f ′(x02) =
−1.914, respectively.
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In a final step, we construct the equation of the tangents L1 and L2: L1 : y+5 = 0.351(x+12)
and L2 : y+ 5 = −1.914(x+ 12). Fig. 7.27 depicts the graph of f(x) (in blue) as well as the
two tangents (in green).

Figure 7.27: Drawing tangents from an external point

Consider the interval A = ]x1, x2[ . We call a function f strictly increasing (strictly
decreasing) over A if f ′(x) > 0 (f ′(x) < 0) for every point x ∈ A.

If f ′(x) is strictly increasing over A, i.e., ∀x ∈ A : f ′′(x) > 0, we call the function f convex.
Similarly, if f ′(x) is strictly decreasing over A, i.e., ∀x ∈ A : f ′′(x) < 0, we call the function
f concave.

An inflection point xi of a function f is a point that satisfies two conditions:

• f either is differentiable in xi or possesses a vertical tangent ( lim
x→xi

f ′(x) = ±∞)

• f is convex (concave) to the left of xi and concave (convex) to the right of xi

If xi is an inflection point, it follows that f ′′(xi) = 0. However, f ′′(a) = 0 does not necessarily
imply that a is an inflection point.

For example, consider the function f : R \ {0} → R : x 7→ f(x) =
6(x+1)6

x4
− 1. The second

derivative of f is equal to

f ′′(x) =
12(x+ 1)4

x6
(x2 − 4x+ 10)

Even though f ′′(−1) = 0, x = −1 is not an inflection point, since f ′′(x) > 0 for both x < −1
and x > −1, which contradicts the definition.
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Fig. 7.28 shows the graph of both f(x) (in red) and f ′′(x) (in blue), whereby ~a = (−1,−1)

and ~b = (−1, 0).

Figure 7.28: The graph of f(x) and f ′′(x)

Note furthermore that if lim
x→a
<

f ′(x) = +∞ and lim
x→a
>

f ′(x) = −∞, or vice versa, the function

f ′(x) displays a vertical asymptote x = a and the vertical line in the graph of the function
f(x) is referred to as a vertical cusp (and not a vertical tangent).

Let us consider the function f : R→ R : x 7→ f(x) = (x+6) 3
√

(x2 − 1)2. Its first and second
derivative are equal to:

f ′(x) =
7x2 + 24x− 3

3 3
√
x2 − 1

and f ′′(x) =
4(7x3 + 6x2 − 9x− 18)

9(x2 − 1) 3
√
x2 − 1

Given that lim
x→−1
<

f ′(x) = −∞ and lim
x→−1
>

f ′(x) = +∞ and also that lim
x→1
<

f ′(x) = −∞ and

lim
x→1
>

f ′(x) = +∞, we find that x = −1 and x = 1 represent vertical cusps in the graph of f

(the green dashed lines in Fig. 7.29).

Moreover, the function f has an inflection point at ~x = (1.392, 7.088) because f is differen-
tiable at x = 1.392 and because f is concave to the left (f ′′(x) < 0) and convex to the right
(f ′′(x) > 0) of this point. We have found this point by setting f ′′(x) = 0.
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Figure 7.29: Vertical cusps and an inflection point

7.6 Different Types of Functions

7.6.1 Zero-Degree Polynomial Functions

Figure 7.30: A graphical representation
of the function f(x) = 4

A zero-degree polynomial function is an even
function with the general form f(x) = a whereby a
represents any real number. Graphically, this func-
tion corresponds to a horizontal line that intersects
the vertical axis at the point a.

The root of such function is equal to all real numbers
if a = 0. In the case that a 6= 0, the function has no
roots as it does not intersect the horizontal axis.

Fig. 7.30 demonstrates the example of f(x) = 4.
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7.6.2 First-Degree Polynomial Functions

A first-degree polynomial function has the general form f(x) = a x + b (with a and b
real numbers and a 6= 0) and is graphically displayed as a non-vertical straight line. The
coefficient a is called the gradient or slope and b the intercept. The gradient measures
the rate of change of the function f and is calculated by taking the derivative of f . The
intercept indicates at what value the function f intersects the vertical coordinate axis x = 0.

Let us consider two examples (see Fig. 7.31). In a first example, we look at the polynomial
function f(t) = v(t) = 0.78 t+0.5, whereby v(t) represents the speed of an object (in m · s−1)
and t the time variable. The slope and the intercept are equal to a = 0.78 and b = 0.5,
respectively.

In a speed-time graph, the slope of the function reflects the acceleration ac of the object,
so that in our example the object is accelerating at a constant rate of ac = a = 0.78
m · s−2. At for instance t = 10 s, the speed equals v = 0.78 t + 0.5 = 0.78 · 10 + 0.5 = 8.3
m · s−1. The area S under the graph and above the horizontal time axis, constrained by
the time interval [0, 10], represents the total distance d covered by the object. That is,
S = d = 1

2
(v − 0.5) t+ 0.5 t = 1

2
· (8.3− 0.5) · 10 + 0.5 · 10 = 44 m.

As a second example, we take Hooke’s Law, which describes the amount of force F that
is required to compress or extend a spring over a displacement ∆x. This physical law is
represented by the polynomial function f(x) = F (x) = k∆x, whereby the slope a = k
reflects the stiffness of the spring. Since the intercept b is equal to zero, we know that the
straight line passes through the origin of our coordinate system.

To extend the spring by a distance of, for instance, ∆x = 0.35 m—and assuming a spring
constant of k = 12.3 N ·m−1—we need to apply a force of F = k∆x = 12.3 · 0.35 = 4.3 N.
In a graph that displays Hooke’s Law, the area under the graph represents the work done by
the force F . In our example, the work done by F is equal to A = 1

2
F ∆x = 1

2
(k∆x) ∆x =

1
2

(12.3 · 0.35) · 0.35 = 0.75 N ·m. (Note that we have neglected the vector notation of the
force F ).

Figure 7.31: Two examples of a first-degree polynomial function
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The root of a first-degree polynomial function f(x) = a x + b can be found by solving the
equation f(x) = 0. The general answer is equal to x = − b

a
. For instance, the root of the

above equation v(t) = 0.78 t+ 0.5 is calculated as t = − b
a

= − 0.5
0.78

= −0.64 s.

7.6.3 Quadratic Functions

A second-degree polynomial function a.k.a. a quadratic function can be generally
written as f(x) = a x2 + b x + c (with a, b, and c real numbers and a 6= 0), whereby the
corresponding graph has the form of a parabola. If a > 0 (a < 0), the parabola will be
open upwards (downwards).

If we wish to identify the roots of a quadratic function, it is easier if we first factor the
polynomial function (see Section 2.3.3). For instance, factoring the quadratic function f(x) =
6x2− 5x− 6 results in the altered form f(x) = (2 x− 3)(3x+ 2), so that the roots are equal
to x = 3

2
and x = −2

3
.

To construct the tangent of the quadratic function at a certain point (x1, y1), we first
calculate the gradient by taking the derivative f ′(x) of the function. In the general case,
we find that f ′(x) = 2a x + b. The slope of the tangent at that point is then equal to
f ′(x1) = 2a x1 + b. The equation of the tangent yt can then be written as yt − y1 =
f ′(x1)(x− x1) ⇔ yt = (2a x1 + b)(x− x1) + y1.

Figure 7.32: A graphical representation of
the function f(x) = 6x2 −
5x− 6

To continue with our previous example, the gradient
is equal to f ′(x) = 12x − 5 and the slope of the
tangent at the point (0, −6) is calculated as f ′(0) =
−5. As a result, the equation of the tangent yt has
the form yt− (−6) = (−5)(x−0) ⇔ yt = −5x−6.

The tangent at the top or bottom point of the
parabola is a horizontal line, which has a slope equal
to zero. Therefore, the corresponding x-coordinate
is calculated as f ′(x) = 0 = 2a x + b ⇔ x = − b

2a
.

Inserting this value for x in the general form of the
quadratic function gives us the y-coordinate y =
c− b2

4a
.

In the above example, a = 6 > 0 which means that
the parabola is open upwards. We then know that
the parabola has a bottom point, which is located
at the position

(
5
12
, −169

24

)
.

The shape and the position of the parabola can be altered in various ways. To move
the parabola horizontally, the argument x must be replaced by the argument x + h with h
any real number, whereby the parabola shifts to the right (left) if h < 0 (h > 0). To change
its location in the vertical direction, the function’s intercept c has to be substituted by c+ v
with v any real number. The parabola moves upwards if v > 0 and downwards if v < 0.
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To modify the parabola’s width, we have to multiply the argument x with a real number s.
To obtain a narrower parabola, s has to satisfy the inequality s > 1, whereas the parabola
grows wider if 0 < s < 1. If we wish to flip the parabola upside down, we change f(x) into
−f(x), which is called a reflection of the function f over the x-axis.

As an example, Fig. 7.33 showcases different changes in the shape and position of the poly-
nomial function f(x) = 3 x2 − 4x+ 1.

Figure 7.33: Modifications of the shape and position of the quadratic function f(x) = 3x2−4x+1

7.6.4 Higher-Degree Polynomial Functions

An nth-degree polynomial function is a polynomial function whereby the highest power
of the unknown variable is equal to n.

A polynomial function of degree n has a maximum of n roots and if n is an odd real number,
the function has at least one root.

Fig. 7.34 shows the graph of two higher-degree polynomial functions. The one on the left is
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a fifth-degree polynomial function and has 3 roots, whereas the function on the right is a
fourth-degree polynomial function with 4 roots.

Figure 7.34: A graphical representation of the function f(x) = −0.5x5+2x2+x−2 (left) and the function
f(x) = 2x4 + x3 − 10x2 + 6x+ 1 (right)

7.6.5 Rational and Irrational Functions

A rational function is a real function of the general form f(x) = p(x)
q(x)

, whereby p(x) and

q(x) are polynomial functions. The domain of a rational function is defined as the set of real
numbers excluding the roots of the function q(x).

Figure 7.35: A graphical representation of two rational functions
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Fig. 7.35 represents two rational functions. On the left, we have the rational function f(x) =
x+2

(x+1.5)(x−1)
, which has the domain R \ {−1.5, 1} and a root equal to x = −2. The two

vertical asymptotes are equal to x = −1.5 and x = 1. On the right, the rational function

f(x) = x2−1
x3−x+6

has the domain R \ {−2} and two roots equal to x = −1 and x = 1. The
function has one vertical asymptote x = −2.

An irrational function is generally referred to as a function whereby the power of the
variable in at least one term is a rational number. In other words, an irrational function
contains at least one square root, cube root, fourth root, etc., of the variable.

Fig. 7.36 shows two examples of irrational functions. On the left, we have the function
f : R → R : x 7→ f(x) = (x2 − 1)x

3
5 = (x2 − 1)

5
√
x3 and on the right the function

g : R→ R : x 7→ g(x) = (3x)
3
√
x2.

Figure 7.36: A graphical representation of two irrational functions

7.6.6 Exponential and Logarithmic Functions

The exponential function is defined as f : R→ R+
0 : x 7→ f(x) = ax and the logarithmic

function as f : R+
0 → R : x 7→ f(x) = loga x, whereby a > 0 and a 6= 1.

If a is equal to Euler’s number e = 2.71828..., then loge x is called the natural logarithm
and written as loge x = lnx.

All exponential functions pass through the point (0, 1) and have no roots. Neither do they
possess any extremum points. Also, they all share y = 0 as a horizontal asymptote.

Similarly, all logarithmic functions go through the point (1, 0) and x = 1 is their only root.
As with the exponential functions, they do not have any extremum points. The logarithmic
functions all have x = 0 as a vertical asymptote.
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Figure 7.37: A graphical representation of different exponential and logarithmic functions

7.6.7 Inverse Functions

Let us consider the function f : A → B : x 7→ f(x) = y. If the element y ∈ B is the
function value of just one element x ∈ A, then we can define the inverse function as
f−1 : B → A : y 7→ f−1(y) = x.

We can obtain the inverse function f−1 by switching the x and y coordinates of the original
function f , which corresponds graphically with a reflection of the function f around the
straight line y = x.

For instance, if we reverse the role of x and y of the function f : R→ R : x 7→ f(x) = x+ 5,
we obtain x = y+ 5 so that the inverse function becomes f−1 : R→ R : y 7→ f−1(y) = y+ 5.
In terms of the variable x, this can be written as y = x− 5.

Another example is the function f : R0 → R0 : x 7→ f(x) = 1
x
, which is its own inverse

function since switching the coordinates gives the same function.

As a third example, let us look at the function f : R+ → [2,+∞) : x 7→ f(x) = x2 + 2. The
inverse function (in terms of the variable x) is formulated as f−1 : [2,+∞) → R+ : x 7→
f−1(x) =

√
x− 2, because x = y2 + 2 when switching the roles of x and y in the original

function f .

Fig. 7.38 shows graphically how the inverse of the function f in each of our three examples is
obtained by reflecting the respective function around the bisector y = x of the first quadrant
(this line is represented by the grey dashed line).
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Figure 7.38: A graphical representation of different functions and their inverse

7.6.8 Goniometric and Cyclometric Functions

Fig. 7.39 lists the goniometric functions. The cosine and the secant are even functions
whereas the sine, the cosecant, the tangent, and the cotangent are odd functions. Note that
the argument of these functions is expressed in radians (2π rad = 360◦).

Figure 7.39: The goniometric functions

The roots of the sine and tangent function are equal to x = kπ, while those of the cosine
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and cotangent function are equal to x = π
2

+ kπ. The cosecant and secant function do not
have any roots.

Fig. 7.40 shows that these functions reflect a certain periodicity. The sine, cosine, secant,
and cosecant functions generate the same goniometric number for each time the argument
is increased (or decreased) by a multiple of 2π. In contrast, the tangent and cotangent
functions exhibit such periodicity when the argument is changed by a multiple of π. The
numbers 2π and π are referred to as the period of the respective functions. We can therefore
write (with k ∈ Z):



sin (x+ 2kπ) = sin x

csc (x+ 2kπ) = csc x

cos (x+ 2kπ) = cos x



sec (x+ 2kπ) = secx

tan (x+ kπ) = tan x

cot (x+ kπ) = cot x

Figure 7.40: The goniometric functions

Fig. 7.40 furthermore tells us that the secant and tangent function share the vertical asymp-
totes x = π

2
+ kπ, whereas the cosecant and the cotangent function have the same vertical

asymptotes x = kπ.

Finally, we can draw some conclusions about the extremum points. The cosine function
reaches a maximum in the points x = 2kπ and a minimum in the points x = π + 2kπ. The
sine function finds a maximum and minimum in the points x = π

2
+ 2kπ and x = −π

2
+ 2kπ,

respectively. Every maximum (minimum) of the cosine function corresponds with a minimum
(maximum) of the secant function. The same relationship exists for the sine and the cosecant
function.
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The cyclometric functions are defined as the inverse of the goniometric functions, pro-
vided that their domain and codomain are properly restricted. For instance, the inverse of
the secant function is written as sec−1 x = arcsecx. Fig. 7.41 provides the description of the
cyclometric functions with their appropriate domains and codomains, while Fig. 7.42 shows
their graphical representation. Note that only a certain section of the domain of the arc
cosecant and arc secant functions are displayed.

Figure 7.41: The cyclometric functions

Figure 7.42: The graphical representation of the cyclometric functions
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7.6.9 Hyperbolic Functions

The hyperbolic functions are similar to the trigonometric functions, but instead of be-
ing defined on the unit circle, the hyperbolic functions are defined on the right half of the
unit hyperbola with equation x2 − y2 = 1. While (cosx, sinx) describes the unit circle for
0 ≤ x < 2π, (coshx, sinhx) describes the right half of the unit hyperbola with cosh (sinh)
the hyperbolic cosine (sine) and x ∈ R. Note that x = 2A, with A the red area in Fig. 7.43.

Figure 7.43: The unit circle and the right half of the unit hyperbola

Fig. 7.44 lists the definitions of the six hyperbolic functions. Note that only the hyperbolic
cosine and secant functions are even functions, whereas the other remaining four functions
are odd functions. Their graph is shown in Fig. 7.46.

Figure 7.44: The six hyperbolic functions

If we appropriately restrict the domain of the hyperbolic functions, we can define the six
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inverse hyperbolic functions, which are listed in Fig. 7.45 and displayed in Fig. 7.46.

Figure 7.45: The six inverse hyperbolic functions

Figure 7.46: The graph of the six (inverse) hyperbolic functions
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Similar to the trigonometric formulas (see section 5.3), we can formulate various relation-
ships between the hyperbolic functions. To start with, the hyperbolic identity relation
is equal to cosh2x− sinh2x = 1. From there, we can derive two more relationships (whereby
sinhx 6= 0):

{
1− tanh2x = sech2x

coth2x− 1 = csch2x

The hyperbolic double-angle formulas are shown in Fig. 7.47.

Figure 7.47: Hyperbolic double-angle formulas

The hyperbolic Carnot’s formulas and the half-angle formulas are derived from the
double-angle formulas and are listed in Fig 7.48.

Figure 7.48: Hyperbolic half-angle formulas

The hyperbolic angle addition and subtraction formulas together with the hyper-
bolic Simpson’s formulas are given in below Fig. 7.49.
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Figure 7.49: Hyperbolic angle addition, angle subtraction and Simpson’s formulas

Finally, Fig. 7.50 lists the hyperbolic tangent half-angle substitution formulas.

Figure 7.50: The hyperbolic tangent half-angle substitution formulas
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7.7 Sequences and Series

7.7.1 Definitions

A sequence is a list of numbers that displays a particular pattern and whereby the order of
the numbers is important. The individual elements of a sequence are called terms and can
be either positive or negative. A sequence can furthermore be finite or infinite, ascending or
descending, or alternating with respect to the sign of the terms.

A sequence is denoted by (un) with un the nth term of the sequence. We will assume that
the position of the first term of a sequence corresponds to the number 1, so that n ∈ N0.

In the next few paragraphs, we will look at different kinds of sequences. Note that a sequence
does not necessarily have to belong to any of these categories.

• An arithmetic sequence is a sequence whereby the difference between two successive
terms is a constant called the common difference d. For instance, the infinite sequence
(un) = 3, 8, 13, 18, 23, ... has a common difference equal to d = 5.

• If the difference itself increases or decreases by a constant number with every suc-
cessive term, the sequence is called a quadratic sequence. This constant num-
ber is referred to as the second difference ds. For example, the descending sequence
(un) = 5, 2,−2,−7,−13,−20, ... has a second difference equal to ds = −1. The se-
quence of the differences between every two consecutive terms is therefore equal to
(un) = −3,−4,−5,−6,−7, ....

• A geometric sequence is a sequence whereby the ratio of a term to its preceding
term is a constant number, which is called the common ratio r. In other words, a
geometric sequence is a sequence whereby every term (except the first term) is formed
by multiplying the preceding term by a constant number. For instance, the alternating
sequence (un) = 6,−18, 54,−162, 486, ... has a common ration equal to r = −3.

• A harmonic sequence is a sequence whereby every term is formed by taking the
reciprocal of the corresponding term of an arithmetic sequence, as long as the num-
ber zero is not part of the arithmetic sequence. For example, given the arithmetic
sequence (un) = 1, 5, 9, 13, 17, ..., the corresponding harmonic sequence is equal to

(un) = 1, 1
5
, 1

9
, 1

13
, 1

17
, ... .

• A Fibonacci sequence is a sequence whereby every term (except the first two terms)
is made of the sum of the two preceding terms. An example of a Fibonacci sequence
is the sequence (un) = 1,−1, 0,−1,−1,−2,−3,−5, ... .

• A triangle number sequence is a sequence whereby every term is able to form an
equilateral triangle made out of dots, if the number of every term corresponds to the
number of dots. For instance, the sequence (un) = 1, 10, 28, 55, 91, ... is a triangle
number sequence and also happens to be a quadratic sequence with ds = 9.

• A square number sequence is a sequence whereby the number of dots represented
by the number of the term can be arranged to form a square. An example is the
sequence (un) = 1, 4, 16, 64, 256, ..., which also happens to be a geometric sequence.
Note that a square number sequence does not necessarily also have to be a quadratic
sequence, which is demonstrated by the example.
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• A cube number sequence is a sequence whereby the number of dots represented
by the number of the term can be arranged into the shape of a cube. The sequence
(un) = 1, 27, 125, 343, 729, ... is an example of a cube number sequence.

If we add together all the terms of a sequence, the resulting sum is called a series and is
denoted by

∑+∞
n=1 un, with un the nth term of the corresponding sequence. If we only wish

to calculate the sum of the first n terms of a sequence, we define the partial sum sn as
sn =

∑n
i=1 ui.

For example, the partial sum of the first seven terms of the Fibonacci sequence (un) =
−2, 3, 1, 4, 5, 9, 14, 23, ... is equal to

∑7
i=1 ui = −2 + 3 + 1 + 4 + 5 + 9 + 14 = 34.

As a second example, let us design a general formula for the arithmetic series with common
difference d = 1, i.e., the sum of the natural numbers. If we consider the first n terms, we
can write the partial sum sn as sn = 1 + 2 + 3 + . . .+ (n− 2) + (n− 1) + n. Reversing the
order of the elements, we can write sn also as sn = n+ (n− 1) + (n− 2) + . . .+ 3 + 2 + 1. If
we now add these two equations together, we obtain 2sn = (n+ 1) + (n+ 1) + (n+ 1) + . . .+

(n+ 1) + (n+ 1) + (n+ 1) = n(n+ 1), so that the partial sum sn is equal to sn =
n(n+1)

2
.

7.7.2 Explicit and Recursive Formulas of Sequences

In order to identify a random term of a given sequence, it is useful to formulate a general
expression for the nth term of the sequence. If the formula is written in terms of the position
n, it is called an explicit formula. If the formula is expressed by using only one or more
preceding terms, the formula is referred to as a recursive formula.

• For an arithmetic sequence, the formulas are equal to:{
Explicit formula: un = u1 + d(n− 1)

Recursive formula: un = un−1 + d with n ≥ 2

For example, if we know for a certain arithmetic sequence that u1 = −3 and d = 4,
the 12th term is then equal to u12 = −3 + 4(12− 1) = 41.

• In the case of a quadratic sequence, the formulas are the following, whereby the
coefficients a, b, and c can be found by solving the below set of three equations (note
that for the recursive formula n ≥ 3):

{
Explicit formula: un = an2 + bn+ c

Recursive formula: un = 2un−1 − un−2 + ds
with


u1 = a+ b+ c

u2 − u1 = 3a+ b

ds = 2a

Consider the sequence (un) = −4, 2, 12, 26, 44, ... . Given that the second difference is
equal to ds = 4, we find from the third equation that a = 2. The second equation
tells us that 6 = 3 · 2 + b ⇔ b = 0, and from the first equation we know that
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−4 = 2 + 0 + c ⇔ c = −6. The explicit formula is then equal to un = 2n2 − 6.

• For a geometric sequence, the explicit and recursive formulas are equal to:{
Explicit formula: un = u1 · rn−1

Recursive formula: un = un−1 · r with n ≥ 2

For instance, if we know that u3 = 6 and u6 = 162 for a given sequence, we can see
that u6 = 162 = u1r

5 = (u1r
2)r3 = u3r

3 = 6r3 ⇔ r = 3. We therefore find that

u3 = 6 = u1r
2 = u132 ⇔ u1 = 2

3
, so that the explicit formula reads un = 2 · 3n−2.

• If we are dealing with a harmonic sequence, the formulas are equal to:


Explicit formula: un =

1

u1 + d(n− 1)

Recursive formula: un =
un−1

1 + d · un−1

with n ≥ 2

Consider an arithmetic sequence with u1 = 3 and d = −2. The 5th term of the har-
monic sequence is than equal to u5 = 1

3+(−2)(5−1)
= −1

5
.

• In the case of a Fibonacci sequence, the formulas are the following, whereby a = u1

and b = u2:
Explicit formula: un =

(
b−a

2
+ 3a−b

2
√

5

)(
1+
√

5
2

)n
+
(
b−a

2
− 3a−b

2
√

5

)(
1−
√

5
2

)n
Recursive formula: un = un−1 + un−2 with n ≥ 3

If we know, for instance, that for a given sequence u3 = 21 and u8 = 128, we can
set u4 = c and use the recursive formula to find an expression for u8 in terms of c.
We find that u8 = 63 + 5c = 128 ⇔ c = 13. If we now set u2 = b, we have that
u2 + u3 = u4 ⇔ b + 21 = 13 ⇔ b = −8. By the same reasoning, we find that
u1 = a = 29. If we now wish to calculate the 14th term, we use the explicit formula
with n = 14, a = 29, and b = −8. We find that u14 = 2312.

• If a pattern can be identified in a triangle number sequence, the following formu-
las are in place, whereby s in the summation of the explicit formula depends on the
specific sequence (also note that the recursive formula is equal to that of the quadratic
sequence):Explicit formula: un =

s∑
k=1

k

Recursive formula: un = 2un−1 − un−2 + ds with n ≥ 3

Consider, for example, the triangle number sequence (un) = 3, 21, 55, 105, 171, 253... .
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We find that s = 4n− 2 in the explicit formula and that the second difference is equal
to ds = 16. If we wish to calculate u7, we can use the recursive formula, so that
u7 = 2u6 − u5 + ds = 2 · 253− 171 + 16 = 351. If we wish to calculate u22, we can use

the explicit formula, so that u22 =
∑4·22−2

k=1 k =
s(s+1)

2
=

86(86+1)
2

= 3741, whereby we
made use of the formula for the partial sum of the natural numbers (see section 7.7.1).

• For a square number sequence, the formulas are equal to:{
Explicit formula: un = (an+ b)2 with a, b ∈ Z
Recursive formula: un = 2un−1 − un−2 + 2a2 with n ≥ 3

For example, if u3 − u2 = 39 and u5 − u4 = 75 for a given sequence, we find that
u3− u2 = (3a+ b)2− (2a+ b)2 = 5a2 + 2ab = 39 and u5− u4 = (5a+ b)2− (4a+ b)2 =
9a2 + 2ab = 75. These two equations give us two solutions, i.e., a = −3 and b = 1 and
a = 3 and b = −1, which describe the same sequence. If we wish to calculate u7, we
find u7 = (−3 · 7 + 1)2 = (3 · 7− 1)2 = 400.

• Finally, in the case of a cube number sequence, the formulas are the following:{
Explicit formula: un = (an+ b)3 with a, b ∈ Z
Recursive formula: un = 3(un−1 − un−2) + un−3 + 6a3 with n ≥ 4

For instance, if u6−u5 = −296, u5−u4 = −152, and u4−u3 = −56 for a given sequence,
we find via the recursive formula u6 = 3(u5−u4)+u3+6a3 that a = −2. If we then take
the explicit formula to look at the difference u4−u3 = [(−2)·4+b]3−[(−2)·3+b]3 = −56,
we obtain two solutions: b = 4 and b = 10. Only b = 4 produces the given differences,
so that the explicit formula of this sequence is equal to un = (−2n+ 4)3.

7.7.3 Convergence and Divergence of Sequences

We might be interested to know whether a given sequence approaches a real number L when
we consider the nth term with n a large number. In other words, we wish to determine the
limit of the sequence when n goes to infinity. If the limit of a sequence approaches a real
number L, the sequence is said to be convergent, whereas it is called divergent if the limit
goes to infinity. In mathematical language, this becomes:



Convergent: lim
n→+∞

un = L ⇔ ∀ε > 0,∃N : n > N ⇒ |un − L| < ε

Divergent:

• lim
n→+∞

un = +∞ ⇔ ∀α ∈ R,∃N : n > N ⇒ un > α

• lim
n→+∞

un = −∞ ⇔ ∀α ∈ R, ∃N : n > N ⇒ un < α

Suppose we have two sequences (un) and (rn), whereby lim
n→+∞

un = L1 and lim
n→+∞

rn = L2.

We can then perform the following operations of sequences:
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• lim
n→+∞

(un + rn) = L1 + L2

• lim
n→+∞

(un · rn) = L1 · L2

• lim
n→+∞

|un| = |L1|

• lim
n→+∞

(
un
rn

)
=
L1

L2

whereby rn 6= 0 and L2 6= 0 in case of the quotient of un and rn. In case that L1 = L2 = L
and there exists a third sequence (wn) so that un ≤ wn ≤ rn, the squeeze theorem then
states that lim

n→+∞
wn = L.

Let us consider some examples.

• Example 1

Let us have a closer look at the Fibonacci sequence:

un =

(
b− a

2
+

3a− b
2
√

5

)(
1 +
√

5

2

)n

+

(
b− a

2
− 3a− b

2
√

5

)(
1−
√

5

2

)n

Since |1 −
√

5| < 2, we know that lim
n→+∞

(
1−
√

5
2

)n
= 0. Similarly, given that |1 +

√
5| > 2,

we find that lim
n→+∞

(
1+
√

5
2

)n
= +∞. This means that the Fibonacci sequence is always

divergent. Whether it diverges to +∞ or −∞ depends on the value of a = u1 and b = u2.

For instance, if a = 1
2

and b = −1
3

, we can see that
(
b−a

2
+ 3a−b

2
√

5

)
= 11−5

√
5

12
√

5
< 0, so that

the sequence is divergent to −∞.

• Example 2

Consider the sequence (un) with the following nth term:

un =
−n2 + 2n+ 5

(n− 1 +
√

6)(5n+ 3)

To understand the behaviour of the sequence when n grows very large, we calculate the limit:

lim
n→+∞

−n2 + 2n+ 5

(n− 1 +
√

6)(5n+ 3)
= lim

n→+∞

−(n− 1 +
√

6)(n− 1−
√

6)

(n− 1 +
√

6)(5n+ 3)

= lim
n→+∞

−(n− 1−
√

6)

5n+ 3

= lim
n→+∞

−(1− 1
n
−
√

6
n

)

5 + 3
n

= −1

5
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In other words, the sequence (un) =
√

6
8
, −1+

√
6

13
, −2+

√
6

18
, −3+

√
6

23
, . . . converges to the real

number −1
5

.

• Example 3

We wish to determine the limit of the sequence that consists of the product of the sequences
(un) and (rn), whereby (un) is defined in the above second example and the nth term of (rn)
is equal to:

rn =
10n2 + n− 3

(n− 1 +
√

6)(3n+ 5)

Let us first calculate the limit of (rn):

lim
n→+∞

10n2 + n− 3

(n− 1 +
√

6)(3n+ 5)
= lim

n→+∞

(5n+ 3)(2n− 1)

(n− 1 +
√

6)(3n+ 5)

= lim
n→+∞

(5 + 3
n
)(2− 1

n
)

(1− 1
n

+
√

6
n

)(3 + 5
n
)

=
10

3

The limit of the product of (un) and (rn) is then equal to lim
n→+∞

(un ·rn) =
(
−1

5

)(
10
3

)
= −2

3
.

• Example 4

Consider the following nth term of the sequence (un):

un =

(
sec

1√
n+ 2

)n
Taking the limit n → ∞ of un results in the undefined expression 1+∞. Let us rewrite un
and make the substitution r = 1√

n
:

lim
n→+∞

(
sec

1√
n+ 2

)n
= lim

n→+∞
e

ln
[(

sec 1√
n+2

)n]
= lim

n→+∞
e

ln

(
sec 1√

n+2

)
1
n = lim

r→0
e

ln

(
sec r√

1+2r2

)
r2

= e

 lim
r→0

ln

(
sec r√

1+2r2

)
r2



Let us now calculate the limit for which r → 0. Since directly substituting 0 for r in the
limit produces the undefined expression 0

0
, we Taylor expand the numerator of the quotient

around the point a = 0 to the second order (with a Liouville remainder term):

lim
r→0

ln
(

sec r√
1+2r2

)
r2

= lim
r→0

r2

2
+ λ(r)

2
r2

r2
= lim

r→0

1
2

+ λ(r)
2

1
=

1

2
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This means that the sequence (un) converges to the real number
√
e.

• Example 5

Consider the sequence (un) = 7
3
,
(

9
5

)2

,
(

11
7

)3

,
(

13
9

)4

, ... . The nth term is then equal to:

un =

(
2n+ 5

2n+ 1

)n
To determine the behaviour of the sequence for n→ +∞, we calculate its limit as follows:

lim
n→+∞

(
2n+ 5

2n+ 1

)n
= lim

n→+∞

(
1 +

4

2n+ 1

)n

= lim
s→+∞

(
1 +

1

s

)2s− 1
2

=

[
lim

s→+∞

(
1 +

1

s

)s ]2

· lim
s→+∞

(
1 +

1

s

)− 1
2

= e2

Note that in the second line, we introduced the substitution n = 4s−1
2

, and in the last line,
we used the expression for Euler’s number e in terms of limits as discussed in section 7.5.2.

7.7.4 Convergence and Divergence of Series

Given is the series
∑+∞

i=1 ui of the sequence (un). As the partial sum sn is defined as sn =∑n
i=1 ui, we can consider the sequence (sn) of the partial sums of the sequence (un). We say

that the series
∑+∞

i=1 ui is convergent if:

lim
n→+∞

sn = lim
n→+∞

n∑
i=1

ui = s ∈ R

The series is said to be divergent if lim
n→+∞

sn = ±∞ or if the sequence (sn) is alternating,

i.e., the plus and minus sign in the series alternate.

Let us consider two examples.

• Example 1

Consider the sequence (un) = 1
12
, 1

20
, 1

30
, 1

42
, 1

56
, ... . If we first look at the sequence of

the denominators, i.e., (un) = 12, 20, 30, 42, 56, ..., we see that it is a quadratic sequence
with a second difference equal to ds = 2. We therefore find that the nth term is equal to
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n2 + 5n + 6 = (n + 2)(n + 3), as discussed in section 7.7.2. We now want to examine the
following limit:

lim
n→+∞

sn = lim
n→+∞

n∑
i=1

1

(i+ 2)(i+ 3)

To find that limit, we first rewrite the partial sum sn as follows:

n∑
i=1

1

(i+ 2)(i+ 3)

=
n∑
i=1

(
1

i+ 2
− 1

i+ 3

)

=

(
1

3
− 1

4

)
+

(
1

4
− 1

5

)
+

(
1

5
− 1

6

)
+ . . .+

(
1

n+ 1
− 1

n+ 2

)
+

(
1

n+ 2
− 1

n+ 3

)

=
1

3
− 1

n+ 3

We can now calculate the limit:

lim
n→+∞

sn = lim
n→+∞

n∑
i=1

1

(i+ 2)(i+ 3)
= lim

n→+∞

(
1

3
− 1

n+ 3

)
=

1

3

The series
∑+∞

i=1 ui thus converges to the real number 1
3

.

• Example 2

Given is the sequence (un) = a, a2, a3, a4, ..., with a 6= 0 and a 6= 1, and we wish to examine
the behaviour of the series

∑+∞
i=1 a

i.

First, let us find an expression for the partial sum si =
∑i

k=1 a
k = a+ a2 + ...+ ai−1 + ai by

looking at the generalization of the special product (a3 − b3) = (a− b)(a2 + ab+ b2), which
we have studied in section 2.3.3 (see Fig. 2.5). In below step 2, we set b = 1, and in step 3,
we use the definition of the partial sum si:

ai+1 − bi+1 = (a− b)(ai + ai−1b+ ai−2b2 + . . .+ a2bi−2 + abi−1 + bi)

⇔ ai+1 − 1 = (a− 1)(ai + ai−1 + ai−2 + . . .+ a2 + a+ 1)

⇔ ai+1 − 1 = (a− 1)(si + 1)

⇔ si =
ai+1 − 1

a− 1
− 1

We now consider three separate cases: |a| < 1, a > 1, and a ≤ −1. If |a| < 1, we find that
the series

∑+∞
i=1 a

i is convergent:
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lim
i→+∞

si = lim
i→+∞

(
ai+1 − 1

a− 1
− 1

)
=

0− 1

a− 1
− 1 =

a

1− a

If a > 1, we see that the series
∑+∞

i=1 a
i diverges to +∞:

lim
i→+∞

si = lim
i→+∞

(
ai+1 − 1

a− 1
− 1

)
= +∞

Finally, if a ≤ −1, the series
∑+∞

i=1 a
i is divergent because the sequence (si) alternates:

ai+1 − 1

a− 1
− 1 =

(−|a|)i+1 + |a|
−|a| − 1

⇒ (si) = −|a|, |a|
3 − |a|
|a|+ 1

,−|a|
4 + |a|
|a|+ 1

,
|a|5 − |a|
|a|+ 1

, ...

As it has been shown in the above two examples, it is quite cumbersome to calculate the
exact resultant sum of a series if it converges. For more complicated sequences, it may be
too difficult to find a general expression for the partial sum. What we can do, however, is
establish criteria to determine whether a series is convergent or divergent.

Before we discuss some of the criteria for series, let us first summarize some general properties
of series: 

if
+∞∑
n=1

un is convergent ⇒ lim
n→+∞

un = 0

if lim
n→+∞

un 6= 0 ⇒
+∞∑
n=1

un is divergent

if lim
n→+∞

un = 0 ⇒ no conclusion can be made

For example, consider the sequence (un) with the nth term equal to:

un =
ln
(

1
8n2 + 1

)
ln
(

1
5n2 + 1

)
The limit for n → +∞ results in the undefined expression 0

0
. If we make the substitution

t = 1
n

, we can subsequently Taylor expand the numerator and the denominator of the
quotient around the point a = 0 (with a Liouville remainder term) and solve the limit:

lim
n→+∞

un = lim
n→+∞

ln
(

1
8n2 + 1

)
ln
(

1
5n2 + 1

) = lim
t→0

ln
(
t2

8
+ 1
)

ln
(
t2

5
+ 1
) = lim

t→0

t2

8
+ λ(t)

2
t2

t2

5
+ λ(t)

2
t2

= lim
t→0

1
8

+ λ(t)
2

1
5

+ λ(t)
2

=
5

8

As lim
n→+∞

un 6= 0, we find that the series
∑+∞

n=1 un is divergent.
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Several criteria are available to determine whether a series is convergent or divergent. Note
that the below criteria are written specifically for positive series only, i.e., ∀n : un > 0, and
do not apply to alternating sequences. Similar criteria can be constructed for sequences with
un ≥ 0 and for negatives series, i.e., ∀n : un ≤ 0.

A first set of criteria is called the comparison test. If we consider two sequences (un) and
(rn), we can make the following statements with respect to their series (note that k ∈ R):

un ≤ k · rn ⇒


if

+∞∑
n=1

rn is convergent ⇒
+∞∑
n=1

un is convergent

if
+∞∑
n=1

un is divergent ⇒
+∞∑
n=1

rn is divergent

A second set of criteria is the limit comparison test. For two sequences (un) and (rn),
the limit comparison test says the following:

• lim
n→∞

un
rn

= k ∈ R+
0 −→



+∞∑
n=1

un is convergent ⇔
+∞∑
n=1

rn is convergent

+∞∑
n=1

un is divergent ⇔
+∞∑
n=1

rn is divergent

• lim
n→∞

un
rn

= 0 −→


if

+∞∑
n=1

rn is convergent ⇒
+∞∑
n=1

un is convergent

if
+∞∑
n=1

un is divergent ⇒
+∞∑
n=1

rn is divergent

• lim
n→∞

un
rn

= +∞ −→


if

+∞∑
n=1

un is convergent ⇒
+∞∑
n=1

rn is convergent

if
+∞∑
n=1

rn is divergent ⇒
+∞∑
n=1

un is divergent

Another set of criteria is known as Cauchy’s root test:

λ = lim
n→+∞

n
√
un ∈ R ⇒



if λ < 1 ⇒
+∞∑
n=1

un is convergent

if λ > 1 ⇒
+∞∑
n=1

rn is divergent

if λ = 1 ⇒ no conclusion can be made
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A fourth and final set of criteria that we discuss here is called D’Alembert’s ratio test:

λ = lim
n→+∞

un+1

un
∈ R ⇒



if λ < 1 ⇒
+∞∑
n=1

un is convergent

if λ > 1 ⇒
+∞∑
n=1

rn is divergent

if λ = 1 ⇒ no conclusion can be made

• Example 1

We wish to know whether the series
∑+∞

n=1 un of the sequence (un) = 2
25

, 1
28

, 2
107

, 1
89

, 2
269

,...,

which is generally described by the below nth term, converges or diverges:

un =
2

10n2 + n+ 14

Given that lim
n→+∞

un = 0, the general properties of series tell us that we cannot conclude

anything about the corresponding series. However, the comparison test proves to be more
useful in this context. For that to work, we need to find a second sequence (rn). If we

consider the sequence from the above Example 1, i.e., (rn) = 1
12
, 1

20
, 1

30
, 1

42
, 1

56
, ..., we can

see that for every term un ≤ rn. Given that
∑+∞

n=1 rn is convergent, the comparison test tells
us that the series

∑+∞
n=1 un is also convergent.

• Example 2

We would like to examine the behaviour of the below series:

+∞∑
n=1

un =
+∞∑
n=1

cosh(2n)

n
=

+∞∑
n=1

e2n + e−2n

2n

If we now consider the nth term rn = 1
n

of the harmonic sequence (rn) = 1, 1
2
, 1

3
, ..., we find

that the following limit is equal to:

lim
n→∞

un
rn

= lim
n→∞

cosh(2n)

n
· n

1
= lim

n→∞
cosh(2n) = +∞

If we know that the series
∑+∞

n=1
1
n

is divergent, the limit comparison test tells us that the

series
∑+∞

n=1
cosh(2n)

n
also diverges.

• Example 3

Suppose we wish to determine the behaviour of the series
∑+∞

n=1
1
n2 , whereby (un) = 1, 1

4
, 1

9
, ... .

As a second sequence, we take rn = 2
10n2+n+14

from Example 1, whose series we found to
be convergent. The limit then becomes:
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lim
n→∞

un
rn

= lim
n→∞

1

n2
· 10n2 + n+ 14

2
= lim

n→∞
5 +

1

2n
+

7

n2
= 5 ∈ R+

0

According to the limit comparison test, given that the series
∑+∞

n=1 rn converges, we find that

the series
∑+∞

n=1
1
n2 also converges.

• Example 4

We wish to understand the behaviour of the series
∑+∞

n=1 un, whereby un is equal to:

un =
e−(n3+n) · 5n+1

e−3n

If we use Cauchy’s root test, we obtain the following value for λ:

λ = lim
n→+∞

n
√
un = lim

n→+∞

n

√
e−(n3+n) · 5n+1

e−3n
= lim

n→+∞

e3 · 51+ 1
n

en2+1
= 0

Since λ = 0 < 1, the series
∑+∞

n=1 un is convergent.

• Example 5

Consider the sequence (un) = 1
21
, 64

495
, 128

273
, 512

255
, ... with the general term:

un =
(3n+ 2)! · 23n+1

(3n+ 5)!

Applying D’Alembert’s ratio test, we find the following value for λ:

λ = lim
n→+∞

un+1

un
= lim

n→+∞

(3n+ 5)! · 23n+4

(3n+ 8)!
· (3n+ 5)!

(3n+ 2)! · 23n+1

= lim
n→+∞

23(3n+ 3)(3n+ 4)(3n+ 5)

(3n+ 6)(3n+ 7)(3n+ 8)

= lim
n→+∞

23(3 + 3
n
)(3 + 4

n
)(3 + 5

n
)

(3 + 6
n
)(3 + 7

n
)(3 + 8

n
)

= 8

As λ = 8 > 1, we find that the series
∑+∞

n=1 un is divergent.
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8 Complex Analysis

Within the field of mathematics, the branch of complex analysis studies the phenomenon
of complex numbers as well as related functions.

8.1 Definitions

A complex number z is defined as z = a + bi with a, b ∈ R and i the imaginary unit,
which is equal to i =

√
−1 and has the property i2 = −1. We notice hereby that i /∈ R,

since the square of any real number cannot be negative.

If we extend the set of real numbers and include the imaginary unit i we find the set of
complex numbers, which is defined as C = {z = a+ bi | a, b ∈ R}.

We call a the real part of the complex number z and is denoted by Re(z) = a, whereas b
is the imaginary part of z and is written as Im(z) = b. If Re(z) = 0, we call z a purely
imaginary number, while if Im(z) = 0, z is referred to as a purely real number.

For example, 5 is a purely real number, given that 5 = 5 + 0 · i, and 2i is a purely imaginary
number because 2i = 0 + 2i.

8.2 Graphical Interpretation

We can graphically represent a complex number by constructing the complex plane, also
called the Argand plane or Gauss plane, whereby the purely imaginary numbers are
located on the imaginary y-axis and the purely real numbers on the real x-axis.

A complex number z = a+ bi has therefore the coordinates (a, b) in the complex plane, with
x = a and y = b. Writing the coordinates of z as (a, b) is called the Cartesian form. The
left-hand side of Fig. 8.1 shows two complex numbers z1 = a1 + ib1 and z2 = a2 + ib2.

Figure 8.1: The graphical representation of complex numbers
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The length of the line segment between the origin (0, 0) and the point (a, b) is known as the
modulus of the complex number, which is denoted by |z| and defined with the assistance
of the Pythagorean theorem as |z| =

√
a2 + b2.

The smallest angle θ between the positive real x-axis and the line segment as defined above
is called the principal argument of the complex number and is denoted by arg(z), whereby
arg(z) ∈ ] -π, π ]. Above the real axis, we have that arg(z) ∈ [0, π], while below the real axis
arg(z) ∈ ]0,-π[. Writing the coordinates of a complex number z as (|z|, θ) is called the polar
form.

Based on the left-hand side of Fig. 8.1, trigonometry tells us that a1 = |z1| cos θ1 and
b1 = |z1| sin θ1, so that we can write the trigonometric form of a complex number as
follows:

z1 = a1 + ib1 = |z1| cos θ1 + i|z1| sin θ1 = |z1| (cos θ1 + i sin θ1)

For instance, suppose that z1 = −6 + 2i. We know that the modulus is equal to |z| =√
(−6)2 + 22 = 2

√
10. To find the argument θ1, consider, for example, the imaginary

part b1 = |z1| sin θ1 ⇔ 2 = 2
√

10 sin θ1. We find that θ1 = sin−1
(

2
2
√

10

)
= 18.4◦.

However, since the complex number z1 is located in the second quadrant, we know that
θ1 = 180◦ − 18.4◦ = 162◦. We can thus write:

z1 = −6 + 2i = 2
√

10 (cos 162◦ + i sin 162◦]

If we wish to graphically represent the sum of two complex numbers, we first draw a
parallelogram with sides |z1| and |z2|. The complex number that represents the sum is then
identified as the end point of the parallelogram’s diagonal that starts at the origin of the
complex plane.

As an example, in the right-hand side of Fig. 8.1, the complex number z3 represents the sum
of the complex numbers z1 and z2.

8.3 Properties and Operations

If z1 = a1 + b1i and z2 = a2 + b2i, we have the following formulas for their sum, product and
quotient as well as the square and the third power of a complex number (for the quotient,
we demand that z2 6= 0):

• z1 + z2 = (a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i

• z1 · z2 = (a1 + b1i) (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1) i

•
z1
z2

=
a1+b1i
a2+b2i

=
(
a1+b1i
a2+b2i

)
·
(
a2−b2i
a2−b2i

)
=
(
a1a2+b1b2
|z2|2

)
+
(
a2b1−a1b2
|z2|2

)
i

• z2 =
(
a2 − b2

)
+ 2abi

• z3 =
[
a
(
a2 − 3b2

)]
+
[
b
(
3a2 − b2

)]
i
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Consider the complex numbers z = −4 + 2i and w = 4− 4i. We find, for instance, that:

• z · w = ((−4)4− 2(−4)) + ((−4)(−4) + 4 · 2) i = −8 + 24i

• w
z

=
4(−4)+(−4)2

(2
√

5)
2 +

(−4)(−4)−4·2

(2
√

5)
2 i = −6

5
+

2
5
i

• w3 =
[
4
(
42 − 3(−4)2

)]
+
[
(−4)

(
3 · 42 − (−4)2

)]
i = −128− 128i

If n ∈ Z, we can calculate any power of the imaginary unit i as follows:

• i4n = 1

• i4n+1 = i

• i4n+2 = −1

• i4n+3 = −i

For example, i39 = i4·9+3 = −i, i101 = i4·25+1 = i, and i−16 = i4·(−4) = 1.

The complex conjugate of a complex number z = a+ bi is defined as z = a− bi. We sum-
marize some of the main properties of complex conjugates in Fig. 8.2, whereby z1 = a1 + b1i,
z2 = a2 + b2i (and z2 6= 0 if it appears in the denominator of a quotient), and n ∈ Z.

Figure 8.2: Some properties of conjugate complex numbers

For example, if we have the complex numbers z = −3 + 2i and w = 12− i, we find that:

• zz−1 =
(−3−2i)2

(−3)2+22
=

5
13

+
12
13
i

• w − z = (12 + i)− (−3− 2i) = 15 + 3i

• ww = 122 + 12 = 145
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Let us now calculate z3 if we consider the trigonometric form of z, i.e., z = |z|(cos θ+ i sin θ),
whereby we use the trigonometric formulas of section 5.3:

z3 = |z|3(cos θ + i sin θ)2 = |z|3(cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ)

= |z|3[cos θ(cos2 θ − 3 sin2 θ) + i sin θ(3 cos2 θ − sin2 θ)]

= |z|3[cos θ(cos 2θ − 2 sin2 θ) + i sin θ(2 cos2 θ + cos 2θ)]

= |z|3[(cos θ cos 2θ − sin θ sin 2θ) + i(sin 2θ cos θ + sin θ cos 2θ)]

= |z|3(cos 3θ + i sin 3θ)

The generalization of the above exercise is known as De Moivre’s Formula:

zn = |z|n(cosnθ + i sinnθ)

If z1 = |z1|(cos θ1 + i sin θ1) and z2 = |z2|(cos θ2 + i sin θ2), Fig. 8.3 summarizes some of the
main properties of the modulus and the argument of a complex number, whereby n ∈ Z and
z2 6= 0 if it appears in the denominator of a quotient.

Figure 8.3: Some properties of the modulus and argument of the complex numbers

Let us consider the complex numbers z = −
√

2 + i and w =
√

2− i and calculate both the
left-hand side and right-hand side of the expression |z − w|2 = |z|2 + |w|2 − 2Re(zw).

With respect to the left-hand side, the complex number z − w is equal to z − w = (−
√

2 +

i)− (
√

2− i) = −2
√

2 + 2i, so that |z − w|2 =
(
−2
√

2
)2

+ 22 = 12.

Regarding the right-hand side, we have that |z|2 =
(
−
√

2
)2

+12 = 3, |w|2 =
(√

2
)2

+(−1)2 =

3, and zw =
(
−
√

2 + i
) (√

2 + i
)

= −3, so that |z|2 + |w|2− 2Re(zw) = 3 + 3− 2(−3) = 12.
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We now wish to find the square root of a complex number z . If z = a + bi, then the
roots w = x+ yi are found as follows (with x 6= 0 and y 6= 0):

• w2 = z ⇔ (x+ yi)2 = a+ bi ⇔ x2 − y2 + 2xyi = a+ bi

⇔

{
x2 − y2 = a

2xy = b

• x =
b

2y
⇒

(
b

2y

)2

− y2 = a

⇔ b2

4
− y4 = ay2

⇔ y4 + ay2 − b2

4
= 0

⇔ y2 =
−a±

√
a2 + b2

2
=
−a± |z|

2

⇔ y = ±
√
−a± |z|

2

• Only the following values of y produce correct solutions:

⇒ y = ±
√
−a+ |z|

2

• Therefore, we obtain the following two sets of solutions:


x =

b

2

√
2

−a+ |z|

y =

√
−a+ |z|

2


x = − b

2

√
2

−a+ |z|

y = −
√
−a+ |z|

2

Suppose we wish to find the roots w = x + yi of the complex number z = 16 − 30i. Since
|z| =

√
162 + (−30)2 = 34, the two solutions are the following:


x = −30

2

√
2

−16 + 34
= −5

y =

√
−16 + 34

2
= 3


x =

30

2

√
2

−16 + 34
= 5

y = −
√
−16 + 34

2
= −3

The two solutions are therefore equal to w1 = −5 + 3i and w2 = 5− 3i.
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If we express the complex number z = a + bi in its trigonometric form, i.e., z = |z|(cos θ +
i sin θ), we can find its roots w = |w|(cosφ+ i sinφ) with the help of De Moivre’s Formula:

• w2 = z ⇔ |w|2(cos 2φ+ i sin 2φ) = |z|(cos θ + i sin θ)

⇔

{
|w|2 = |z|
2φ = θ + 2kπ with k ∈ {0, 1}

⇔

 |w| =
√
|z|

φ =
θ

2
+ kπ with k ∈ {0, 1}

• The two roots are therefore the following:


w1 =

√
|z|
[
cos

(
θ

2

)
+ i sin

(
θ

2

)]

w2 =
√
|z|
[
cos

(
θ

2
+ π

)
+ i sin

(
θ

2
+ π

)]

If we generalize the above result for the nth root of a complex number, we can suc-
cinctly write the n different roots w of the complex number z = |z|(cos θ+ i sin θ) as follows:

w = n
√
|z|
[
cos

(
θ

n
+

2kπ

n

)
+ i sin

(
θ

n
+

2kπ

n

)]
with k ∈ {0, 1, 2, ..., (n− 1)}

For example, taking the 4th root of the complex number z = −1+ i will give us four different
roots. First, we write z in its trigonometric form: z =

√
2(cos 3π

4
+ i sin 3π

4
). The four roots

are then the following:

• w1 =
4
√√

2
[
cos
(

3π
4·4 + 2·0·π

4

)
+ i sin

(
3π
4·4 + 2·0·π

4

)]
= 8
√

2
[
cos
(

3π
16

)
+ i sin

(
3π
16

)]
• w1 =

4
√√

2
[
cos
(

3π
4·4 + 2·1·π

4

)
+ i sin

(
3π
4·4 + 2·1·π

4

)]
= 8
√

2
[
cos
(

11π
16

)
+ i sin

(
11π
16

)]
• w1 =

4
√√

2
[
cos
(

3π
4·4 + 2·2·π

4

)
+ i sin

(
3π
4·4 + 2·2·π

4

)]
= 8
√

2
[
cos
(

19π
16

)
+ i sin

(
19π
16

)]
• w1 =

4
√√

2
[
cos
(

3π
4·4 + 2·3·π

4

)
+ i sin

(
3π
4·4 + 2·3·π

4

)]
= 8
√

2
[
cos
(

27π
16

)
+ i sin

(
27π
16

)]
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Let us look at a couple more examples on complex numbers in general.

• Example 1

We wish to find the solutions to the following equation:

2z2 − (3 + i)z + 1 + 2i = 0

In a first step, we write down the two solutions of this quadratic equation:

z =
(3 + i)±

√
(3 + i)2 − 4 · 2 · (1 + 2i)

4
=

(3 + i)±
√
−10i

4

In a second step, we determine the roots of
√
−10i:

• (x+ yi)2 = −10i ⇔ x2 − y2 + 2xyi = −10i

⇔

{
x2 − y2 = 0

2xy = −10

• y = −5

x
⇒ x2 −

(
−5

x

)2

= 0

⇔ x4 − 25 = 0

⇔ x = ±
√

5

The two roots of
√
−10i are therefore w1 =

√
5 − i

√
5 and w2 = −

√
5 + i

√
5. The two

solutions of the initial equation then become:


z1 =

(3 + i) +
√

5− i
√

5

4
=

(3 +
√

5) + (1−
√

5)i

4

z2 =
(3 + i)−

√
5 + i

√
5

4
=

(3−
√

5) + (1 +
√

5)i

4

• Example 2

We will calculate
(
z
z

)
given that z is equal to:

z =

(
a+ bi

a− bi

)2

−
(
a− bi
a+ bi

)2

with a 6= b

In a first step, we simply the expression of z with the assistance of some calculation rules
from Fig. 8.2:
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z =

(
a+ bi

a− bi

)2

−
(
a− bi
a+ bi

)2

=

[
(a+ bi) · (a+ bi)

a2 + b2

]2

−
[
(a− bi) · (a− bi)

a2 + b2

]2

=

[
(a2 − b2 + 2abi)2

(a2 + b2)2

]
−
[

(a2 − b2 − 2abi)2

(a2 + b2)2

]

=

[
(a2 − b2)2 + 4abi(a2 − b2)− 4a2b2)

(a2 + b2)2

]
−
[

(a2 − b2)2 − 4abi(a2 − b2)− 4a2b2

(a2 + b2)2

]

=
8abi(a2 − b2)

(a2 + b2)2

We can now calculate
(
z
z

)
as follows:

z

z
= z(z)−1 = z · z

[Re(z)]2 + [Im(z)]2
= z2 · 1

[Re(z)]2 + [Im(z)]2

= −64a2b2(a2 − b2)2

(a2 + b2)4
· 1

02 +
(
−8ab(a2−b2)

(a2+b2)2

)2

= −64a2b2(a2 − b2)2

(a2 + b2)4
· (a2 + b2)4

64a2b2(a2 − b2)2

= −1

• Example 3

In Fig. 8.3, we have seen that |z1 − z2|2 = |z1|2 + |z2|2 − 2Re(z1z2). We now show that
|z1 − z2|2 is also equal to |z1 − z2|2 = (z1 − z2)(z1 − z2).

In a first step, we calculate the left-hand side:

|z1 − z2|2 = |(a1 + b1i)− (a2 + b2i)|2 = |(a1 − a2) + (b1 − b2)i|2 = (a1 − a2)2 + (b1 − b2)2

The right-hand side is equal to:

(z1 − z2)(z1 − z2) = [(a1 + b1i)− (a2 + b2i)] [(a1 − b1i)− (a2 − b2i)]

= [(a1 − a2) + (b1 − b2)i] [(a1 − a2)− (b1 − b2)i]

= (a1 − a2)2 + (b1 − b2)2

Both the left-hand side and the right-hand side are equal to each other, so we have proven
the equation.
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• Example 4

Let us identify the trigonometric form of z if we know that:

1 +
z − z
1 + z

= z

In a first step, we simplify the above equation:

1 +
z − z
1 + z

= z ⇔ (1 + z) + (z − z)

1 + z
= z ⇔ 1 + z

1 + z
= z ⇔ 1 + z = z(1 + z) ⇔ 1 = zz

Since zz = |z|2, we find that |z| = 1. But given that |z| = |z|, the trigonometric form of z
can be either z = cos θ + i sin θ or z = cos θ − i sin θ.

• Example 5

We wish to demonstrate that the equation z2 +z 2−2a(z+z)+2|w|2 = 0, with z = x+iy and
w = a+bi, represents a vertical hyperbola located at the center point ~m = (Re(w), 0) = (a, 0)
and with the distance between ~m and a vertex equal to Im(w) = b.

z2 + z 2 − 2a · (z + z) + 2|w|2 = 0

⇔ (x2 − y2 + 2xyi) + (x2 − y2 − 2xyi)− 2a [(x+ iy) + (x− iy)] + 2(a2 + b2) = 0

⇔ 2x2 − 2y2 − 4ax+ 2a2 + 2b2 = 0

⇔ (x− a)2 − y2 + b2 = 0

⇔ y2

b2
− (x− a)2

b2
= 1

8.4 Complex Functions

The complex exponential function is defined as:

exp : C→ C : z = c+ iθ 7→ exp(z) = ec(cos θ + i sin θ)

Since the complex exponential of purely imaginary numbers have the form eiθ = cos θ+i sin θ,
we can write any complex number in the following way:

z = a+ bi = |z|(cos θ + i sin θ) = |z|eiθ

If z = iπ, we obtain Euler’s identity:

eiπ = e0 (cos π + i sin π) ⇔ eiπ = −1
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If θ is replaced by θ+2kπ (with k ∈ Z) in the definition of the complex exponential function,
the function value for exp(z) does not change. Therefore, if we wish to define the inverse
function of exp(z), we restrict its domain to the complex numbers z = c + iθ, so that the
principal argument θ lies in the interval θ ∈ ]-π, π], and its codomain to C0.

The inverse function of exp(z), which is called the complex logarithmic function, maps
a complex number to just one logarithm of that complex number and is defined as follows:

Ln : C0 → {v ∈ C | − π < Im(v) ≤ π} : z 7→ v = Ln(z) = Ln(|z|eiθ) = ln(|z|) + iθ

Note that all the logarithms of the complex number z are represented by ln(|z|)+ i(θ+2kπ),
with k ∈ Z.

The complex polynomial function is defined as follows, with n ∈ N:

P : C→ C : z 7→ P (z) = anz
n + an−1z

n−1 + an−1z
n−1 + . . .+ a2z

2 + a1z + a0

Let us now have a look at the complex trigonometric and hyperbolic functions. If we
construct the Maclaurin series around the point a = 0 for the functions cosx, sin x, cosh x,
and sinh x, we find the following expressions:

• cosx =
+∞∑
n=1

(−1)n−1 x2n−2

(2n−2)!

• sinx =
+∞∑
n=1

(−1)n−1 x2n−1

(2n−1)!

• coshx =
+∞∑
n=1

x2n−2

(2n−2)!

• sinhx =
+∞∑
n=1

x2n−1

(2n−1)!

If we use the argument ix instead of x in the above series, we find the following relations:

• cos(ix) = cosh x

• cosh (ix) = cos x

• sin(ix) = i sinhx

• sinh (ix) = i sinx

Let us now construct the definition of the complex cosine function:

cos : C→ C : z = x+ iy 7→ cos(z) = cos(x+ iy) = cos(x) cos(iy)− sin(x) sin(iy)

= cos(x) cosh (y)− i sin(x) sinh (y)
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Similarly, the definition of the complex sine function is found to be:

sin : C→ C : z = x+ iy 7→ sin(z) = sin(x+ iy) = sin(x) cos(iy) + cos(x) sin(iy)

= sin(x) cosh (y) + i cos(x) sinh (y)

We can also construct a definition of the complex cosine function based on the complex
exponential function:

Given that • eiz = ei(x+iy) = e−y+ix = e−y(cosx+ i sinx)

• e−iz = e−i(x+iy) = ey−ix = ey(cosx− i sinx)

We find that eiz + e−iz = e−y(cosx+ i sinx) + ey(cosx− i sinx)

= (e−y + ey) cosx− i(ey − e−y) sinx

= (2 cosh y) cosx− i(2 sinh y) sinx

= 2 cos(iy) cosx− 2 sin(iy) sinx

= 2 cos(x+ iy)

= 2 cos z

Similar derivations for the complex sine, complex hyperbolic cosine, and complex hyperbolic
sine function gives us the following definitions:



cos : C→ C : z = x+ iy 7→ cos(z) =
eiz + e−iz

2

sin : C→ C : z = x+ iy 7→ sin(z) =
eiz − e−iz

2i

cosh : C→ C : z = x+ iy 7→ cosh (z) =
ez + e−z

2

sinh : C→ C : z = x+ iy 7→ sinh (z) =
ez − e−z

2

Note that the trigonometric formulas of section 5.3 are also applicable to the complex trigono-
metric functions.

Let us consider a couple of examples.

• Example 1

We will factor the complex polynomial function P (z) = z4 + z3 + z + 1 into both real and
complex terms. We find a first root of P (z) when z = −1, because P (−1) = 0. We then
write, either through educated guess work or via Horner’s method, that P (z) = (z+1)(z3+1).
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In order to further factor the term (z3 + 1), we have to find the three different 3rd roots of
−1, since z3 + 1 = 0 ⇔ z = 3

√
−1. We can write −1 as −1 = cosπ + i sin π, so that the

three roots are equal to:

• z1 = 3
√

1
[
cos
(
π
3

+ 2·0·π
3

)
+ i sin

(
π
3

+ 2·0·π
3

)]
= 1

2
+ i
√

3
2

• z2 = 3
√

1
[
cos
(
π
3

+ 2·1·π
3

)
+ i sin

(
π
3

+ 2·1·π
3

)]
= −1

• z3 = 3
√

1
[
cos
(
π
3

+ 2·2·π
3

)
+ i sin

(
π
3

+ 2·2·π
3

)]
= 1

2
− i
√

3
2

Factoring the complex polynomial function then gives us the following result:

P (z) = (z + 1)2

(
z − 1

2
− i
√

3

2

)(
z − 1

2
+ i

√
3

2

)

If we would multiply the two complex terms, the polynomial would obtain the form P (z) =
(z + 1)2(z2 − z + 1), which is what we would get when factoring the polynomial only into
real terms, because the determinant of the term (z2 − z + 1) is negative and we would not
be able to further factor this term.

• Example 2

We wish to find all the complex logarithms of the complex number z = −6
√

3− 6i.

In a first step, we write z in its trigonometric form. The modulus is equal to |z| =√
(−6
√

3)2 + (−6)2 = 12. Since −6
√

3 = 12 cos θ, we find that cos θ = −
√

3
2
⇔ θ =

π
6

+ π = 7π
6

. But since the principal argument must lie within the interval ] -π, π], we have

to write θ as θ = 7π
6
− 2π = −5π

6
. We thus write:

z = −6
√

3− 6i = 12

[
cos

(
5π

6

)
− i sin

(
5π

6

)]
In a next step, we find the complex logarithm for the principal argument, with the complex
number v equal to v = c+ iθ:

Ln (−6
√

3− 6i) = v ⇔ − 6
√

3− 6i = ev = ec+iθ

⇔ 12

[
cos

(
5π

6

)
− i sin

(
5π

6

)]
= eceiθ = ec(cos θ + i sin θ)

⇔

 12 = ec ⇔ c = ln(12)

− 5π

6
= θ
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The complex logarithm v is therefore equal to v = ln(12) − i5π
6

, if we only consider its
principal argument. All the complex logarithms are then found to be equal to the set of

solutions Ov = {v ∈ C | v = ln(12) + i
(
−5π

6
+ 2kπ

)
, k ∈ Z}.

• Example 3

We wish to find the set of complex numbers Ov to which the complex number v = c + iθ
belongs, if we know that z = 9(cos 7π

16
+ i sin 7π

16
) and that the following relationship exists:

z

z
=
ev+ln(|z|)

|z|

We identify a solution for the principal argument of v as follows:

z

z
=
ev+ln(|z|)

|z|
⇔ z 2

|z|
= ev+ln(|z|) ⇔

81
(

cos 7π
8

+ i sin 7π
8

)
9

= ec+ln(|z|)+iθ

⇔ 9

(
cos

7π

8
+ i sin

7π

8

)
= eceln(9)(cos θ + i sin θ)

⇔ cos
7π

8
+ i sin

7π

8
= ec(cos θ + i sin θ)

⇔

 1 = ec ⇔ c = ln(1) = 0

7π

8
= θ

The complex logarithm v is equal to v = i7π
8

with respect to its principal argument. All the

complex logarithms of v belong to the set of solutions Ov = {v ∈ C | v = i
(

7π
8

+ 2kπ
)
, k ∈

Z}.

• Example 4

We would like to solve the equation sech z = i, with z ∈ C. In a first step, let us rewrite the
equation as follows:

sech z = i ⇔ 1

cosh z
= i ⇔ 2

ez + e−z
= i ⇔ − 2i = ez + e−z

⇔ e2z + 2iez + 1 = 0

If we make the substitution ez = t, we find the quadratic equation t2 + 2it + 1 = 0, which
we solve as follows:

t2 + 2it+ 1 = 0 ⇔ t =
−2i±

√
−8

2
=
−2i±

√
i28

2
=
(
−1±

√
2
)
i
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In a next step, we consider the solution t = (−1 +
√

2)i:

• ez = t = (−1 +
√

2)i ⇔ z = ln
[
(−1 +

√
2)i
]

• ln
[
(−1 +

√
2)i
]

= v = c+ iθ ⇔ (−1 +
√

2)i = ev = eceiθ

⇔ (−1 +
√

2)
(

cos
π

2
+ i sin

π

2

)
= ec(cos θ + i sin θ)

⇔

 − 1 +
√

2 = ec ⇔ c = ln(−1 +
√

2)
π

2
= θ

⇔ v = ln(−1 +
√

2) + i
(π

2
+ 2kπ

)
• z = ln

[
(−1 +

√
2)i
]

= ln(−1 +
√

2) + i
(π

2
+ 2kπ

)
A similar calculation can be done for t = (−1−

√
2)i:

• ez = t = (−1−
√

2)i ⇔ z = ln
[
(−1−

√
2)i
]

• ln
[
(−1−

√
2)i
]

= v = c+ iθ ⇔ (−1−
√

2)i = ev = eceiθ

⇔ (1 +
√

2)
(

cos
π

2
− i sin

π

2

)
= ec(cos θ + i sin θ)

⇔

 1 +
√

2 = ec ⇔ c = ln(1 +
√

2)

− π

2
= θ

⇔ v = ln(1 +
√

2) + i
(
−π

2
+ 2kπ

)
• z = ln

[
(−1−

√
2)i
]

= ln(1 +
√

2) + i
(
−π

2
+ 2kπ

)
The solution S is equal to S = {z ∈ C | z = ln(±1 +

√
2) + i

(
±π

2
+ 2kπ

)
}.

• Example 5

We would like to calculate arccoth (i). In a first step, we will derive a formula for the inverse
of the complex cotangent hyperbolic function:
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y = arccoth (z) ⇔ z = coth (y) ⇔ z =
ey + e−y

ey − e−y
⇔ z(ey − e−y) = ey + e−y

⇔ (z − 1)ey = (z + 1)e−y

⇔ e2y =
z + 1

z − 1

⇔ y =
1

2
ln

(
z + 1

z − 1

)

Note that this is the same expression as in the case of real variables (see Fig. 7.45). We can
now calculate arccoth (i):

arccoth (i) =
1

2
ln

(
i+ 1

i− 1

)
=

1

2
ln

(
i+ 1

i− 1

)
=

1

2
ln (−i)

In a next step, we calculate the complex logarithms of ln(−i):

ln(−i) = v = c+ iθ ⇔ − i = ev = eceiθ

⇔
(

cos
π

2
− i sin

π

2

)
= ec(cos θ + i sin θ)

⇔

 1 = ec ⇔ c = 0

− π

2
= θ

⇔ v = i
(
−π

2
+ 2kπ

)
with k ∈ Z

In a final step, we determine arccoth (i):

arccoth (i) =
1

2
ln (−i) =

1

2

[
i
(
−π

2
+ 2kπ

)]
= i
(
−π

4
+ kπ

)
We can check this result if we would calculate coth (z) for, let’s say, z = −iπ

4
; we should

obtain coth (z) = i.

• Example 6

In a final example, we wish to solve the equation sin(iz) = ii. Let us first rewrite the equa-
tion a bit:

sin(iz) = ii ⇔ ei(iz) − e−i(iz)

2
= eln(ii) ⇔ e−z − ez

2
= ei ln(i)

In a next step, we calculate the complex logarithms ln(i):
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ln(i) = v = c+ iθ ⇔ i = ev = eceiθ

⇔
(

cos
π

2
+ i sin

π

2

)
= ec(cos θ + i sin θ)

⇔

 1 = ec ⇔ c = 0
π

2
= θ

⇔ v = i
(π

2
+ 2kπ

)
with k ∈ Z

Inserting this result into the above equation, we obtain the following solutions for z:

e−z − ez

2
= ei ln(i) ⇔ e−z − ez

2
= ei[i(

π
2

+2kπ)] = e−(π2 +2kπ)

⇔ ez + 2e−(π2 +2kπ) − e−z = 0

⇔ e2z + 2eze−(π2 +2kπ) − 1 = 0

⇔ ez =
−2e−(π2 +2kπ) ±

√
4e−(π+4kπ) + 4

2

= −e−(π2 +2kπ) ±
√
e−(π+4kπ) + 1

⇔ z = ln
(
−e−(π2 +2kπ) ±

√
e−(π+4kπ) + 1

)
In the case of a plus sign in front of the square root, the expression within the natural loga-
rithm is positive. However, in case of a minus sign, the expression becomes negative and we
need to calculate the complex logarithm:

ln
(
−e−(π2 +2kπ) −

√
e−(π+4kπ) + 1

)
= v = c+ iθ

⇔ − e−(π2 +2kπ) −
√
e−(π+4kπ) + 1 = ev = eceiθ

⇔
(
e−(π2 +2kπ) +

√
e−(π+4kπ) + 1

)
(cos π + i sin π) = ec(cos θ + i sin θ)

⇔

 c = ln
(
e−(π2 +2kπ) +

√
e−(π+4kπ) + 1

)
θ = π

⇔ v = ln
(
e−(π2 +2kπ) +

√
e−(π+4kπ) + 1

)
+ i (π + 2kπ) with k ∈ Z

The two solutions are therefore equal to:
z = ln

(
−e−(π2 +2kπ) +

√
e−(π+4kπ) + 1

)
z = ln

(
e−(π2 +2kπ) +

√
e−(π+4kπ) + 1

)
+ i (π + 2kπ)
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9 Integral Calculus

Integral calculus is the branch within mathematics that not only studies the concept of
the integral and its properties, but also deals with the different methods to solve integrals
as well as the various ways to calculate length, area, and volume.

Integral calculus is intimately connected to differential calculus (see section 7.5 and 10) and
together they form the basis of mathematical analysis and calculus.

9.1 Indefinite Integrals

9.1.1 Definitions and Properties

A primitive function F of a certain real function f(x) is defined as the function whose
derivative is equal to f(x):

F ′ = f(x)

The indefinite integral is then defined as the set of all primitive functions of f(x) and is
denoted by: ∫

f(x)dx = F (x) + c

whereby c ∈ R is known as the integration constant. The function f(x) that we wish to
integrate is called the integrand.

For example, let us consider the function:

f : R→ R : x 7→ f(x) = 9x12 + 5x7 − 6x3 + 5

The primitive function F (x) of f(x) is then equal to:

F : R→ R : x 7→ F (x) =
9

13
x13 +

5

8
x8 − 3

2
x4 + 5x

because, if we take the derivative of F (x), we obtain the above function f(x). We can then
write the integral of f(x) as follows:

∫ (
9x12 + 5x7 − 6x3 + 5

)
dx =

9

13
x13 +

5

8
x8 − 3

2
x4 + 5x+ c

The process of taking the integral of a function f(x) is called integration and is the reverse
process of differentiation. Therefore, if we go from right to left in Fig. 7.18 (see section 7.5.1),
we obtain a list in below Fig. 9.1 with the most common integrals, which can be directly in-
tegrated without the need for the introduction of special techniques. Assume hereby that all
functions and variables are well-defined, and note furthermore that the hyperbolic functions
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have been added to the list.

Figure 9.1: A list of common integrals

A remark must be made with respect to the integral
∫ ( 1

1−x2
)
dx, which results either in

the arc tangent hyperbolic function or in the arc cotangent hyperbolic function. In order to
know what the right primitive function is, we have to look at the value of x (see the domain
of both functions in Fig. 7.45): if |x| < 1, we choose the arc tangent hyperbolic function,
whereas if |x| > 1 we have to opt for the arc cotangent hyperbolic function.
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An important property of the indefinite integral is its linearity, as shown below, whereby
a, b ∈ R: ∫

[af(x) + bg(x)] dx = a

∫
f(x) dx+ b

∫
g(x) dx

Let us consider a couple of examples.

• Example 1

∫ [
−4 sinx cosx cos 2x sin 5x+ 2 cos 5x cos2 2x− cos 5x

]
dx

=

∫ [
−2 sin 2x cos 2x sin 5x+ cos 5x

(
2 cos2 2x− 1

)]
dx

=

∫
[− sin 4x sin 5x+ cos 5x cos 4x] dx

=

∫
cos 9x dx

=
1

9
sin 9x+ c

• Example 2

∫ [
−
√

1− x2 − 2x2 − 3

2
√

1− x2
+

4
√
x2 − 1

(3x− 1)2 + 6x− 10

]
dx

=

∫ [
−2(1− x2)− (2x2 − 3)

2
√

1− x2
+

4
√
x2 − 1

9x2 − 6x+ 1 + 6x− 10

]
dx

=

∫
1

2
· 1√

1− x2
dx+

∫
4

9
·
√
x2 − 1

x2 − 1
dx

=
1

2

∫
1√

1− x2
dx+

4

9

∫
1√

x2 − 1
dx

=
1

2
arcsinx+

4

9
arccoshx+ c
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• Example 3

∫ [
xe5x +

2 sin3 3x+ 2 sin 3x cos2 3x

1 + cos 6x

]
dx =

∫ [
xe5x +

2 sin 3x
(
sin2 3x+ cos2 3x

)
1 + cos 6x

]
dx

=

∫ [
xe5x +

2 sin 3x

1 + cos 6x

]
dx

=

∫ [
xe5x +

sin 3x

cos2 3x

]
dx

=

∫
xe5x dx+

∫
tan 3x sec 3x dx

=
1

5

(
x− 1

5

)
e5x +

1

3
sec 3x+ c

• Example 4

∫ [
(x2 + 1)(ln 1

100
)−1

x3

]
dx =

∫ [
(ln 1

100
)−1

x
+

(ln 1
100

)−1

x3

]
dx

=

∫ [
(−2 ln 10)−1

x
+

(−2 ln 10)−1

x3

]
dx

=

∫
−1

2
· 1

x ln 10
dx+

∫
−1

2
· 1

x3 ln 10
dx

= − 1

2

∫
1

x ln 10
dx− 1

2 ln 10

∫
1

x3
dx

= − 1

2
log x+

1

4x2 ln 10
+ c

= log
1√
x

+
1

4x2 ln 10
+ c
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9.1.2 Integration Techniques

A. Partial Integration

Consider two differentiable functions u, v : [a, b] ⊂ R→ R. If we take the differential of the
product of these two functions and subsequently integrate the obtained expression, we find
the formula for partial integration:

d [u(x)v(x)] = u(x)d [v(x)] + v(x)d [u(x)]

⇔ u(x)d [v(x)] = d [u(x)v(x)]− v(x)d [u(x)]

⇔
∫
u(x)d [v(x)] =

∫
d [u(x)v(x)]−

∫
v(x)d [u(x)]

⇔
∫
u(x)d [v(x)] = u(x)v(x)−

∫
v(x)d [u(x)]

When a certain integral is given, the first step is to identify u(x) and write the integral in
the form of the left-hand side of the above formula. Since more than one choice can be made
with respect to the function u(x) for a given integral, a useful guideline is the LIAGE rule,
which stands for Logarithm, Inverse, Algebraic, Goniometric, and Exponential. This list of
five types of functions is arranged in descending order in terms of priority as to the choice
of the function u(x).

• Example 1

Consider the following integral: ∫
ex(24x2 + 6x+ 1)dx

According to the LIAGE rule, the algebraic function has a higher priority than the exponen-
tial function, so that we choose u(x) = 24x2+6x+1. We then find that d [u(x)] = (48x+6)dx,
d [v(x)] = exdx, and, after integrating the last equation, v(x) = ex. We can now write:

∫
u(x)d [v(x)] = u(x)v(x)−

∫
v(x)d [u(x)]

⇔
∫ (

24x2 + 6x+ 1
)

(exdx) =
(
24x2 + 6x+ 1

)
ex −

∫
ex [(48x+ 6)dx]

We apply again partial integration to the integral of the last term of the above equation.
We set u(x) = 48x+ 6, d [u(x)] = 48dx, d [v(x)] = exdx, and v(x) = ex, so that this integral
becomes: ∫

ex [(48x+ 6)dx] = (48x+ 6)ex −
∫

48exdx = (48x+ 6)ex − 48ex − c
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If we substitute this integral back into the original integral, we find the final solution:

∫
ex
(
24x2 + 6x+ 1

)
dx =

(
24x2 + 6x+ 1

)
ex −

∫
ex [(48x+ 6)dx]

=
(
24x2 + 6x+ 1

)
ex − [(48x+ 6)ex − 48ex − c]

=
(
24x2 − 42x+ 43

)
ex + c

• Example 2

Suppose we wish to calculate the following integral:∫
ln2
(x

2

)
dx

Following the LIAGE rule, we take u(x) = ln2
(x

2

)
, so that we have d [u(x)] = 2

x
ln
(x

2

)
dx,

d [v(x)] = dx, and v(x) = x. The integral then becomes:∫
ln2
(x

2

)
dx = x ln2

(x
2

)
− 2

∫
ln
(x

2

)
dx

Applying partial integration again to the integral of the last term within the above equation,
we have that u(x) = ln

(x
2

)
, d [u(x)] = 1

x
dx, d [v(x)] = dx, and v(x) = x. This integral can

then be written as:∫
ln
(x

2

)
dx = x ln

(x
2

)
−
∫
dx = x ln

(x
2

)
− (x+ c)

Inserting the above result into the original integral, we find the final result:∫
ln2
(x

2

)
dx = x ln2

(x
2

)
− 2

∫
ln
(x

2

)
dx

= x ln2
(x

2

)
− 2

[
x ln

(x
2

)
− (x+ c)

]
= x ln

(x
2

) [
ln
(x

2

)
− 2
]

+ 2x+ 2c

B. Integration of Rational Functions

As a first case, assume that the degree of the polynomial P (x) in the numerator of a rational

function f(x) =
P (x)
Q(x)

is lower than the degree of the polynomial Q(x) in the denominator.

We can then apply the method of partial fraction decomposition.

In a first step, we need to factor Q(x) so that the denominator obtains the form Q(x) =
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∏n
i=1 p

ki
i (x)·

∏r
j=1 s

mj
j (x), whereby pi(x) are first-degree polynomials and sj(x) second-degree

polynomials with a non-zero negative discriminant, and n, ki, r,mj ∈ N0.

The method of partial fraction decomposition tells us that we can then write f(x) as (with
ai,l, bj,t, cj,t ∈ R):

f(x) =
n∑
i=1

ki∑
l=1

ai,l
pli(x)

+
r∑
j=1

mj∑
t=1

bj,tx+ cj,t
stj(x)

• Example

Consider the following integral: ∫
x2 − 5x+ 1

x4 − 2x3 − 3x2
dx

The denominator can be rewritten as x4 − 2x3 − 3x2 = x2(x − 3)(x + 1). This means that
we have n = 3 first-degree polynomials, i.e., p1 = x2 with k1 = 2, p2 = x − 3 with k2 = 1,
and p3 = x+ 1 with k3 = 1, and r = 0 second-degree polynomials (with a non-zero negative
discriminant). According to the method of partial fraction decomposition, we can now write
the integrand f(x) as:

f(x) =
a1,1

p1
1(x)

+
a1,2

p2
1(x)

+
a2,1

p1
2(x)

+
a3,1

p1
3(x)

=
a1,1

x
+
a1,2

x2
+

a2,1

x− 3
+

a3,1

x+ 1

If we provide each fraction with the same denominator, we obtain the following integrand:

f(x) =
a1,1x(x− 3)(x+ 1) + a1,2(x− 3)(x+ 1) + a2,1x

2(x+ 1) + a3,1x
2(x− 3)

x2(x− 3)(x+ 1)

=
(a1,1+a2,1+a3,1)x3+(−2a1,1+a1,2+a2,1−3a3,1)x2+(−3a1,1−2a1,2)x+(−3a1,2)

x2(x−3)(x+1)

As this integrand must be the same as the original integrand, we want the coefficients of
the polynomial P (x) = x2 − 5x+ 1 to match the coefficients of the above polynomial in the
numerator. In other words, we obtain a set of four equations with four unknown variables:


a1,1 + a2,1 + a3,1 = 0

− 2a1,1 + a1,2 + a2,1 − 3a3,1 = 1

− 3a1,1 − 2a1,2 = − 5

− 3a1,2 = 1

The solutions to this system of equations are a1,1 = 17
9
, a1,2 = −1

3
, a2,1 = − 5

36
, and

a3,1 = −7
4

. So, the integrand of our original integral becomes:
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x2 − 5x+ 1

x4 − 2x3 − 3x2
=

17

9x
− 1

3x2
− 5

36(x− 3)
− 7

4(x+ 1)

We can now solve the integral as follows:

∫
x2 − 5x+ 1

x4 − 2x3 − 3x2
dx =

17

9

∫
1

x
dx− 1

3

∫
1

x2
dx− 5

36

∫
1

x− 3
dx− 7

4

∫
1

x+ 1
dx

=
17

9
ln |x|+ 1

3x
− 5

36
ln |x− 3| − 7

4
ln |x+ 1|+ c

Note that the integration constant c is equal to the sum of all the integration constants
produced by the four individual integrals (and multiplied by the respective factor). From
now on, when we write an integration constant c, it refers to an aggregate term consisting
of a number of individual integration constants.

As a second case, consider a rational function whereby the degree of the polynomial in the
numerator is higher or equal than the degree of the polynomial in the denominator. Now,
we first have to perform a long division (see section 2.3.2).

• Example

Let us have a look at the following integral:∫
x3 − 6x+ 2

2x+ 7
dx

Once we have performed long division, we can write the integrand as:

x3 − 6x+ 2

2x+ 7
=

(
x2

2
− 7x

4
+

25

8

)
+

(
− 159

8(2x+ 7)

)

The integral is then solved in the following way:

∫
x3 − 6x+ 2

2x+ 7
dx =

1

2

∫
x2dx− 7

4

∫
x dx+

25

8

∫
dx− 159

8

∫
1

2x+ 7
dx

=
x3

6
− 7x2

8
+

25x

8
− 159

16
ln |2x+ 7|+ c

=
x3

6
− 1

8

(
7x2 − 25x+ 159 ln

√
2x+ 7

)
+ c
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C. Substitution

The method of substitution consists of expressing the integrand f(x) of a given integral in
terms of another variable t, whereby x = g(t) and dx = g′(t)dt, so that the original integral
can be written as follows ∫

f(x) dx =

∫
f(g(t)) · g′(t) dt

• Example

Consider the following integral: ∫
e3x+2 − 1

e−3x + e3x+1
dx

We introduce the substitution t = e3x, whereby dx = dt
3t

, so that the integral obtains the
following form: ∫

e3x+2 − 1

e−3x + e3x+1
dx =

∫ (
e2t− 1

t−1 + et

)
dt

3t
=

1

3

∫
e2t− 1

1 + et2
dt

We now solve this integral as follows:

1

3

∫
e2t− 1

1 + et2
dt =

1

3

∫
e2t

1 + et2
dt− 1

3

∫
1

1 + et2
dt

=
e

6
ln(et2 + 1)− 1

3

∫
1

1 + (
√
et)

2 dt+ c

=
e

6
ln(et2 + 1)− 1

3
√
e

∫
1

1 + s2
ds+ c

=
e

6
ln(et2 + 1)− 1

3
√
e

arctan s+ c

=
e

6
ln
[
e
(
e3x
)2

+ 1
]
− 1

3
√
e

arctan
(√

e · e3x
)

+ c

=
e

6
ln(e6x+1 + 1)− 1

3
√
e

arctan
(
e3x+ 1

2

)
+ c

whereby in line 3 we introduced a second substitution s =
√
e · t, with dt = ds√

e
, and in line

5 we reversed the substitutions and expressed the result in terms of the variable x.
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C. Integration via Reduction Formulas

If an integral cannot be integrated directly, we can rely on the reduction formula of an
integral which is an expression of the original integral in terms of a recurring pattern of the
original integral but in a form of reduced complexity. This method is typically used when
the original integral contains an expression raised to a certain power.

• Example

Consider the following integral: ∫
1

(x2 + 1)2
dx

In a first step, we need to find its reduction formula. As a starting point, we consider the
generalized version of the above integral and apply partial integration with u(x) equal to the
integrand:

In =

∫
1

(ax2 + b)n
dx =

x

(ax2 + b)n
+ 2n

∫
ax2

(ax2 + b)n+1
dx

=
x

(ax2 + b)n
+ 2n

∫
ax2 + b− b
(ax2 + b)n+1

dx

=
x

(ax2 + b)n
+ 2n

[∫
1

(ax2 + b)n
dx− b

∫
1

(ax2 + b)n+1
dx

]

=
x

(ax2 + b)n
+ 2n [In − bIn+1]

⇔ In+1 =
x

2bn(ax2 + b)n
+

(
2n− 1

2bn

)
In

⇔ In =
x

2b(n− 1)(ax2 + b)n−1
+

[
2n− 3

2b(n− 1)

]
In−1

If we apply this reduction formula to our original integral with a = 1, b = 1, and n = 2, we
find the solution as follows:

∫
1

(x2 + 1)2
dx =

x

2 · 1 · (2− 1)(x2 + 1)2−1
+

[
2 · 2− 3

2 · 1 · (2− 1)

] ∫
1

(x2 + 1)2−1
dx

=
x

2(x2 + 1)
+

1

2
arctanx+ c
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D. Integration of Trigonometric Functions

In the general case, to solve integrals that contain trigonometric functions, we can use
the tangent half-angle substitution formulas, whereby we introduce the substitution
t = tan x

2
and which we have discussed in section 5.3 (see Fig. 5.14).

• Example

Consider the following integral: ∫
secx

3 + tan x
dx

If we implement the tangent half-angle substitution formulas, we can solve the integral as
follows: ∫

secx

3 + tan x
dx =

∫ [
1 + t2

1− t2

]
·

(
1

3 +
[

2t
1+t2

]) · [ 2dt

1 + t2

]

= 2

∫
1

−3t2 + 2t+ 3
dt

= −2

3

∫
1(

t− 1
3

)2 − 10
9

dt

=
3

5

∫
1

1−
[

3√
10

(
t− 1

3

)]2 dt

=

√
10

5

∫
1

1− s2
ds

=

√
10

5
arccoth s

=

√
10

5
· 1

2
ln

∣∣∣∣s+ 1

s− 1

∣∣∣∣
=

√
10

10
ln

∣∣∣∣∣3 tan x
2
− 1 +

√
10

3 tan x
2
− 1−

√
10

∣∣∣∣∣
whereby in line 5 we have implemented the substitution s = 3√

10

(
t− 1

3

)
, with dt =

√
10
3

ds,

and in the last line we reversed the substitutions and expressed the result in terms of the
variable x. Note that we would have gotten the same result if we opted for the method of
partial fraction decomposition at line 2.
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In the case where the integrand f(x) is not a rational function and is written in the form
of f(x) = cosa(c1x) sinb(c2x), with a, b ∈ Z+ and c1, c2 ∈ R, we can use the trigonometric for-
mulas of section 5.3 to solve the integral. If c1 = c2 and at least a or b is an odd number, we
can use the substitution method: if a (b) is odd, we implement the substitution u = sin(c2x)
(u = cos(c1x)).

• Example

Consider the following integral: ∫
sin2(3x) cos3(5x) dx

We solve this integral as follows:∫
sin2(3x) cos3(5x) dx

=

∫ (
1− cos 6x

2

)
cos(5x)

(
1 + cos 10x

2

)
dx

=
1

4

∫
[1− cos 6x+ cos 10x− cos(6x) cos(10x)] cos 5x dx

=
1

4

∫ [
1− cos 6x+ cos 10x− 1

2
(cos 4x+ cos 16x)

]
cos 5x dx

=
1

8

∫
[2 cos 5x− 2 cos(5x) cos(6x) + 2 cos(5x) cos(10x)− cos(4x) cos(5x)−]

[cos(5x) cos(16x)] dx

=
1

8

∫ [
2 cos 5x− (cosx+ cos 11x) + (cos 5x+ cos 15x)− 1

2
(cosx+ cos 9x)−

]
[

1

2
(cos 11x+ cos 21x)

]
dx

=
1

8

∫ (
−3

2
cosx+ 3 cos 5x− 1

2
cos 9x− 3

2
cos 11x+ cos 15x− 1

2
cos 21x

)
dx

=
1

8

(
−3

2
sinx+

3

5
sin 5x− 1

18
sin 9x− 3

22
sin 11x+

1

15
sin 15x− 1

42
sin 21x

)
+ c
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In case where the integrand f(x) is an odd function with respect to the cosine of x, i.e.,
f(sinx, cosx) = −f(sinx,− cosx), we perform the substitution t = sinx, with dt = cosxdx.
In contrast, if f(x) is an odd function with respect to the sine of x, i.e., f(sinx, cosx) =
−f(− sinx, cosx), we implement the substitution t = cosx, with dt = − sinxdx.

• Example

Let us have a look at the following integral:∫
sec2 x+ 1

sinx
dx

Since the integrand is odd with respect to the sine of x, we introduce the substitution
t = cosx, with dt = − sinxdx, and solve the integral as follows:

∫
sec2 x+ 1

sinx
dx = −

∫ 1
t2

+ 1

sin2 x
dt = −

∫ 1
t2

+ 1

1− t2
dt

= −
∫ 1

t2
+ 1

(1− t)(1 + t)
dt

= −
∫

1 + t2

t2(1− t)(1 + t)
dt

= −
∫ [

1

t2
+

1

1− t
+

1

1 + t

]
dt

=
1

t
+ ln |1− t| − ln |1 + t|+ c

=
1

t
+ ln

∣∣∣∣1− t1 + t

∣∣∣∣+ c

= secx+ ln

∣∣∣∣1− cosx

1 + cos x

∣∣∣∣+ c

whereby in line 4 we performed partial fraction decomposition.

In the case that the integrand f(x) is a rational function and an even function with
respect to both the sine and the cosine of x , i.e., f(sinx, cosx) = f(− sinx,− cosx),
we implement the substitution t = tanx, with:

• dx =
dt

1+t2
• cosx =

1√
1+t2

• sinx =
t√

1+t2
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• Example

Let us have a look at the following integral:∫
4 sin2(x) cosx

sinx+ 2 cosx
dx

We solve this integral as follows:

∫
4 sin2(x) cosx

sinx+ 2 cosx
dx

= 4

∫ t
1+t2
· 1√

1+t2

t√
1+t2

+ 2√
1+t2

· dt

1 + t2

= 4

∫
t2

(t+ 2)(1 + t2)2
dt

= 4

∫ [
4

25

1

(t+ 2)
− 4

25

(t− 2)

(1 + t2)
+

1

5

(t− 2)

(1 + t2)2

]
dt

=
4

5

∫ [
4

5

1

(t+ 2)
− 4

5

(t− 2)

(1 + t2)
+

(
t

(1 + t2)2
− 2

(1 + t2)2

)]
dt

=
4

5

[
4

5

∫
1

t+ 2
dt− 4

5

∫
t− 2

1 + t2
dt+

∫
t

(1 + t2)2
dt−

∫
2

(1 + t2)2
dt

]

= 4
5

[
4
5

∫
1
t+2

dt− 4
5

(∫
t

1+t2
dt−

∫
2

1+t2
dt

)
+

∫
t

(1+t2)2
dt−

(
t

t2+1
+

∫
1

t2+1
dt

)]

=
4

5

[
4

5
ln |t+ 2| − 4

5

(
1

2
ln |1 + t2| − 2 arctan t

)
− 1

2(1 + t2)
−
(

t

t2 + 1
+ arctan t

)]
+ c

=
16

25
ln |t+ 2| − 8

25
ln |1 + t2|+ 12

25
arctan t− 2

5(1 + t2)
− 4t

5(t2 + 1)
+ c

= 16
25

ln | tanx+ 2| − 8
25

ln |1 + tan2 x|+ 12
25

arctan (tan x)− 2
5(1+tan2 x)

− 4 tanx
5(tan2 x+1)

+ c

=
2

25
[8 ln |sinx+ 2 cosx| − 5 cos(x) (cosx+ 2 sinx) + 6x] + c

whereby going from line 3 to 4 we have applied partial fraction decomposition, and going
from line 6 to 7, we have rewritten the last integral with the assistance of its reduction
formula that we calculated under point C of this section.
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E. Integration of Hyperbolic Functions

In the general case, we can use the hyperbolic tangent half-angle substitution formu-
las, which we discussed in section 7.6.9, whereby t = tanh x

2
.

• Example

Let us have a look at the following integral:∫
5 sech (x)

1 + 2 sinh (x)
dx

We solve this integral as follows:

∫
5 sech (x)

1 + 2 sinh (x)
dx = 5

∫
(1− t2)

(1 + t2)
· 1

1 + 2
[

2t
1−t2

] · 2dt

(1− t2)

= 10

∫
1− t2

(1 + t2)(1− t2 + 4t)
dt

= 10

∫
1− t2

(1 + t2)(t− 2 +
√

5)(−t+ 2 +
√

5)
dt

= 10

∫ [−2
5
t+ 1

5

1 + t2
+

1
5

t− 2 +
√

5
+

−1
5

−t+ 2 +
√

5

]
dt

= −2

[∫
2t− 1

1 + t2
dt−

∫
1

t− 2 +
√

5
dt−

∫
1

t− 2−
√

5
dt

]

= −2

[∫
2t

1+t2
dt−

∫
1

1+t2
dt−

∫
1

t−2+
√

5
dt−

∫
1

t−2−
√

5
dt

]

= −2
(

ln |1 + t2| − arctan t− ln |t− 2 +
√

5| − ln |t− 2−
√

5|
)

= 2 arctan t+ 2 ln

∣∣∣∣t2 − 4t− 1

1 + t2

∣∣∣∣
= 2 arctan

(
tanh

x

2

)
+ 2 ln

∣∣∣∣1 + 2 sinh (x)

cosh (x)

∣∣∣∣
whereby we applied partial fraction decomposition to line 3 to obtain line 4.
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In the case that the integrand f(x) is not a rational function and is written in the form
of f(x) = cosha(c1x) sinhb(c2x), with a, b ∈ Z+ and c1, c2 ∈ R, we can use the hyperbolic
formulas (see section 7.6.9) to solve the integral. If c1 = c2 and at least a or b is an odd
number, we can use the substitution method: if a (b) is odd, we implement the substitution
u = sinh (c2x) (u = cosh (c1x)).

• Example

Consider the following integral:∫ [
cosh2(7x) sinh5(3x) cosh2(4x)− 2 sinh (7x) cosh (4x) sinh5(3x) cosh (7x) sinh (4x)+

]
[
sinh2(7x) sinh5(3x) sinh2(4x)

]
dx

We solve this integral as follows:∫ [
cosh2(7x) sinh5(3x) cosh2(4x)− 2 sinh (7x) cosh (4x) sinh5(3x) cosh (7x) sinh (4x)+

]
[
sinh2(7x) sinh5(3x) sinh2(4x)

]
dx

=

∫
sinh5(3x)

[
cosh2(7x) cosh2(4x)− 2 sinh (7x) cosh (4x) cosh (7x) sinh (4x)+

]
[
sinh2(7x) sinh2(4x)

]
dx

=

∫
sinh5(3x) [cosh(7x) cosh(4x)− sinh(7x) sinh(4x)]2 dx

=

∫
sinh5(3x) cosh2(3x) dx

=
1

3

∫ (
u2 − 1

)2
u2 du

=
1

3

∫ (
u6 − 2u4 + u2

)
du

=
1

3

(
u7

7
− 2u5

5
+
u3

3

)

=
cosh3(3x)

3

(
cosh4(3x)

7
− 2 cosh2(3x)

5
+

1

3

)

whereby we implemented in line 5 the substitution u = cosh(3x).
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In case where the integrand f(x) is an odd function with respect to the hyperbolic cosine of
x, i.e., f(sinhx, coshx) = −f(sinhx,−coshx), we perform the substitution u = sinhx, with
du = cosh (x)dx. In contrast, if f(x) is an odd function with respect to the hyperbolic sine of
x, i.e., f(sinhx, coshx) = −f(−sinhx, coshx), we implement the substitution u = coshx,
with du = sinh (x)dx.

• Example

Let us have a look at the following integral:∫
2 sinhx+ tanhx

csch2(x)(1 + coshx)
dx

We solve this integral in the following way:∫
2 sinhx+ tanhx

csch2(x)(1 + coshx)
dx =

∫
sinh3(x)(2 + sechx)

(1 + cosh x)
dx

=

∫
(u2 − 1)(2 + u−1)

(1 + u)
du

=

∫
(u− 1)(u+ 1)(2 + u−1)

(1 + u)
du

=

∫
(u− 1)(2u+ 1)

u
du

=

∫
2u2 − u− 1

u
du

=

∫
2u du−

∫
du−

∫
1

u
du

= u2 − u− ln |u|+ c

= cosh2x− coshx− ln |coshx|+ c

whereby in line 2 we introduced the substitution u = coshx.

In the case that the integrand f(x) is a rational function and an even function with
respect to both the hyperbolic sine and hyperbolic cosine of x , i.e., f(sinhx, coshx) =
f(−sinhx,−coshx), we implement the substitution t = tanhx, with:

• dx =
dt

1−t2 • coshx =
1√

1−t2 • sinhx =
t√

1−t2
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• Example

Consider the following integral: ∫
2 coth (x)csch2x

sinh (x)coshx+ 1
dx

We solve this integral as follows:∫
2 coth (x)csch2x

sinh (x)coshx+ 1
dx = 2

∫
cosh (x)

sinh3(x)(sinh (x)coshx+ 1)
dx

= 2

∫ 1√
1−t2[

t√
1−t2

]3 (
t√

1−t2 ·
1√

1−t2 + 1
) · dt

1− t2

= 2

∫
1− t2

t3 (−t2 + t+ 1)
dt

= 2

∫
1− t2

t3
(
t− 1+

√
5

2

)(
−t+ 1−

√
5

2

) dt

= 2

∫ [
1

t
− 1

t2
+

1

t3
+
−1

2
+ 3

√
5

10

t− 1+
√

5
2

−
1
2

+ 3
√

5
10

t− 1−
√

5
2

]
dt

= 2

[∫
1
t
dt−

∫
1
t2
dt+

∫
1
t3
dt

]
+
(
−1 + 3

√
5

5

)∫
2

2t−1−
√

5
dt−

(
1 + 3

√
5

5

)∫
2

2t−1+
√

5
dt

= 2 ln |t|+ 2

t
− 1

t2
+

(
−1 +

3
√

5

5

)
ln
∣∣∣2t− 1−

√
5
∣∣∣−(1 +

3
√

5

5

)
ln
∣∣∣2t− 1 +

√
5
∣∣∣+ c

= 2 ln |tanhx|+ coth (x)(2− cothx)− ln
∣∣4 (tanh2x− tanhx− 1

)∣∣
+

3
√

5

5
ln

∣∣∣∣∣2 tanhx− 1−
√

5

2 tanhx− 1 +
√

5

∣∣∣∣∣+ c

whereby we applied partial fraction decomposition to line 4.
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F. Integration of Irrational Functions

In the case where the integrand f(x) contains the expression n
√

(ax+ b)m, with a, b,m ∈ R,
n ∈ N0, and n ≥ 2, we can implement either the substitution u = ax+ b or the substitution
u = n

√
(ax+ b)m.

• Example

Let us have a look at the following integral:∫
4x(x− 1) + 1

3 + 3
√

(2x− 1)2
dx

We can solve this integral as follows:

∫
4x(x− 1) + 1

3 + 3
√

(2x− 1)2
dx =

∫
(2x− 1)2

3 + 3
√

(2x− 1)2
dx

=
3

4

∫
u

7
2

3 + u
du

=
3

2

∫
t8

3 + t2
dt

=
3

2

∫ [
t6 − 3t4 + 9t2 − 27 +

81

3 + t2

]
dt

=
3

2

[∫
t6 dt− 3

∫
t4 dt+ 9

∫
t2 dt− 27

∫
dt+ 81

∫
1

3 + t2
dt

]

=
3

2

[
t7

7
− 3t5

5
+ 3t3 − 27t+

81
√

3

3

∫
1

1 + s2
ds

]

=
3

2

[
u

7
2

7
− 3u

5
2

5
+ 3u

3
2 − 27u

1
2 +

81
√

3

3
arctan s

]
+ c

=
3(2x− 1)

7
3

14
− 9(2x− 1)

5
3

10
+

9(2x− 1)

2
− 81(2x− 1)

1
3

2

+
81
√

3

2
arctan

[
(2x− 1)

1
3

√
3

]
+ c

whereby we have implemented the substitution u = 3
√

(2x− 1)2 in line 2, the substitution

t =
√
u in line 3, and the substitution s = t√

3
in the last integral of line 6. In addition, we

have performed long division in line 4.
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In the case that the integrand f(x) contains the expression n

√(
ax+b
cx+d

)m
, with a, b, c, d,m ∈ R,

n ∈ N0, and n ≥ 2, we can implement the substitution tn =
(
ax+b
cx+d

)
.

• Example

Consider the following integral:

∫
4

√
9x2 − 6x+ 1

16x2 − 24x+ 9
dx

We can solve this integral as follows:

∫
4

√
9x2 − 6x+ 1

16x2 − 24x+ 9
dx

=

∫
4

√(
3x− 1

4x− 3

)2

dx

=

∫ √
3x− 1

4x− 3
dx

=− 10

∫
t2

(4t2 − 3)2 dt

=− 10

[
− t

8(4t2 − 3)
+

1

8

∫
1

4t2 − 3
dt

]

=− 10

[
− t

8(4t2−3)
+ 1

8

(
1

4
√

3

∫
1

t−
√

3
2

dt− 1√
3

∫
1

4t+2
√

3
dt

)]

=
5t

4(4t2 − 3)
− 5

16
√

3
ln

∣∣∣∣∣t−
√

3

2

∣∣∣∣∣+
5

16
√

3
ln
∣∣∣4t+ 2

√
3
∣∣∣+ c

=
1

4

√
(3x− 1)(4x− 3) +

5

16
√

3
ln

∣∣∣∣∣45(24x− 13) +
16
√

3

5

√
(3x− 1)(4x− 3)

∣∣∣∣∣+ c

whereby we introduced the substitution t2 = 3x−1
4x−3

in line 4 and subsequently applied the

below reduction formula in line 5 (with m = 0, n = 1, a = 4, and b = −3). Finally, in line 6
we performed partial fraction decomposition.

∫
tm+2

(at2 + b)n+1
dt = − tm+1

2an(at2 + b)n
+

(m+ 1)

2an

∫
tm

(at2 + b)n
dt
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In the case that the integrand f(x) contains the expression
√

(ax2 + bx+ c)m, we first rewrite
the quadratic polynomial under the square root in one of the three ways as indicated in
Fig. 9.2. Based on the specific form, a number of substitutions can then be implemented to
solve the integral. Note that D refers to the discriminant D = b2 − 4ac.

Figure 9.2: Method to solve integrals whereby a quadratic expression is written under a square root

• Example 1

Let us have a look at the following integral:∫ √
x2 − x− 1 dx

We can solve this integral as follows:

∫ √
x2 − x− 1 dx =

∫ √(
x− 1

2

)2

− 5

4
dx

=

∫ √
s2 − 5

4
ds

=

∫ √
5

4
sec2 θ − 5

4
·
√

5

2
sec(θ) tan(θ) dθ

=
5

4

∫
sec(θ) tan2(θ) dθ

=
5

4

∫
u2

(1− u2)2
du
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=
5

4

[
u

2(1− u2)
− 1

2

∫
1

1− u2
du

]

=
5

4

[
u

2(1− u2)
− 1

4
ln

∣∣∣∣1 + u

1− u

∣∣∣∣ ]+ c

=
1

4
(2x− 1)

√
x2 − x− 1− 5

16
ln

∣∣∣∣2x− 1 + 2
√
x2 − x− 1

2x− 1− 2
√
x2 − x− 1

∣∣∣∣+ c

whereby we inserted the substitution s = x − 1
2

in line 2 and the substitution s =
√

5
2

sec θ
in line 3, and we applied the reduction formula of the previous example (with m = 0, n = 1,
a = −1, and b = 1) to the integral of line 5.

• Example 2

Consider the following integral: ∫ √
(3x2 − x+ 1)3 dx

We can solve this integral as follows:

∫ √
(3x2 − x+ 1)3 dx =

∫ √√√√[3

(
x− 1

6

)2

+
11

12

]3

dx

=
11
√

33

72

∫ √√√√[[ 6√
11

(
x− 1

6

)]2

+ 1

]3

dx

=
11
√

33

72

∫ √
(tan2 θ + 1)

3 ·
√

11

6
sec2(θ) dθ

=
121
√

3

432

∫
sec5(θ) dθ

=
121
√

3

432

[
1

4
tan(θ) sec3(θ) +

3

4

∫
sec3(θ) dθ

]

=
121
√

3

432

[
1

4
tan(θ) sec3(θ) +

3

4

[
1

2
tan(θ) sec(θ) +

1

2

∫
sec(θ) dθ

]]

=
121
√

3

432

[
1

4
tan(θ) sec3(θ) +

3

4

[
1

2
tan(θ) sec(θ) +

1

2

∫
1

1− u2
du

]]

=
121
√

3

432

[
1

4
tan(θ) sec3(θ) +

3

8
tan(θ) sec(θ) +

3

16
ln

∣∣∣∣1 + sin θ

1− sin θ

∣∣∣∣ ]+ c
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=
1

192
(6x− 1)(24x2 − 8x+ 19)

√
3x2 − x+ 1+

121

768
√

3
ln

∣∣∣∣ 1

11

(
4
√

3(6x− 1)
√

3x2 − x+ 1 + (72x2 − 24x+ 13)
)∣∣∣∣+ c

whereby we introduced the substitution tan θ = 6√
11

(
x− 1

6

)
in line 3 and the substitution

u = sin θ in line 7. Both in line 5 and 6 we applied the below reduction formula with n = 5
and n = 3, respectively:∫

secn(θ) dθ =
1

n− 1
tan(θ) secn−2(θ) +

n− 2

n− 1

∫
secn−2(θ) dθ

• Example 3

Let us have a look at the following integral:∫
x4 + 2√
x2 + 2

dx

We can solve this integral as follows:∫
x4 + 2√
x2 + 2

dx =

∫
x4

√
x2 + 2

dx+ 2

∫
1√

x2 + 2
dx

=

∫
(
√

2 sinh θ)
4√

(
√

2 sinh θ)
2
+2
·
√

2 cosh(θ) dθ + 2

∫
1√

(
√

2 sinh θ)
2
+2
·
√

2 cosh(θ) dθ

= 4

∫
sinh4(θ) dθ + 2

∫
dθ

= 4

[
cosh(θ) sinh3(θ)− 3

∫
cosh2(θ) sinh2(θ) dθ

]
+ 2θ + c

= 4

[
cosh(θ) sinh3(θ)− 3

8

∫
(cosh(4θ)− 1) dθ

]
+ 2θ + c

= 4 cosh(θ) sinh3(θ)− 3

8
sinh(4θ) +

7θ

2
+ c

=
1

4
x(x2 − 3)

√
x2 + 2 +

7

2
ln

∣∣∣∣ 1√
2

(
x+
√
x2 + 2

)∣∣∣∣+ c

whereby we implemented the substitution x =
√

2 sinh(θ) in line 2 and applied the below
reduction formula to the first integral of line 3.∫

sinhn(θ) dθ = cosh(θ) sinhn−1(θ)− (n− 1)

∫
cosh2(θ) sinhn−2(θ) dθ
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9.2 Definite Integrals

9.2.1 Definitions

Consider a continuous function f : [a, b] ⊂ R→ R, whereby f(x) ≥ 0 over the closed interval
[a, b], and suppose we wish to calculate the area under the graph of f restricted by y = 0,
x = a, and x = b.

In a first instance, we identify a particular partition P = (x0 = a, x1, . . . , xi−1, xi, xi+1, . . . , )
(xn−1, xn = b), whereby we have divided the interval [a, b] in n subintervals of equal length

∆x = b−a
n

, with i ∈ {1, 2, . . . , n}, and whereby [xi−1, xi] is defined as the ith subinterval of
[a, b].

For each subinterval we can find the minimum function valuemi = min {f(x)|xi−1 ≤ x ≤ xi},
the maximum function value Mi = max {f(x)|xi−1 ≤ x ≤ xi}, and a random function
value f(x∗i ), with xi−1 ≤ x∗i ≤ xi.

We now define the Riemann sum as Rf (P ) =
∑n

i=1 f(x∗i )∆x, the lower Riemann sum
as Lf (P ) =

∑n
i=1 mi∆x and the upper Riemann sum as Uf (P ) =

∑n
i=1Mi∆x, whereby

Lf (P ) ≤ Rf (P ) ≤ Uf (P ).

Figure 9.3: The lower, upper, and random Riemann sums of a function f(x) for a given partition P
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The Riemann integral or the definite integral over the interval [a, b] is then defined as
the area under the graph of f in the case that we consider an infinite number of subintervals
and is denoted by:

I =

∫ b

a

f(x) dx = lim
n→+∞

Lf (P ) = lim
n→+∞

Uf (P ) = lim
n→+∞

Rf (P )

• Example

Figure 9.4: The integral of f(x) = x2 over
the interval [0, 4]

Suppose we wish to calculate the red-coloured area
under the graph of the function f : [0, 4]→ R : x 7→
f(x) = x2, as indicated in Fig. 9.4.

In a first step, we divide the interval [0, 4] in n equal
subintervals (with n 6= 0):

[
0,

4

n

]
,

[
4

n
,

8

n

]
,

[
8

n
,
12

n

]
, . . . ,

[
4(n− 1)

n
,
4n

n

]

Given that f is a strictly increasing function
over the interval [0, 4], we find that for the kth

subinterval
[

4(k−1)
n

, 4k
n

]
(with k ∈ {1, 2, . . . , n})

the smallest and largest function value, de-
noted by mk and Mk, respectively, are equal
to: 

mk =

[
4(k − 1)

n

]2

Mk =

[
4k

n

]2

Since the width of each subinterval is equal to ∆x = 4
n

, the lower and upper Riemann
sum for our particular partition are equal to:

Lf =
n∑
k=1

mk∆x =
n∑
k=1

[
4(k − 1)

n

]2

· 4

n

Uf =
n∑
k=1

Mk∆x =
n∑
k=1

[
4k

n

]2

· 4

n

Let us, for instance, calculate the lower Riemann sum Lf :
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Lf =
n∑
k=1

[
4(k − 1)

n

]2

· 4

n
=

64

n3

n∑
k=1

(k − 1)2

=
64

n3

[
n∑
k=1

k2 − 2
n∑
k=1

k +
n∑
k=1

1

]

=
64

n3

[
n(n+ 1)(2n+ 1)

6
− 2

n(n+ 1)

2
+ n

]

=
32

3n2
(2n2 − 3n+ 1)

The Riemann integral is then equal to:

∫ 4

0

f(x) dx = lim
n→+∞

Lf = lim
n→+∞

32

3n2
(2n2 − 3n+ 1)

= lim
n→+∞

64

3
− 32

n
+

32

3n2

=
64

3

The area of the red-coloured area in Fig. 9.4 is thus equal to 64
3

.

From the definition of the Riemann integral it follows that
∫ a
a
f(x) dx = 0. Furthermore, in

the case that a > b for a given interval [a, b], we can write
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx.

If the piecewise function f : [a, b]→ R is continuous over the closed interval [a, b] except in
the points c1, c2, . . . , cn−1, cn and if the left-and right-hand limits of f at these points exist,
we can define fi(x), with i ∈ {1, 2, . . . , n}, as:

fi : [ci−1, ci]→ R : x 7→ fi(x) =



f(x) if ci−1 < x < ci

lim
x→ci−1

>

f(x) if x = ci−1

lim
x→ci
<

f(x) if x = ci

The Riemann integral of the piecewise function f is then equal to
∫ b
a
f(x) dx =

∑n
i=1

∫ ci
ci−1

fi(x).

9.2.2 Properties

Similar to the indefinite integral, the Riemann integral has a property called linearity, which
is understood to be the following, with f, g : [a, b]→ R continuous functions and α, β ∈ R:
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∫ b

a

[αf(x) + βg(x)] dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx

Given is a continuous function f : [a, b] → R and c1 ≤ c2 ≤ . . . ≤ cn−2 ≤ cn−1, whereby
ci ∈ [a, b] with i ∈ {1, 2, . . . , n − 1}. If we set c0 = a and cn = b, we can split the defi-
nite integral of f over the interval [a, b] into a sum of n definite integrals in the following way:

∫ b

a

f(x) dx =
n∑
k=1

∫ ck

ck−1

f(x) dx

Consider, for example, the continuous function f : [−3, 3] → R and the points c1 = −2,
c2 = 0, and c3 = 1. Given that c1 ≤ c2 ≤ c3, we can write the Riemann integral as a sum of
n = 4 definite integrals, whereby c0 = −3 and c4 = 3:∫ 3

−3

f(x) dx =

∫ −2

−3

f(x) dx+

∫ 0

−2

f(x) dx+

∫ 1

0

f(x) dx+

∫ 3

1

f(x) dx

In the example of the previous section 9.2.1, we have seen that it takes a number of steps to
calculate the Riemann integral. The fundamental theorem of calculus provides an easier
way to determine the value of a Riemann integral of a continuous function f : [a, b]→ R:∫ b

a

f(x) dx = [F (x)]ba = F (b)− F (a)

whereby F (x) represents the primitive function of f(x). The primitive function F can be
found either through direct integration of the function f (see Fig. 9.1) or via one of the
methods discussed in section 9.1.2.

• Example

We wish to calculate the following Riemann integral:

∫ e
2

1
2

ln2(2x) dx

We calculate this integral as follows:∫ e
2

1
2

ln2(2x) dx = [(ln |2x| − 2) (x) ln |2x|]
e
2
1
2

+ 2

∫ e
2

1
2

dx

=

[
(ln |e| − 2)

(e
2

)
ln |e| − (ln |1| − 2)

(
1

2

)
ln |1|

]
+ 2

[
e

2
− 1

2

]

=
e− 2

2
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whereby in line 1 we applied the below reduction formula with n = 2, a = 2, and b = 0.

∫
lnn(ax+ b) dx = (ln |ax+ b| − n)

(
x+

b

a

)
lnn−1 |ax+ b|+ n(n− 1)

∫
lnn−2 |ax+ b| dx

9.2.3 Applications

A first application is the concept of improper integrals. To calculate a Riemann integral,
we considered a closed interval [a, b] within the domain of the function f . As soon as one of
the endpoints of the interval becomes open, we can no longer use the Riemann integral to
calculate the area under the graph of f . Instead, we rely on improper integrals.

Given a continuous function f : ]a, b[→ R and whereby [c, d] ⊂ ]a, b[ , we define the improper
integral as follows: ∫ b

a

f(x) dx = lim
c→a
>

, d→b
<

∫ d

c

f(x) dx

If the limit exists and is finite, we say that the integral is convergent, whereas if the limit
produces infinity or if it does not exist, we say that the integral diverges.

If at least one of the endpoints of the open interval ]a, b[ is equal to ±∞, the improper
integral is known as an improper integral of the first kind. If the integral becomes
improper in one of the two endpoints whereby a, b ∈ R, we call the integral an improper
integral of the second kind.

Note that the limit of the improper integral can be written as follows:

lim
c→a
>

, d→b
<

∫ d

c

f(x) dx = lim
c→a
>

(
lim
d→b
<

∫ d

c

f(x) dx

)
= lim

d→b
<

(
lim
c→a
>

∫ d

c

f(x) dx

)

• Example 1

We wish to calculate the area below the graph of the function f : ]−1,+∞[ \{0} → R : x 7→
f(x) = 4

x2
√
x+1

for the half-open interval [1,+∞[ . The integral is an improper integral of

the first kind and is written in the following way:∫ +∞

1

4

x2
√
x+ 1

dx = lim
d→+∞

∫ d

1

4

x2
√
x+ 1

dx

The area that corresponds to this improper integral is indicated in green in the below Fig. 9.5.
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Figure 9.5: The corresponding area of the improper integral of Example 1

Let us in a first step calculate the definite integral of this improper integral:∫ d

1

4

x2
√
x+ 1

dx

= 8

∫ √d+1

√
2

1

(t2 − 1)2
dt

= 8

[[
− 1

2t(t2 − 1)

]√d+1

√
2

− 1

2

∫ √d+1

√
2

1

t2(t2 − 1)
dt

]

= 8

[[
− 1

2t(t2 − 1)

]√d+1

√
2

− 1

2

(
−
∫ √d+1

√
2

1

t2
dt− 1

2

∫ √d+1

√
2

1

t+ 1
dt+

1

2

∫ √d+1

√
2

1

t− 1
dt

)]

= 8

[
− 1

2t(t2 − 1)
− 1

2t
+

1

4
ln

∣∣∣∣ t+ 1

t− 1

∣∣∣∣ ]
√
d+1

√
2

= 8

[(
− 1

2d
√
d+ 1

− 1

2
√
d+ 1

+
1

4
ln

∣∣∣∣√d+ 1 + 1√
d+ 1− 1

∣∣∣∣)−
(
− 1

2
√

2
− 1

2
√

2
+

1

4
ln

∣∣∣∣∣
√

2 + 1√
2− 1

∣∣∣∣∣
)]

=

[
− 4

d
√
d+ 1

− 4√
d+ 1

+ 2 ln

∣∣∣∣∣1 +
2

d
+ 2

√
1

d
+

2

d2

∣∣∣∣∣+ 4
√

2− 2 ln
(

3 + 2
√

2
)]

whereby we introduced the substitution t =
√
x+ 1 in line 2. In line 3, we applied the

reduction formula derived in the second example of the subsection F. Integration of Irrational
Functions of the section 9.1.2, with a = 1, b = −1, n = 1, and m = −2. Finally, in line 4,
we applied partial fraction decomposition.
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In a second and final step, we implement the above solution into our improper integral:∫ +∞

1

4

x2
√
x+ 1

dx

= lim
d→+∞

∫ d

1

4

x2
√
x+ 1

dx

= lim
d→+∞

[
− 4

d
√
d+ 1

− 4√
d+ 1

+ 2 ln

∣∣∣∣∣1 +
2

d
+ 2

√
1

d
+

2

d2

∣∣∣∣∣+ 4
√

2− 2 ln
(

3 + 2
√

2
)]

= 4
√

2− 2 ln
(

3 + 2
√

2
)

• Example 2

We want to find the area above the graph of the function f : R \ {−1, 0} → R : x 7→ f(x) =
8

x 3
√

(x+1)2
and below the x-axis when we restrict the function f to the interval ]-∞,- 1[ .

This area corresponds to the red-coloured area in Fig. 9.6.

Given that the designated area lies below the x-axis, we will insert a minus sign into the
integral in order to obtain a positive number for the area.

Figure 9.6: The corresponding area of the improper integral of Example 2

Taking the integral over the interval ]-∞,- 1[ , we see that the integral becomes twice im-
proper, so we will split it as follows:

−
∫ −1

−∞

8

x 3
√

(x+ 1)2
dx = −

∫ −2

−∞

8

x 3
√

(x+ 1)2
dx−

∫ −1

−2

8

x 3
√

(x+ 1)2
dx
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= − lim
c→−∞

∫ −2

c

8

x 3
√

(x+ 1)2
dx− lim

d→−1
<

∫ d

−2

8

x 3
√

(x+ 1)2
dx

In a first step, we will calculate the following indefinite integral:∫
8

x 3
√

(x+ 1)2
dx

= 24

∫
1

u3 − 1
du

= 24

[
1

3

∫
1

u− 1
du− 1

3

∫
u+ 2

u2 + u+ 1
du

]

= 24

[
1

3

∫
1

u− 1
du− 1

3

∫
u+ 2(

u+ 1
2

)2
+ 3

4

du

]

= 24

[
1

3

∫
1

u− 1
du− 1

3

∫
s+ 3

2

s2 + 3
4

ds

]

= 24

[
1

3

∫
1

u− 1
du− 1

3

[∫
s

s2 + 3
4

ds+
3

2

∫
1

s2 + 3
4

ds

]]

= 8 ln |u− 1| − 4 ln

∣∣∣∣s2 +
3

4

∣∣∣∣− 8
√

3 arctan

(
2s√

3

)
+ c

= 8 ln
∣∣∣ 3
√
x+ 1− 1

∣∣∣− 4 ln
∣∣∣ 3
√

(x+ 1)2 + 3
√
x+ 1 + 1

∣∣∣− 8
√

3 arctan

(
2 3
√
x+ 1√

3
+

1√
3

)
+ c

= 4 ln

∣∣∣∣∣∣
1− 2

3√x+1
+ 1

3
√

(x+1)2

1 + 1
3√x+1

+ 1
3
√

(x+1)2

∣∣∣∣∣∣− 8
√

3 arctan

(
2 3
√
x+ 1√

3
+

1√
3

)
+ c

whereby we implemented the substitution u3 = x+1 in line 2 and the substitution s = u+ 1
2

in line 5. In addition, we applied partial fraction decomposition in line 3. In a next step, we
calculate the first term of the improper integral:

− lim
c→−∞

∫ −2

c

8

x 3
√

(x+ 1)2
dx

= − lim
c→−∞

4 ln

∣∣∣∣∣∣
1− 2

3√x+1
+ 1

3
√

(x+1)2

1 + 1
3√x+1

+ 1
3
√

(x+1)2

∣∣∣∣∣∣− 8
√

3 arctan

(
2 3
√
x+ 1√

3
+

1√
3

)−2

c

= − lim
c→−∞

4 ln

∣∣∣∣∣∣
1− 2

3√−2+1
+ 1

3
√

(−2+1)2

1 + 1
3√−2+1

+ 1
3
√

(−2+1)2

∣∣∣∣∣∣− 8
√

3 arctan

(
2 3
√
−2 + 1√

3
+

1√
3

)
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−4 ln

∣∣∣∣∣∣
1− 2

3√c+1
+ 1

3
√

(c+1)2

1 + 1
3√c+1

+ 1
3
√

(c+1)2

∣∣∣∣∣∣+ 8
√

3 arctan

(
2 3
√
c+ 1√

3
+

1√
3

)
= −4 ln(4) + 8

√
3 ·
(
−π

6

)
+ 4 ln(1)− 8

√
3 ·
(
−π

2

)
= −8 ln(2) +

8π
√

3

3

Similarly, the second term of the improper integral is calculated as follows:

− lim
d→−1
<

∫ d

−2

8

x 3
√

(x+ 1)2
dx

= − lim
d→−1
<

[
8 ln

∣∣ 3
√
x+ 1− 1

∣∣− 4 ln
∣∣∣ 3
√

(x+ 1)2 + 3
√
x+ 1 + 1

∣∣∣− 8
√

3 arctan
(

2 3√x+1√
3

+ 1√
3

)]d
−2

= − lim
d→−1
<

[
8 ln

∣∣ 3
√
d+ 1− 1

∣∣− 4 ln
∣∣∣ 3
√

(d+ 1)2 + 3
√
d+ 1 + 1

∣∣∣− 8
√

3 arctan
(

2 3√d+1√
3

+ 1√
3

)]
[
−8 ln

∣∣ 3
√
−2 + 1− 1

∣∣+ 4 ln
∣∣∣ 3
√

(−2 + 1)2 + 3
√
−2 + 1 + 1

∣∣∣+ 8
√

3 arctan
(

2 3√−2+1√
3

+ 1√
3

)]
= −8 ln | − 1|+ 4 ln |1|+ 8

√
3
(π

6

)
+ 8 ln | − 2| − 4 ln |1| − 8

√
3
(
−π

6

)
= 8 ln(2) +

8π
√

3

3

The area that corresponds to the improper integral is then equal to:

−
∫ −1

−∞

8

x 3
√

(x+ 1)2
dx = − lim

c→−∞

∫ −2

c

8

x 3
√

(x+ 1)2
dx− lim

d→−1
<

∫ d

−2

8

x 3
√

(x+ 1)2
dx

=

(
−8 ln(2) +

8π
√

3

3

)
+

(
8 ln(2) +

8π
√

3

3

)

=
16π
√

3

3

In Example 2, we introduced a minus sign into the integral so that we obtained a positive
value for the area. We would have gotten the same result if we calculated the integral of
the absolute value of the integrand. This brings us to a second application of the Riemann
integral: the area between the graphs of two functions. Given two functions f : R→ R
and g : R→ R, the area between the graph of f and g over a certain interval [a, b] is equal to:∫ b

a

|f(x)− g(x)| dx
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• Example 1

We would like to calculate the area between the graphs of the functions f : R → [1,+∞[ :
x 7→ f(x) = cosh

(x
2

)
and g : R→ [−1,+∞[ : x 7→ g(x) = cosh (x)−2, which is represented

by the purple-coloured area in Fig. 9.7.

Figure 9.7: The area between the graphs of the functions f and g of Example 1

In order to determine the boundaries of our Riemann integral, we have to calculate the
points of intersection x1 and x2 between f and g. Setting both functions equal to each other
and solving for x, we find:

cosh
(x

2

)
= cosh (x)− 2 ⇔ e

x
2 + e−

x
2

2
=
ex + e−x

2
− 2

⇔ e
3x
2 + e

x
2 = e2x + 1− 4ex

⇔ t3 + t = t4 + 1− 4t2

⇔ (t+ 1)2

(
t− 3 +

√
5

2

)(
t− 3−

√
5

2

)
= 0

whereby we introduced the substitution t = e
x
2 in line 3. Converting back to the variable x,

we find the two points of intersection: x1 = 2 ln
(

3−
√

5
2

)
and x2 = 2 ln

(
3+
√

5
2

)
. Note that

the solution t = −1 does not represent a real solution.

The area is calculated by solving the following Riemann integral:∫ x2

x1

|f(x)− g(x)| dx =

∫ x2

x1

∣∣∣ cosh
(x

2

)
− cosh (x) + 2

∣∣∣ dx
=
[ ∣∣∣2 sinh

(x
2

)
− sinh (x) + 2x

∣∣∣ ]x2
x1
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=
∣∣∣2 sinh

(x2

2

)
− sinh (x2) + 2x2 − 2 sinh

(x1

2

)
+ sinh (x1)− 2x1

∣∣∣
=

∣∣∣∣∣2 sinh

[
ln

(
3 +
√

5

2

)]
− sinh

[
2 ln

(
3 +
√

5

2

)]
+ 4 ln

(
3 +
√

5

2

)∣∣∣∣∣
∣∣∣∣∣−2 sinh

[
ln

(
3−
√

5

2

)]
+ sinh

[
2 ln

(
3−
√

5

2

)]
− 4 ln

(
3−
√

5

2

)∣∣∣∣∣
=

∣∣∣∣∣2 sinh

[
ln

(
3 +
√

5

2

)]
− sinh

[
ln

(
7 + 3

√
5

2

)]
+ 4 ln

(
3 +
√

5

3−
√

5

)∣∣∣∣∣
∣∣∣∣∣−2 sinh

[
ln

(
3−
√

5

2

)]
+ sinh

[
ln

(
7− 3

√
5

2

)]∣∣∣∣∣
=

∣∣∣∣∣
(

3 +
√

5

2
− 2

3 +
√

5

)
− 1

2

(
7 + 3

√
5

2
− 2

7 + 3
√

5

)
+ 4 ln

(
3 +
√

5

3−
√

5

)∣∣∣∣∣
∣∣∣∣∣−
(

3−
√

5

2
− 2

3−
√

5

)
+

1

2

(
7− 3

√
5

2
− 2

7− 3
√

5

)∣∣∣∣∣
= −
√

5 + 4 ln

(
7 + 3

√
5

2

)

• Example 2

We wish to calculate the area between the graphs of the functions f : R \ {0, 3} → R0 : x 7→
f(x) = 16

x(x−3)2
and g : R \ {2, 3} → R : x 7→ g(x) = 12

−x2+5x−6
, given the following two

restrictions: x < 0 and f(x) ≥ g(x). This area is equal to the blue-coloured area in Fig. 9.8.

In order to identify the interval over which we have to integrate, we must first find the points
of intersection between the two functions f and g, given that x < 0:

f(x) = g(x) ⇔ 16

x(x− 3)2
=

12

−x2 + 5x− 6
⇔ 4

x(x− 3)2
=

3

(x− 3)(−x+ 2)

⇔ − 4x+ 8 = 3x2 − 9x

⇔ 3x2 − 5x− 8 = 0

This quadratic equation produces two solutions: x1 = −1 and x2 = 1
8

. Since we must have
that x < 0, the point of intersection of our interest is x1 = −1. If we insert some random
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numbers to the left and right of x1 (and making sure that x < 0), we can see that f(x) ≥ g(x)
for x1 ≤ −1 and f(x) ≤ g(x) for −1 ≤ x1 < 0. The interval over which we have to integrate
is therefore equal to ]-∞,-1].

Figure 9.8: The area between the graphs of the functions f and g of Example 2

The area we wish to find is thus equal to the following improper integral of the first kind:

∫ −1

−∞

∣∣∣∣ 16

x(x− 3)2
− 12

(x− 3)(−x+ 2)

∣∣∣∣ dx = lim
c→−∞

∫ −1

c

∣∣∣∣ 16

x(x− 3)2
− 12

(x− 3)(−x+ 2)

∣∣∣∣ dx
In a first step, we will calculate the indefinite integral:∫ [

16

x(x− 3)2
− 12

(x− 3)(−x+ 2)

]
dx

= 4

∫
3x2 − 5x− 8

x(x− 2)(x− 3)2
dx

= 4

[
4

9

∫
1

x
dx− 3

∫
1

x− 2
dx+

23

9

∫
1

x− 3
dx+

4

3

∫
1

(x− 3)2
dx

]

= 4

[
4

9
ln |x| − 3 ln |x− 2|+ 23

9
ln |x− 3| − 4

3(x− 3)

]
+ c

whereby we applied partial fraction decomposition in line 3.

The area is calculated as follows:
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lim
c→−∞

∫ −1

c

∣∣∣∣ 16

x(x− 3)2
− 12

(x− 3)(−x+ 2)

∣∣∣∣ dx
= 4 lim

c→−∞

[
4

9
ln |x| − 3 ln |x− 2|+ 23

9
ln |x− 3| − 4

3(x− 3)

]−1

c

= 4 lim
c→−∞

[
4

9
ln | − 1| − 3 ln | − 1− 2|+ 23

9
ln | − 1− 3| − 4

3(−1− 3)
− 4

9
ln |c|+ 3 ln |c− 2|

]
[
−23

9
ln |c− 3|+ 4

3(c− 3)

]

= 4 lim
c→−∞

[
−3 ln(3) +

23

9
ln(4) +

1

3
+

1

9
ln

∣∣∣∣(1− 2
c
)27

(1− 3
c
)23

∣∣∣∣+
4

3(c− 3)

]

= − 12 ln(3) +
92

9
ln(4) +

4

3

A third application of Riemann integrals is the calculation of the length of a curve called
the arc length. In this section, we will limit ourselves to the study of curves in R2.

Consider the vector function ~r : [a, b] → R2 : t 7→ ~r(t). The image of ~r(t) is called an arc

segment and if we write ~r(a) = A and ~r(b) = B, the arc segment is denoted by
>
AB. If ~r(t)

is continuous, we call its image a continuous arc segment.

If the derivative of ~r exists and if d~r
dt

is a continuous function over the interval [a, b], we

define the arc length LAB of the arc segment
>
AB as follows:

LAB =

∫ b

a

∥∥∥∥d~rdt
∥∥∥∥ dt =

∫ b

a

√(
drx
dt

)2

+

(
dry
dt

)2

dt

If the curve is written in the form of y = f(x) instead of a vector function with parameter
t, we choose the variable x as the parameter and the arc length becomes:

LAB =

∫ b

a

√
1 +

(
dy

dx

)2

dx

If we choose polar coordinates, we can write the arc length in terms of either the parameter
t or the angle θ: 

LAB =

∫ b

a

√(
dρ

dt

)2

+ ρ2

(
dθ

dt

)2

dt

LAB =

∫ b

a

√(
dρ

dθ

)2

+ ρ2 dθ
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• Example 1

Suppose we are given the polar coordinates (ρ, θ) = (θ2, θ) and we would like to calculate
the arc length of the arc segment that is created when we let the angle θ run from A = 0 to
B = 6π.

Figure 9.9: The arc segment of Example 1

We find the arc length as follows:

LAB =

∫ b

a

√(
dρ

dθ

)2

+ ρ2 dθ =

∫ 6π

0

√
(2θ)2 + θ4 dθ =

∫ 6π

0

θ
√

4 + θ2 dθ

=

∫ √4+36π2

2

u2 du

=

[
u3

3

]√4+36π2

2

=

√
(4 + 36π2)3

3
− 8

3

≈ 2268

whereby we implemented the substitution u =
√

4 + θ2 in line 2.

• Example 2

Consider the vector function ~r : [−2, 3] → R2 : t 7→ ~r(t) = (− t
3

2
+ 3t2

4
, t2 − 2t + 2), whose

image is shown in Fig. 9.10, with A = ~r(a) = ~r(−2) = (7, 10), B = ~r(b) = ~r(3) = (−27
4
, 5),

and ~r(c) = ~r(1) = (1
4
, 1). Given that ~r(t) decreases over the interval [−2, 1] and increases

over the interval [1, 3], we split the Riemann integral over these two intervals whereby we
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introduce a minus sign in the Riemann integral that corresponds to the first interval in order
to obtain a positive value for the respective arc lengths.

Figure 9.10: The arc segment of Example 2

We find the arc length as follows:

LAB =

∫ c

a

√(
drx
dt

)2

+

(
dry
dt

)2

dt+

∫ b

c

√(
drx
dt

)2

+

(
dry
dt

)2

dt

= −
∫ 1

−2

√(
−3t2

2
+

3t

2

)2

+ (2t− 2)2 dt+

∫ 3

1

√(
−3t2

2
+

3t

2

)2

+ (2t− 2)2 dt

= −
∫ 1

−2

√
9t4

4
− 9t3

2
+

25t2

4
− 8t+ 4 dt+

∫ 3

1

√
9t4

4
− 9t3

2
+

25t2

4
− 8t+ 4 dt

= −
∫ 1

−2

(t− 1)

√
9t2

4
+ 4 dt+

∫ 3

1

(t− 1)

√
9t2

4
+ 4 dt

= −
∫ 1

−2

t

√
9t2

4
+ 4 dt+

∫ 1

−2

√
9t2

4
+ 4 dt+

∫ 3

1

t

√
9t2

4
+ 4 dt−

∫ 3

1

√
9t2

4
+ 4 dt

= −4

9

∫ z2

z1

z2 dz +
8

3

∫ θ2

θ1

sec3(θ) dθ +
4

9

∫ z3

z2

z2 dz − 8

3

∫ θ3

θ2

sec3(θ) dθ

= −4

9

∫ z2

z1

z2 dz +
8

3

[[
tan(θ) sec(θ)

2

]θ2
θ1

+
1

2

∫ θ2

θ1

sec(θ) dθ

]
+

4

9

∫ z3

z2

z2 dz

− 8

3

[[
tan(θ) sec(θ)

2

]θ3
θ2

+
1

2

∫ θ3

θ2

sec(θ) dθ

]

= −4

9

[
z3

3

]z2
z1

+
8

3

[[
tan(θ) sec(θ)

2

]θ2
θ1

+
1

2
[ arctanh(sin θ)]θ2θ1

]
+

4

9

[
z3

3

]z3
z2
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− 8

3

[[
tan(θ) sec(θ)

2

]θ3
θ2

+
1

2
[ arctanh(sin θ)]θ3θ2

]

= −4

9

[
125

24
− 13

√
13

3

]
+

8

3

[[
15

32
+

3
√

13

8

]
+

1

2

[
arctanh

(
3

5

)
− arctanh

(
− 3√

13

)]]

+
4

9

[
97
√

97

24
− 125

24

]
− 8

3

[[
9
√

97

32
− 15

32

]
+

1

2

[
arctanh

(
9√
97

)
− arctanh

(
3

5

)]]

=
113
√

97 + 316
√

13− 230

108
+

4

3

[
2 arctanh

(
3

5

)
− arctanh

(
9√
97

)
− arctanh

(
− 3√

13

)]
≈ 20.1

whereby we implemented the substitutions z =

√
9t2

4
+ 4 and t = 4

3
tan θ in line 6 with

corresponding boundaries equal to z1 =
√

13, z2 = 5
2

, z3 =
√

97
2

, θ1 = arctan(−3
2

), θ2 =

arctan(3
4

), and θ3 = arctan(9
4

). In line 7, we applied the reduction formula of Example 2
of the subsection F. Integration of Irrational Functions of section 9.1.2. Finally, note that
sin(arctan(x)) = x√

1+x2
, which we used in line 11 and 12.

A fourth and final application of the Riemann integral that we discuss in this section is the
calculation of the volume of a solid of revolution. We will discuss two methods: one is
based on cylinders and the other on disks. Each method is explained by an example.

• Method of Cylinders

Consider the regions bounded by the functions f : R→ R : x 7→ f(x) = (x−3)3−3(x−3)2+6

and g : R→ ]−∞, 6] : x 7→ g(x) = −1
6

(x− 6)2 + 6. We want to calculate the volume of the
solid of revolution created by rotating these bounded regions over 2π about the y-axis. The
left panel of Fig. 9.11 shows the bounded regions A and B, and the right panel demonstrates
the final result after rotation.

Figure 9.11: The solid of revolution (right) created by rotating the bounded regions A and B (left) about
the y-axis
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The method of cylinders treats the solid of revolution as a volume composed entirely of
cylinders. The idea is to find an expression for the area of the curved surface of the cylin-
der (ignoring thus its two bases) and integrate that expression across the bounded regions.
Fig. 9.12 depicts two cylinders as an example: one, in green, related to the bounded region
A, and another, in orange, corresponding to the bounded region B.

Figure 9.12: The method of cylinders

The general formula for the area of the curved surface of a cylinder is equal to S = 2πRh,
with R the radius of the cylinder and h its height. If we look at the orange cylinder within
region B, its radius is equal to R = x and its height to h = g(x)−f(x). The area of this cylin-
der is therefore equal to SB = 2πx [g(x)− f(x)]. Similarly, the area of the curved surface of
the green cylinder corresponding to the bounded region A is equal to SA = 2πx [f(x)− g(x)].

In order to find the volume of the solid of revolution created by the region A, we integrate
the expression SA over the interval [x1, x2]. To the same extent, the volume of the solid
of revolution related to the bounded region B is found by integrating the area SB over the
interval [x2, x3].

Let us in a first instance determine the boundaries x1, x2, and x3, which are the points of
intersection between the functions f and g:

f(x) = g(x) ⇔ (x− 3)3 − 3(x− 3)2 + 6 = −1

6
(x− 6)2 + 6

⇔ (x− 3)2(x− 6) = −1

6
(x− 6)2

⇔


x1 = 35

12
−
√

73
12

x2 = 35
12

+
√

73
12

x3 = 6
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The volume of the solid of revolution created by rotating the bounded regions A and B over
an angle of 2π about the y-axis is then calculated as follows:

V =

∫ x2

x1

SA dx+

∫ x3

x2

SB dx

=

∫ x2

x1

2πx [f(x)− g(x)] dx+

∫ x3

x2

2πx [g(x)− f(x)] dx

= 2π

∫ x2

x1

x

[[
(x− 3)3 − 3(x− 3)2 + 6

]
−
[
−1

6
(x− 6)2 + 6

]]
dx

+ 2π

∫ x3

x2

x

[[
−1

6
(x− 6)2 + 6

]
−
[
(x− 3)3 − 3(x− 3)2 + 6

]]
dx

= 2π

∫ x2

x1

[
x4 − 71x3

6
+ 43x2 − 48x

]
dx+ 2π

∫ x3

x2

[
−x4 +

71x3

6
− 43x2 + 48x

]
dx

= 2π

[
x5

5
− 71x4

24
+

43x3

3
− 24x2

]x2
x1

+ 2π

[
−x

5

5
+

71x4

24
− 43x3

3
+ 24x2

]x3
x2

= 2π

[(
(35 +

√
73)5

5 · 125
− (35−

√
73)5

5 · 125

)
−

(
71(35 +

√
73)4

24 · 124
− 71(35−

√
73)4

24 · 124

)]
[

+

(
43(35 +

√
73)3

3 · 123
− 43(35−

√
73)3

3 · 123

)
−

(
24(35 +

√
73)2

122
− 24(35−

√
73)2

122

)]

+ 2π

[
−

(
65

5
− (35 +

√
73)5

5 · 125

)
+

(
71 · 64

24
− 71(35 +

√
73)4

24 · 124

)]
[
−

(
43 · 63

3
− 43(35 +

√
73)3

3 · 123

)
+

(
24 · 62 − 24(35 +

√
73)2

122

)]

=

(
8213737

155520
+

77891
√

73

51840

)
π

≈ 206.25

• Method of Disks

Consider the region bounded by the two functions f : R → ]3, 5[ : x 7→ f(x) = tanh(x) + 4

and g : R0 → R\ ]1.75, 2.15[ : x 7→ g(x) = 1
4

coth(x) + 2 and the line x2 = 5. We are inter-
ested in calculating the volume of the solid of revolution created by rotating this bounded
region over an angle of 2π about the line y = 1. The grey-shaded region at the left-hand
side of Fig. 9.13 represents the bounded region and at the right-hand side we see the final
result after rotation.
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Figure 9.13: The solid of revolution (right) created by rotating the bounded region (left) about the line
y = 1

The method of disks regards the volume of a solid of revolution as an accumulation of disks
whose plane is oriented perpendicular to the axis of rotation. The method consists of first
finding an expression for the surface area of a disk that corresponds to one slice of our solid of
revolution and subsequently integrating that expression over the bounded region. Fig. 9.14
depicts two disks as an example.

Figure 9.14: The method of disks

Since the disk has a hole in the middle in our example we have to bear in mind to subtract
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the surface area of the hole when calculating the surface area of the disk. Also, remember
that we are rotating the bounded region about the line y = 1. For a given x, the outer radius
is equal to Rout = f(x)− 1, whereas the inner radius measures Rin = g(x)− 1. The surface
area of the disk is therefore equal to S = π [f(x)− 1]2 − π [g(x)− 1]2.

To determine the volume of the solid of revolution, we integrate the surface area S over the
interval [x1, x2]. We know that x2 = 5, so we still have to find the point of intersection x1:

f(x) = g(x) ⇔ tanh(x) + 4 =
1

4
coth(x) + 2

⇔ ex − e−x

ex + e−x
+ 4 =

1

4

(
ex + e−x

ex − e−x

)
+ 2

⇔ 4(e2x − 2 + e−2x) + 8(e2x − e−2x) = e2x + 2 + e−2x

⇔ 11e4x − 10e2x − 5 = 0

⇔ e2x =
5 + 4

√
5

11

⇔ x1 =
1

2
ln

(
5 + 4

√
5

11

)

We can now calculate the volume of the solid of revolution created by rotating the bounded
region about the line y = 1 as follows:

V =

∫ x2

x1

S dx

=

∫ x2

x1

[
π [f(x)− 1]2 − π [g(x)− 1]2

]
dx

= π

∫ x2

x1

[
tanh2(x) + 6 tanh(x) + 9− coth2(x)

16
− coth(x)

2
− 1

]
dx

= π

∫ x2

x1

[
cosh(2x)− 1

cosh(2x) + 1
+ 6 tanh(x) + 9− cosh2(x)

16 sinh2(x)
− coth(x)

2
− 1

]
dx

= π

[∫ t2

t1

(
1

t2
+

1

4(1− t)
+

1

4(1 + t)
− 1

t2
√

1− t2

)
dt+ 6

∫ u2

u1

1

u
du+ 8

∫ x2

x1

dx

]
[
− 1

16

∫ s2

s1

(
1

s2
+

1

2(1− s)
+

1

2(1 + s)

)
ds− 1

2

∫ r2

r1

1

r
dr

]

= π

[
−
[

1

t

]t2
t1

+
1

4

[
ln

∣∣∣∣1 + t

1− t

∣∣∣∣ ]t2
t1

+ [ tan θ ]θ2θ1 + 6 [ ln |u| ]u2u1 + 8 [x ]x2x1 +
1

16

[
1

s

]s2
s1

]
[
− 1

32

[
ln

∣∣∣∣1 + s

1− s

∣∣∣∣ ]s2
s1

− 1

2
[ ln |r| ]r2r1

]
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= π

[(
− e20+1
e20−1

+ 113+20
√

5
−8+20

√
5

)
+
(

5− 1
4

ln

∣∣∣105+40
√

5
121

∣∣∣)+
(

2e10

e20−1
− 11(5+4

√
5)

−8+20
√

5

)]
+

6 ln

∣∣∣∣∣∣
(e5 + e−5)(−3 + 2

√
5)
√

11(5 + 4
√

5)

−8 + 20
√

5

∣∣∣∣∣∣
+

(
40− 4 ln

∣∣∣∣∣5 + 4
√

5

11

∣∣∣∣∣
)

[
+

(
e10 + 1

16(e10 − 1)
− −4 + 10

√
5

16(29− 12
√

5)

)
+

(
− 5

16
+

1

32
ln

∣∣∣∣∣ 25− 2
√

5

11(−3 + 2
√

5)

∣∣∣∣∣
)]

+

−1

2
ln

∣∣∣∣∣∣
(e5 + e−5)(4 +

√
5)
√

11(5 + 4
√

5)

−4 + 10
√

5

∣∣∣∣∣∣


≈ 203.76

whereby we introduced in line 5 the substitutions t = tanh(2x), u = cosh(x), s = tanh(x),
and r = sinh(x). In the same line, we also applied twice partial fraction decomposition.
Note furthermore that in line 7 the angle θ is equal to θ = (arcsin

√
1− t2) and that tan θ =

sin θ√
1−sin2 θ

=
√

1−t2
t

= csch(2x).
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10 Multivariable Calculus

Multivariable calculus or vector calculus is the extension of the study of real functions
of one variable to the analysis of real functions of any number of variables. Specifically, it
deals with differential and integral calculus of multivariable functions.

10.1 Definitions

In section 7.1.1, we defined the general scalar function f : Rn → R : (x1, x2, . . . , xn) 7→
f(x1, x2, . . . , xn). Recall that the scalar function f : R → R represents a curve in two-
dimensional space and that the scalar function f : R2 → R represents a two-dimensional
surface in three-dimensional space.

For a two-dimensional surface generated by the scalar function f : R2 → R, we define the
level curve(s) as the collection of points for which f(x, y) = c (with c ∈ R). For a three-
dimensional surface—which cannot be drawn—generated by the scalar function f : R3 → R,
we can define the level surface(s) as the collection of points for which f(x, y, z) = c, which
we can draw.

The left-hand side of Fig. 10.1 shows the level curves (in yellow) of the function f : R2 →
R : (x, y) 7→ f(x, y) = cos(x) − sin(y) for which f(x, y) = c =

√
3−1
2

. The graph of f is
represented by the blue surface and note that the graph has been lowered by an amount of c
for visual purposes. At the right-hand side, we see the level surface (in green) of the function
f : R3 → R : (x, y, z) 7→ f(x, y, z) = 2x2 + 0.2y2 + 10z2 for which f(x, y, z) = 16.

Figure 10.1: Level curves in yellow (left) and the level surface in green (right)

Also in the same section 7.1.1, we discussed the general vector function ~F : Rn → Rm :
(t1, t2, . . . , tn) 7→ ~F (t1, t2, . . . , tn) = (f1(t1, t2, . . . , tn), f2(t1, t2, . . . , tn), . . . , fm(t1, t2, . . . , tn)),

whereby the vector function ~F : R → R2 represents a curve in two-dimensional space, the
vector function ~F : R → R3 a curve in three-dimensional space, and the vector function
~F : R2 → R3 a two-dimensional surface in three-dimensional space.

If n > 1 and n = m, the vector function is called a vector field. Graphically, this means
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that at every point in m-dimensional space we assign a vector of a certain magnitude and
with a certain direction. In other words, a vector field is a vector whose properties depend of
its position in space. If the vector field is constant, we obtain a regular vector. An example
of a vector field is ~F : R3 → R3 : (x, y, z) 7→ ~F = (0.5x+ y, y + z, 2z − x), which is depicted

in Fig. 10.2, and an example of a constant vector field is ~F : R2 → R2 : (x, y) 7→ ~F = (5, 2).

Figure 10.2: An example of a vector field

10.2 Differential Calculus

10.2.1 Partial Derivatives and Directional Derivatives

• A scalar function of n variables

Let us in a first instance consider the general scalar function f : Rn → R : (x1, x2, . . . , xn) 7→
f(x1, x2, . . . , xn). The partial derivative of the function f with respect to the variable xi,
with i ∈ {1, 2, . . . , n}, at a given point ~a = (a1, a2, . . . , an) is defined as follows, whereby
~ui = (0, 0, . . . , 1, . . . , 0) represents the ith unit vector:

∂f

∂xi
(~a) = lim

h→0

f(~a+ h~ui)− f(~a)

h

= lim
h→0

f(a1, a2, . . . , ai + h, . . . , an)− f(a1, a2, . . . , ai, . . . , an)

h

As an example, consider the function f : R4 → R : (x, y, z, u) 7→ f(x, y, z, u) = x2u−2z+2u+
uexyu. The partial derivative with respect to the variable u at the point ~a = (−1, 1, 0, 2) is
equal to:

∂f

∂u
(~a) = lim

h→0

f((−1, 1, 0, 2) + h(0, 0, 0, 1))− f(−1, 1, 0, 2)

h
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= lim
h→0

(2 + h)− 24+2h + (2 + h)e−(2+h) − 2 + 24 − 2e−2

h

= lim
h→0

1− 2 ln(2)24+2h + e−(2+h) − (2 + h)e−(2+h)

1

= 1− 32 ln 2− e−2

whereby we applied the L’Hôpital Rule in line 3.

Calculating the partial derivative based on the limit definition can be quite cumbersome. A
more practical way is to take the derivative with respect to the variable in question and treat
the other variables as constants. If, for instance, we wish to calculate the partial derivative
of f with respect to the variable x, we treat f as if it is a scalar function of one variable (x)
and apply the rules of differentiation as discussed in section 7.5.

For example, we would like to calculate the partial derivative of the function f : R2 → R :
(x, y) 7→ f(x, y) = yxy

2
√
x+ y2 with respect to the variable y (note that the function is

only well-defined if x ≥ −y2):

∂f

∂y
=
(
yxy

2
)′√

x+ y2 + yxy
2
(√

x+ y2
)′

=
(
xy

2

+ 2y2 ln(x)xy
2
)√

x+ y2 + yxy
2

(
y√
x+ y2

)

=
xy

2+1 + 2xy
2+1y2 lnx+ xy

2
y2 + 2xy

2
y4 lnx+ xy

2
y2√

x+ y2

=
xy

2
(x+ 2y2 [1 + (x+ y2) lnx])√

x+ y2

The generalization of the derivative of a function f of one variable at the point x = a to
the multivariable situation is the directional derivative denoted by D~uf(~a). That is, the
directional derivative tells us to what extent f varies if we move ~x, starting from the point
~a, along the direction of the vector ~u. The directional derivative is defined as:

D~uf(~a) = lim
h→0

f(~a+ h~u)− f(~a)

h

The direction in which the directional derivative D~uf(~a) for a given unit vector ~u reaches its

maximum value (in absolute value terms) is called the gradient, which is written as ~∇f(~a).
The mathematical symbol ∇ is known as the nabla symbol.

The ith component of the gradient is equal to the partial derivative with respect to the
variable xi:

~∇f(~a) =

(
∂f

∂x1

(~a),
∂f

∂x2

(~a), . . . ,
∂f

∂xi
(~a), . . . ,

∂f

∂xn
(~a)

)
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Based on the definition of the gradient, the directional derivative D~uf(~a) can also be calcu-
lated in the following way:

D~uf(~a) = ~∇f(~a) · ~u

From a geometric perspective, the gradient allows us to linearly approximate the function
f : Rn → R in the vicinity of ~a through the following expression:

z = f(~a) + ~∇f(~a)(~x− ~a)

• A scalar function of two variables

For a function of two variables f : R2 → R : (x, y) 7→ f(x, y), the linear approximation of f
is interpreted as the plane tangent to f at the point ~a = (a1, a2, f(a1, a2)) with the following
equation:

z = f(a1, a2) +

[
∂f

∂x
(a1, a2)

]
(x− a1) +

[
∂f

∂y
(a1, a2)

]
(y − a2)

The gradient ~∇f(~a) lies within the xy-plane and is oriented perpendicular to the level curve
f(x, y) = f(a1, a2) at the point ~a.

The partial derivative
∂f
∂x

(~a) represents the slope of the line that is tangent at the point ~a
to the curve that is the result of the intersection between the surface f(x, y) and the plane

y = a2. Similarly, the partial derivative
∂f
∂y

(~a) is equal to the slope of the line tangent to the

curve that is produced when intersecting the graph of f and the plane x = a1. Both these
curves lie within the tangent plane and go through the point ~a.

The directional derivative D~uf(~a) represents the slope of the line tangent to the function f
at the point ~a along the direction of ~u. This line also lies within the tangent plane. If the
projection of ~u onto the xy-plane is parallel to the gradient vector ~∇f(~a), the directional
derivative D~uf(~a) reaches its maximum value (in absolute value terms).

• Example

Consider the function f : R2 → R : (x, y) 7→ f(x, y) = cosh(2x) − sinh(2y), the point
~a = (1,−1) and the directional vector ~u = (e2, e2). The gradient of f at the point ~a is equal
to:

~∇f(~a) =

(
∂f

∂x
(~a),

∂f

∂y
(~a)

)
= (2 sinh(2x),−2 cosh(2y))

= (2 sinh(2),−2 cosh(−2))

=

(
2

(
e2 − e−2

2

)
,−2

(
e−2 + e2

2

))
= (e2 − e−2,−e2 − e−2)
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At the point ~a, the gradient ~∇f(~a) stands perpendicular to the level curve, which has the
following equation:

f(x, y) = f(a1, a2) ⇔ cosh(2x)− sinh(2y) = cosh(2)− sinh(−2)

⇔ cosh(2x)− sinh(2y) = e2

The directional derivative at point ~a along the directional vector ~u is equal to (using the
limit definition):

D~uf(~a) = lim
h→0

f((1,−1) + h(e2, e2))− f(1,−1)

h

= lim
h→0

cosh [2(1 + he2)]− sinh [2(−1 + he2)]− cosh(2) + sinh(−2)

h

= lim
h→0

(
2e2sinh

[
2(1 + he2)

]
− 2e2cosh

[
2(−1 + he2)

])
= 2e2 [sinh(2)− cosh(−2)]

= 2e2

[(
e2 − e−2

2

)
−
(
e−2 + e2

2

)]
= −2

whereby we applied the L’Hôpital Rule in line 3. If instead we use the definition based on
the gradient we find:

D~uf(~a) = ~∇f(~a) · ~u = (e2 − e−2,−e2 − e−2) · (e2, e2) = −2

Let us now turn the gradient vector into a normalized directional vector ~un. This means
that the norm of ~un is equal to 1, i.e., ‖~un‖ = 1, so that we are dealing with a unit vector.

With un,x =
∂f
∂x

(~a) = e2 − e−2 and un,y =
∂f
∂y

(~a) = −e2 − e−2, we find that:

~un =

(
un,x√

u2n,x+u2n,y
,

un,y√
u2n,x+u2n,y

)
=

(
e2−e−2√
2(e4+e−4)

, −e2−e−2√
2(e4+e−4)

)

If we consider ~un instead of the directional vector ~u to calculate the directional derivative
D~uf(~a), we obtain the maximum value for the directional derivative of f at the point ~a since

~un runs parallel to ~∇f(~a):

D~unf(~a) = ~∇f(~a) · ~un

= (e2 − e−2,−e2 − e−2) ·

(
e2 − e−2√
2(e4 + e−4)

,
−e2 − e−2√
2(e4 + e−4)

)

=
√

2(e4 + e4)

≈ 10.45
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The equation of the plane tangent to f at ~a is equal to:

z = f(a1, a2) +

[
∂f

∂x
(a1, a2)

]
(x− a1) +

[
∂f

∂y
(a1, a2)

]
(y − a2)

= cosh(2)− sinh(−2) + (e2 − e−2)(x− 1) + (−e2 − e−2)(y + 1)

= (e2 − e−2)x− (e2 + e−2)y − e2

Figure 10.3: The graph of f(x, y) = cosh(2x)− sinh(2y)

In Fig. 10.3, the dark orange surface represents the graph of f(x, y). The gradient ~∇f(~a) is
indicated in yellow and stands perpendicular to the level curve (in green) at the black dot,
which is the projection of the point ~a = (1,−1, e2) onto the xy-plane. The plane α shown
in green represents the tangent plane to f at the point ~a.

The partial derivative
∂f
∂x

(~a) = e2− e−2 is equal to the slope of the blue line Lx, whereas the

partial derivative
∂f
∂y

(~a) = −e2 − e−2 represents the slope of the blue line Ly. The two sets

of parametric equations of these lines are equal to:

Lx :


x = t

y = −1

z = e−2 + (e2 − e−2)t

Ly :


x = 1

y = t

z = −e−2 − (e2 + e−2)t

208



Mathematics Preparation Course Olivier Loose

In the case of Lx, the set of equations has been found by considering the intersection of the
tangent plane α and the vertical plane y = a2 = −1. Similarly, the equations of the line Ly
are found by intersecting the tangent plane α and the vertical plane x = a1 = 1.

The dark orange line T is the line tangent to f at ~a whereby its slope is equal to the maximum
value of the directional derivative: D~unf(~a) ≈ 10.45. The purple vector represents the unit
vector ~un and note that in Fig. 10.3 the function value f(un,x, un,y) has been added to the
coordinates of ~un for visual purposes.

The set of parametric equations of the tangent line T is found by intersecting the tangent
plane α with the vertical plane β (not drawn in Fig. 10.3) that has the gradient ~∇f(~a) as
a directional vector and goes through the point ~a (the equation of this vertical plane is
β : (e2 + e−2)x+ (e2 − e−2)y = 2e−2):

T :



x = t

y =

[
2e−2

e2 − e−2

]
−
[
e2 + e−2

e2 − e−2

]
t

z = −
[

2e−2(e2 + e−2)

e2 − e−2
+ e2

]
+

[
(e2 − e−2)2 + (e2 + e−2)2

e2 − e−2

]
t

• A general vector function

In the case of a general vector function ~F : Rn → Rm : ~x 7→ ~F (~x) = (f1(~x), f2(~x), . . . , fm(~x))
of n variables and m component functions, whereby ~x = (x1, x2, . . . , xn), we can arrange the
partial derivatives in a m× n matrix called the Jacobian matrix L whereby row i, with
i ∈ {1, 2, . . . ,m}, contains the n partial derivatives of the component function fi(~x). The

Jacobian matrix L is the matrix associated with the linear transformation ~F
′

~a (see section 3)
and is defined as:

L =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn



If m = n = 1 the vector function becomes a scalar function of one variable, which we
discussed in section 7.5. If m = 1 the vector function becomes a general scalar function of
n variables and we discussed this case higher above in this section. If m = n the matrix
L becomes square and its determinant is known as the Jacobian determinant, which is
often noted as:

det (L ) =

∣∣∣∣∂(f1, f2, . . . , fm)

∂(x1, x2, . . . , xn)

∣∣∣∣
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As an example, consider the three-dimensional vector field ~F : R3 → R3 : (x, y, z) 7→
f(x, y, z) = (x2yz3 − xy2, xy2z + yz4, x2y2z + xz3). The Jacobian matrix is then equal to:

L =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 =

 2xyz3 − y2 x2z3 − 2xy 3x2yz2

y2z 2xyz + z4 xy2 + 4yz3

2xy2z + z3 2x2yz x2y2 + 3xz2



The Jacobian determinant of this matrix then becomes:

det (L ) = xyz [xyz2 [xyz (−5xy − 12z3) + [4xz3 − y(9yz + 2)]]− 2x2y4 + z5 (7xz3 − 11y)]

If we evaluate the Jacobian determinant in the point ~a = (2, 1,−1), we find that det (L ) =
−14. Since det (L ) 6= 0 we know that the matrix is non-singular and thus invertible, so that

the vector field ~F is invertible in the vicinity of ~a. If we image a small three-dimensional
object in the near vicinity of point ~a, the minus sign tells us that the linear transformation
~F
′

~a has reversed the orientation of the object and, moreover, we know that its volume has
been increased by a factor of 14.

In a final case, if n = 1, we obtain a vector function of one variable ~F : R → Rm : t 7→
~F (t) = (f1(t), f2(t), . . . , fm(t)), which describes a curve in Rm. The Jacobian matrix of the
linear transformation now becomes a column vector:

L =


∂f1
∂t

∂f2
∂t

...
∂f3
∂t


Given a certain point ~F (t∗), the matrix L evaluated in t∗ represents a directional vector

of the line ~r(t) tangent to ~F at the point ~F (t∗) which is described by the equation ~r(t) =
~F (t∗) + L (t∗)t.

As an example, let us look at the vector function ~F : ]0, π
2

[→ R3 : t 7→ ~F (t) = (sec(t), csc(t), 2t),
whose graph is shown in Fig. 10.4. We would like to find an equation for the line ~r(t) tan-

gent to the graph of ~F at the point corresponding to t∗ = π
4

. The Jacobian matrix is equal to:

L =

 sec(t) tan(t)

− csc(t) cot(t)

2

 ⇒ L (t∗) =


√

2

−
√

2

2


Given that ~F (t∗) = (

√
2,
√

2, π
2

), the set of parametric equations of the line ~r(t) tangent to
~F at ~F (t∗) is equal to:
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~r(t) :



rx =
√

2 +
√

2 t

ry =
√

2−
√

2 t

rz =
π

2
+ 2t

Figure 10.4: The graph of the vector function ~F (t) = (sec(t), csc(t), 2t)

10.2.2 Higher Order Partial Derivatives and Total Differentials

Let us consider the scalar function f : Rn → R and its partial derivatives
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

.

We can now define the functions
∂f
∂xi

: A ⊂ Rn → R : ~x 7→ ∂f
∂xi

, with i ∈ {1, 2, . . . , n}.

If the functions
∂f
∂xi

themselves have partial derivatives, we call them partial derivatives

of the second order and are written as (with j ∈ {1, 2, . . . , n}):

∂

∂xj

(
∂f

∂xi

)
=

∂2f

∂xj ∂xi
and

∂

∂xi

(
∂f

∂xi

)
=
∂2f

∂x2
i

(if i = j)

Note furthermore that:

∂

∂xj

(
∂f

∂xi

)
=

∂

∂xi

(
∂f

∂xj

)
⇔ ∂2f

∂xj ∂xi
=

∂2f

∂xi ∂xj

In the same manner as above, we define the partial derivatives of any higher order, as long
as they exist.
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For example, let us calculate the second derivatives of the function f : R4 → R : (x, y, z, u) 7→
f(x, y, z, u) = 2x2y4u− yz3u5 + x4y2.

• ∂2

∂x2
= 4y4u+ 12x2y2

• ∂2

∂y2
= 24x2y2u+ 2x4

• ∂2

∂z2
= −6yzu5

• ∂2

∂u2
= −20yz3u3

• ∂2

∂x ∂y
= 16xy3u+ 8x3y

• ∂2

∂x ∂z
= 0

• ∂2

∂x ∂u
= 4xy4

• ∂2

∂y ∂z
= −3z2u5

• ∂2

∂y ∂u
= 8x2y3 − 5z3u4

• ∂2

∂z ∂u
= −15yz2u4

To write the total differential of order n we consider the function f : R2 → R : (x, y) 7→
z = f(x, y). Assume furthermore that the rate of change dx and dy is the same for every
point and that these rates remain constant at every differentiation.

The first differential is equal to:

dz =
∂z

∂x
dx+

∂z

∂y
dy

The second differential is calculated as follows:

d2z = d(dz) = d

(
∂z

∂x
dx+

∂z

∂y
dy

)

=

[
∂2z

∂x2
dx2 +

∂z

∂x
d(dx) +

∂2z

∂y ∂x
dxdy

]
+

[
∂2z

∂x ∂y
dydx+

∂2z

∂y2
dy2 +

∂z

∂y
d(dy)

]

=

[
∂2z

∂x2
dx2 +

∂z

∂x
· 0 +

∂2z

∂y ∂x
dxdy

]
+

[
∂2z

∂x ∂y
dydx+

∂2z

∂y2
dy2 +

∂z

∂y
· 0
]

=
∂2z

∂x2
dx2 + 2

∂2z

∂x ∂y
dxdy +

∂2z

∂y2
dy2

To find an expression for the nth differential, we rely on Newton’s binomial theorem, which
states the following:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k with

(
n

k

)
=

n!

k!(n− k)!

The general formula for the nth differential is equal to:

dnz =

(
∂

∂x
dx+

∂

∂y
dy

)(n)

z
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As an example, let us consider the function f : R2 → R : (x, y) 7→ z = f(x, y) = tan(xy),
whereby xy 6= π

2
+ kπ (with k ∈ Z). Based on the above formula, we wish to write down the

third differential:

d3z =
∂3z

∂x3
dx3 + 3

∂3z

∂x2 ∂y
dx2dy + 3

∂3z

∂x ∂y2
dxdy2 +

∂3z

∂y3
dy3

= [2y3 sec2(xy) (2 sec2 xy − 1)] dx3 + 3 [2y sec2(xy) (2 tanxy + 3xy sec2 xy − 2xy)] dx2dy

+3 [2x sec2(xy) (2 tanxy + 3xy sec2 xy − 2xy)] dxdy2 + [2x3 sec2(xy) (2 sec2 xy − 1)] dy3

= 2 sec2(xy)
(
2 sec2 xy − 1

)
(y3dx3 + x3dy3)

+ 6 sec2(xy)
(
2 tanxy + 3xy sec2 xy − 2xy

)
(xdxdy2 + ydx2dy)

10.2.3 Taylor’s Theorem

The extrapolation of Taylor’s formula for a scalar function of one variable (see section 7.5.3)
to the multivariable situation gives us the following expression, if we wish to Taylor expand
the function f : Rn → R : ~x 7→ f(~x) around the point ~a = (a1, a2, . . . , an):

f(~x) =
m∑
i=0

1

i!

[
(x1 − a1)

∂

∂x1

+ (x2 − a2)
∂

∂x2

+ . . .+ (xn − an)
∂

∂xn

](i)

f(~a) + rm+1(~x)

whereby rm+1(~x) represents a remainder term and whereby we calculate the square brackets
to the power of (i) according to Newton’s binomial theorem.

Consider the function f : R2 → R : (x, y) 7→ f(x, y) = 3
√

2x2 − y2. We would like to Taylor
expand f to the second order around the point ~a = (−4, 4, 2 3

√
2). If we write f(x, y) as

f(x, y) = g(x, y) + rn(x, y), we find g(x, y) with the help of Taylor’s theorem as follows:

g(x, y) = f(a1, a2) + (x− a1)
∂f

∂x
(a1, a2) + (y − a2)

∂f

∂y
(a1, a2)

+
1

2

[
(x− a1)2∂

2f

∂x2
(a1, a2) + 2(x− a1)(y − a2)

∂2f

∂x ∂y
(a1, a2) + (y − a2)2∂

2f

∂y2
(a1, a2)

]

= 2
3
√

2 + (x+ 4)

(
−2 3
√

2

3

)
+ (y − 4)

(
−

3
√

2

3

)

+
1

2

[
(x+ 4)2

(
− 5

9 3
√

4

)
+ 2(x+ 4)(y − 4)

(
−2 3
√

2

9

)
+ (y − 4)2

(
− 7

9 3
√

4

)]

= −2 3
√

2

9

(
5 + 4x− 3y

2
+ xy +

5x2

8
+

7y2

8

)
The blue two-dimensional surface in Fig. 10.5 represents the graph of f(x, y) in three-
dimensional space. The yellow two-dimensional surface represents the graph of g(x, y),
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which is the Taylor expansion of f about the point ~a. As we can see, in the vicinity of
~a, the function g approximates the function f , which is what Taylor’s theorem entails.

Figure 10.5: The Taylor expansion of f(x, y) around the point ~a

10.2.4 Extremum Points

A stationary point ~a of the scalar function f : Rn → R is a point for which ~∇f(~a) = ~0.
Similar to the situation of a scalar function of one variable (see section 7.5.4), the existence
of a stationary point does not necessarily imply the existence of an extremum point.

We consider the case of R2 and define the following variables:

• r =
∂2f
∂x2

(~a) • s =
∂2f
∂x ∂y

(~a) • t =
∂2f
∂y2

(~a)

In order to investigate whether we are dealing with an extremum point, we apply the fol-
lowing rules:

If s2 − rt > 0 ⇒ f does not reach an extremum in ~a

If s2 − rt < 0 and r > 0 (t > 0) ⇒ f reaches a local minimum in ~a

If s2 − rt < 0 and r < 0 (t < 0) ⇒ f reaches a local maximum in ~a

If s2 − rt = 0 ⇒ no conclusion can be reached

Note that in the case where s2 − rt > 0, the point ~a is called a saddle point and the graph
of f near ~a represents a saddle surface, such as a hyperbolic paraboloid.
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Let us examine the function f : R2 → R : (x, y) 7→ f(x, y) = 8x3−10y3+12x2+6y2−2x+2y.

In a first step, we calculate the stationary points by demanding that ~∇f(~x) = ~0:


∂f

∂x
= 0 ⇔ 24x2 + 24x− 2 = 0

∂f

∂y
= 0 ⇔ − 30y2 + 12y + 2 = 0

Solving these quadratic equations gives us four stationary points:

• ~a1 =
(

1
12
, 3−2

√
6

15

)
• ~a2 =

(
1
12
, 3+2

√
6

15

) • ~a3 =
(
−13

12
, 3−2

√
6

15

)
• ~a4 =

(
−13

12
, 3+2

√
6

15

)

Given that ∂2

∂x2
= 48x + 24, ∂2

∂y2
= −60y + 12, and ∂2

∂x ∂y
= 0, we find the following values

for r, s, and t for the above four stationary points:

~a1 =
(

1
12
, 3−2

√
6

15

)
⇒


r = 28
s = 0

t = 8
√

6

⇒ s2 − rt = −224
√

6 < 0

~a2 =
(

1
12
, 3+2

√
6

15

)
⇒


r = 28
s = 0

t = −8
√

6

⇒ s2 − rt = 224
√

6 > 0

~a3 =
(
−13

12
, 3−2

√
6

15

)
⇒


r = −28
s = 0

t = 8
√

6

⇒ s2 − rt = 224
√

6 > 0

~a4 =
(
−13

12
, 3+2

√
6

15

)
⇒


r = −28
s = 0

t = −8
√

6

⇒ s2 − rt = −224
√

6 < 0

These results tell us that the function f does not reach an extremum in the points ~a2 and ~a3

and f represents a saddle surface in their vicinity. A local minimum is reached in the point
~a1 since s2 − rt < 0 and r > 0 (t > 0), whereas f reaches a local maximum in the point ~a4

given that s2 − rt < 0 and r < 0 (t < 0).

The graph of f together with the four stationary points are presented in below Fig. 10.6.
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Figure 10.6: Extremum points of f(x, y)

In case we wish to determine the extremum points of a function f : Rn → R under certain
equations of constraints, we can turn to the method of the Lagrange multipliers.

In a first step, we construct the following function fs:

fs : Rn → R : ~x 7→ fs(~x) = f(~x)−
p∑
i=1

αigi(~x)

whereby p ∈ N0 represents the number of constraints, αi are variables called the Lagrange
multipliers, and the functions gi : Rn → R represent the constraints. Note that for a given
constraint u(~x) = d, the function g(~x) obtains the form g(~x) = u(~x)− d.

Next, we identify the stationary points ~a through the requirement that ~∇fs(~x) = ~0:

~∇fs(~x) = ~∇f(~x)−
p∑
i=1

αi~∇gi(~x) = ~0

In a final step, to determine whether the points ~a correspond to a minimum or maximum,
we calculate the second-order differential of the function fs: if d2fs > 0 (d2fs < 0), the point
~a is a minimum (maximum).
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Suppose we are interested in finding the shortest distance between the saddle point ~s of the

function h : R2 → R : (x, y) 7→ h(x, y) = −x
2

8
+

y2

2
− xy + 7x

4
− 3y + 79

8
and the point ~c,

which lies within the plane γ : −2x + 2y + 3z = −6 and whose sum of the coordinates is
equal to 10. Fig. 10.7 shows the configuration of this problem.

The function f for which we want to find an extremum is the function that expresses the
distance between the points ~s = (s1, s2, s3) and ~c = (x, y, z):

f : R3 → R : (x, y, z) 7→ f(x, y, z) =
√

(x− s1)2 + (y − s2)2 + (z − s3)2

In fact, since we have to take the partial derivatives of f in a later step, instead of considering
the distance we consider the distance squared which reduces the amount of calculation and
does not change our problem:

f : R3 → R : (x, y, z) 7→ f(x, y, z) = (x− s1)2 + (y − s2)2 + (z − s3)2

Let us now first find the saddle point ~s of the function h through the method discussed

earlier in this section. Given that ∂h
∂x

= −x
4
− y + 7

4
and ∂h

∂y
= y − x − 3, we find a sta-

tionary point ~b = (−1, 2, 6) for the function h. The value of the expression s2−rt is equal to:

~b1 = (−1, 2, 6) ⇒

r = −1
4

s = −1
t = 1

⇒ s2 − rt = 5
4
> 0

In other words, the point ~s = (−1, 2, 6) indeed corresponds to a saddle point of the function
h.

In our problem, we have two constraints for the point ~c : it lies within the plane γ : −2x +
2y + 3z = −6, and x + y + z = 10, which means that the sum of its coordinates equals 10.
The two functions related to these constrains are: g1 : R3 → R : (x, y, z) 7→ g1(x, y, z) =
−2x+ 2y + 3z + 6 and g2 : R3 → R : (x, y, z) 7→ g2(x, y, z) = x+ y + z − 10.

The function fs then obtains the following form:

fs(~x) = (x+ 1)2 + (y − 2)2 + (z − 6)2 − α1 (−2x+ 2y + 3z + 6)− α2 (x+ y + z − 10)

In a next step, we identify the stationary points ~a of fs by demanding that ~∇fs(~x) = ~0:



∂fs
∂x

= 2x+ 2 + 2α1 − α2 = 0

∂fs
∂y

= 2y − 4− 2α1 − α2 = 0

∂fs
∂z

= 2z − 12− 3α1 − α2 = 0

⇔



x =
α2

2
− α1 − 1

y =
α2

2
+ α1 + 2

z =
α2

2
+

3α1

2
+ 6
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If we now insert these values for x, y, and z into the two constraints, we find the following
two equations:{ − 2x+ 2y + 3z = −6

x+ y + z = 10
⇔


3α2

2
+

17α1

2
+ 24 = −6

3α2

2
+

3α1

2
+ 7 = 10

Solving these equations gives us the values of the two Lagrange multipliers and the coordi-
nates of the point ~c: 

α1 = −33

7

α2 =
47

7

⇒ ~c =
(

99
14
, 9

14
, 16

7

)

To confirm that this point indeed produces a minimal value for the distance, we must have
that the second-order differential of fs is greater than zero:

d2fs = 2dx2 + 2dy2 + 2dz2 = 2
(
dx2 + dy2 + dz2

)
> 0

In a final step, we calculate the distance d between the saddle point ~s and the point ~c :

d =
√

(x− s1)2 + (y − s2)2 + (z − s3)2 =
√(

99
14

+ 1
)2

+
(

9
14
− 2
)2

+
(

16
7
− 6
)2 ≈ 8.99

The length of the blue line in Fig. 10.7 represents the distance d between ~s and ~c.

Figure 10.7: The shortest distance between the saddle point ~s and the point ~c
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10.3 Multivariable Operators

10.3.1 The Gradient

We have defined the gradient in section 10.2.1 and we have seen that the gradient of a
scalar function f : Rn → R at a point ~a represents the direction in which f varies maximally
in the vicinity of ~a.

Remember that for a function f : R2 → R and a point ~a = (a1, a2) the gradient ~∇f(~a) is
oriented perpendicular to the level curve f(x, y) = f(a1, a2) at the point ~a. Similarly, for a

function f : R3 → R and a point ~a = (a1, a2, a3) the gradient ~∇f(~a) is oriented perpendicular
to the level surface f(x, y, z) = f(a1, a2, a3) at the point ~a.

Given that the definition of the gradient of a scalar function f : Rn → R is equal to:

~∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
=

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)
f

we can write down the following definition for the nabla operator ~∇:

~∇ =

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)

10.3.2 The Divergence

The divergence of a vector field ~F : Rn → Rn : ~x 7→ ~F (~x) = (F1(~x), F2(~x), . . . , Fn(~x))
describes the net flow at each point of the field and is defined by the scalar product of the
nabla operator and the vector field:

div(~F (~x)) = ~∇ · ~F (~x) =
n∑
i=1

∂Fi(~x)

∂xi

In other words, the divergence operator takes a vector field as input variable and returns a
scalar value. If at a certain point ~a of the field ~F (~x) we find that div(~F (~x)) > 0, there is

a net outflow at ~a and we describe that point as a source. In contrast, if div(~F (~x)) < 0 at
point ~a, there is a net inflow and ~a is defined as a sink.

Consider for example the vector field ~F : R2 → R2 : ~x 7→ ~F (x, y) = (x3y, xy3), which is

depicted in Fig. 10.8. The divergence is equal to div(~F (x, y)) = 3x2y + 3xy2 = 3xy(x+ y).

On the coordinate axes, either x or y is zero, so that div(~F (x, y)) = 0. The divergence also
becomes zero if we consider a point in the second or fourth quadrant whereby x = −y; this
is the case for all the points that lie on the bisector of these two quadrants, i.e., the red line
in Fig. 10.8.

In the region A within the second quadrant, we have that x < 0, y > 0 and y > |x|, so that
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div(~F (x, y)) < 0. That is, all the points within region A are sinks. In the region B of the

second quadrant, we can see that x < 0, y > 0 and y < |x|, so that div(~F (x, y)) > 0. In
other words, all the points of region B are sources. A similar reasoning can be applied to the
fourth quadrant and we find that the points of region C are sources, while those of region
D are sinks.

Finally, all the points of the first quadrant are sources given that div(~F (x, y)) > 0, whereas

all the points of the third quadrant are sinks because div(~F (x, y)) < 0.

Figure 10.8: The vector field ~F (x, y) = (x3y, yx3) (Credit for the GeoGebra applet: Antonio Di Muro)

There exists a relationship between the gradient and the divergence operator that resembles
the chain rule of differentiation (with f a scalar function and ~v a vector field):

~∇ · (f~v) = ~∇f · ~v + f ~∇ · ~v

Let us demonstrate this property for the case of three dimensions based on the definitions
of the gradient and the divergence:

~∇ · (f~v) =
∂(fvx)

∂x
+
∂(fvy)

∂y
+
∂(fvz)

∂z

=

[
vx
∂f

∂x
+ f

∂vx
∂x

]
+

[
vy
∂f

∂y
+ f

∂vy
∂y

]
+

[
vz
∂f

∂z
+ f

∂vz
∂z

]
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=

[
vx
∂f

∂x
+ vy

∂f

∂y
+ vz

∂f

∂z

]
+

[
f
∂vx
∂x

+ f
∂vy
∂y

+ f
∂vz
∂z

]

=

[
(vx, vy, vz) ·

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)]
+ f

[(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (vx, vy, vz)

]
= ~v · ~∇f + f ~∇ · ~v

10.3.3 The Curl

The curl of a three-dimensional vector field ~F : R3 → R3 : ~x 7→ ~F (~x) = (F1(~x), F2(~x), F3(~x))
describes the pattern of rotation of the field at a certain point ~a. The curl is defined as the
cross product between the nabla operator and the vector field (with~ix,~iy, and~iz the respec-
tive unit vectors):

rot(~F (~x)) = ~∇× (~F (~x)) =

∣∣∣∣∣∣∣∣
~ix ~iy ~iz
∂
∂x

∂
∂y

∂
∂z

F1(~x)) F2(~x)) F3(~x))

∣∣∣∣∣∣∣∣
The norm of the curl ‖~∇ × (~F (~x))‖ tells us the amount of rotation, while the direction of
the rotation axis is given by the curl vector whereby the orientation of the rotation axis is
determined through the right-hand rule (see section 6.3).

Consider the vector field ~F : R3 → R3 : ~x 7→ ~F (~x) = (−y3x2 + 2y2 − 2x+ 20,−x3y2 − 6y2 +
4x2 + 24, 0), which is shown in below Fig. 10.9. Given that F3(~x) = 0 and that both F1(~x)
and F2(~x) do not contain the z variable, the curl becomes the following:

~∇× (~F (~x)) =

∣∣∣∣∣∣∣∣
~ix ~iy ~iz
∂
∂x

∂
∂y

∂
∂z

F1(~x)) F2(~x)) 0

∣∣∣∣∣∣∣∣ =

[
∂F2(~x))

∂x
− ∂F1(~x))

∂y

]
~iz

=
(
−3x2y2 + 8x+ 3y2x2 − 4y

)
~iz

= (8x− 4y)~iz

Take for instance the point ~a = (37
20
,−4

5
), which corresponds to the red dot in Fig. 10.9.

The curl is equal to ~∇× (~F (~a)) = (8x− 4y)~iz = (8 · 37
20

+ 4 · 4
5

)~iz = 18~iz. This means that
at point ~a, the strength of rotation is equal to 18 and the rotation axis is oriented in the
positive z-direction.

Bearing in mind the right-hand rule of the curl, we can see in Fig. 10.9 that the curl of the
points to the left (right) of the red line is oriented toward the negative (positive) z-direction.
The equation of the red line is found by setting the magnitude of the curl equal to zero:
8x− 4y = 0 ⇔ y = 2x.
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Figure 10.9: The vector field ~F (x, y) = (−y3x2 + 2y2 − 2x + 20,−x3y2 − 6y2 + 4x2 + 24, 0) (Credit for
the GeoGebra applet: Antonio Di Muro)

Fig. 10.10 lists four relationships that exist between the gradient, the divergence, and the
curl, whereby f is the scalar function f : R3 → R and ~F1 and ~F2 the two vector fields
~F1, ~F2 : R3 → R3.

Figure 10.10: Some relationships between the gradient, the divergence, and the curl

Let us demonstrate the relationship ~∇·
(
~∇× ~F1

)
= 0 using the definitions of the divergence

and the curl:

~∇ ·
(
~∇× ~F1

)
=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·

∣∣∣∣∣∣∣∣
~ix ~iy ~iz
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣
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=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(
∂Fz
∂y
− ∂Fy

∂z
,
∂Fx
∂z
− ∂Fz

∂x
,
∂Fy
∂x
− ∂Fx

∂y

)

=
∂2Fz
∂x ∂y

− ∂2Fy
∂x ∂z

+
∂2Fx
∂y ∂z

− ∂2Fz
∂y ∂x

+
∂2Fy
∂z ∂x

− ∂2Fx
∂z ∂y

= 0

10.3.4 The Laplacian

The Laplacian of a scalar function f : Rn → R provides information about the local
curvature of f or, alternatively, it compares the function value of a certain point to that of
the points in its close vicinity.

The Laplacian is denoted by ~∇2f or ∆(f) and is defined as the divergence of the gradient
of the function f :

∆(f) = ~∇ · ~∇f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

Take as an example the scalar function f : R5 → R : (x, y, z, u, v) 7→ f(x, y, z, u, v) =
x4v2 + 3y2z3 − 2u3. The Laplacian is calculated as:

∆(f) = 12x2v2 + 6z3 + 18y2z − 12u+ 2x4

Since the Laplacian is a scalar, we can multiply it with a vector field ~F , whereby the outcome
is referred to as the vector Laplacian. For a three-dimensional vector field ~F , there exists
the following relationship between the gradient, the divergence, the curl, and the vector
Laplacian:

rot(rot(~F )) = grad(div(~F ))−∆(~F ) ⇔ ~∇× (~∇× ~F ) = ~∇(~∇ · ~F )−∆(~F )

Let us verify the above relationship for the vector field ~F : R3 → R3 : ~x 7→ ~F (~x) =

(2x3y2z,−x2yz3, x4y3z2). The divergence, the gradient of the divergence, and the curl of ~F
are equal to:

~∇ · ~F = 6x2y2z − x2z3 + 2x4y3z

~∇(~∇ · ~F ) = (12xy2z − 2xz3 + 8x3y3z, 12x2yz + 6x4y2z, 6x2y2 − 3x2z2 + 2x4y3)

~∇× ~F = (3x4y2z2 + 3x2yz2, 2x3y2 − 4x3y3z2,−2xyz3 − 4x3yz)

The curl of the curl of the vector field ~F is equal to:

~∇× (~∇× ~F ) = (−2xz3 − 4x3z + 8x3y3z, 6x4y2z + 6x2yz + 2yz3 + 12x2yz, )

(6x2y2 − 12x2y3z2 − 6x4yz2 − 3x2z2)
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The vector Laplacian of ~F is calculated as:

∆(~F ) = (12xy2z + 4x3z,−2yz3 − 6x2yz, 12x2y3z2 + 6x4yz2 + 2x4y3)

The right-hand side of the relationship is equal to:

~∇(~∇ · ~F )−∆(~F ) = (12xy2z − 2xz3 + 8x3y3z, 12x2yz + 6x4y2z, 6x2y2 − 3x2z2 + 2x4y3)−

(12xy2z + 4x3z,−2yz3 − 6x2yz, 12x2y3z2 + 6x4yz2 + 2x4y3)

= (−2xz3 − 4x3z + 8x3y3z, 6x4y2z + 6x2yz + 2yz3 + 12x2yz, )

(6x2y2 − 12x2y3z2 − 6x4yz2 − 3x2z2)

and this expression is exactly equal to the left-hand side of the relationship, i.e., the curl of
the curl of the vector field ~F .

10.4 Integral Calculus

10.4.1 The Line Integral

Consider a two-dimensional surface in three-dimensional space that is described by the scalar
function f : R2 → R. We now take the continuous curve

>
AB that runs along the surface of

f between the points A and B and is described by the vector function ~r : R→ R3 : t 7→ ~r(t).

Figure 10.11: The line integral of the scalar function f

If we expand the definition of the Riemann sum (see section 9.2) to three dimensions, we
can write Rf (P ) =

∑n
i=1 f(~r(t∗i ))‖~r(ti) − ~r(ti−1)‖ for a given partition P of the interval

[~r(t0 = a) = A, . . . , ti−1, ti, . . . , ~r(tn = b) = B] and whereby t∗i ∈ [ti, ti−1].
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The line integral or path integral of the scalar function f along the curve
>
AB

calculates the surface area of the cross-sectional region restricted by the curve ~r(t) and the
surface generated by f . Put another way, it calculates the area right below (above) the curve
and bounded by the xy-plane if the curve is positioned above (below) the xy-plane. The line
integral of the scalar function f is defined as:∫

>
AB

f(~r(t))ds = lim
n→+∞

Rf (P ) =

∫ b

a

f(~r(t))‖d~r(t)‖

In above Fig. 10.11, the graph of the scalar function f : [−17
4
,+∞[×R → R : (x, y) 7→

f(x, y) = 1
2

(7 −
√

17 + 4x) is represented by the light-blue surface. The dark-blue curve is

described by the vector function ~r : [−3
2
, 3

2
]→ R3 : t 7→ ~r(t) = (t2 +3t−2, 2t3−t+2,−t+2).

The line integral gives the surface area of the blue-shaded region straight under the curve.

Note that if we would set f(~r(t)) = 1, the line integral would calculate the arc length, which
we discussed in section 9.2.3.

Let us now consider a curve
>
AB described by the vector function ~r : R→ R3 : t 7→ ~r(t) and

a vector field ~F : R3 → R3 : ~r(t) 7→ ~F (~r(t)).

If we define the Riemann sum in a similar fashion as we have done for the scalar function,
i.e., RF (P ) =

∑n
i=1

~F (~r(t∗i )) · (~r(ti) − ~r(ti−1)), we can define the line integral or path

integral of the vector field ~F along the curve
>
AB as:∫

>
AB

~F (~r(t)) · d~r = lim
n→+∞

RF (P ) =

∫ b

a

[
~F (~r(t)) · ~r ′(t)

]
dt

Note that if ~F would represent a force field, the line integral would calculate the work done
by the force ~F on an object that is moving from ~r(a) = A to ~r(b) = B.

For example, given the vector field ~F : R3 → R3 : (x, y, z) 7→ ~F (x, y, z) = (2x,−y2,−z),

we would like to calculate the line integral of this field over the curve
>
AB, which is de-

scribed by the vector function ~r : [0, 1] → R3 : t 7→ ~r(t) = (2t2 + 1,−t, t2 − 3t). Given that

~r
′
(t) = (4t,−1, 2t − 3) and ~F (~r(t)) = (4t2 + 2,−t2,−t2 + 3t), we find the line integral as

follows: ∫ b

a

[
~F (~r(t)) · ~r ′(t)

]
dt =

∫ 1

0

[
(4t2 + 2,−t2,−t2 + 3t) · (4t,−1, 2t− 3)

]
dt

=

∫ 1

0

(
14t3 + 10t2 − t

)
dt

=

[
14t4

4
+

10t3

3
− t2

2

]1

0

=
19

3

225



Mathematics Preparation Course Olivier Loose

If we replace the vector field ~F (~r(t)) in the above definition for the line integral by the
gradient of a scalar function V : R3 → R : ~r(t) 7→ V (~r(t)), we obtain the fundamental
theorem of line integrals:∫

>
AB

~∇V (~r(t)) · d~r(t) = V (~r(B))− V (~r(A))

This theorem states that the line integral of a gradient does only depend on the initial and
final position of a certain interval and not on the path taken between these two points.

Within the domain of physics, if we can write a force ~F (~r(t)) as the gradient of a scalar
function V (~r(t)), it means that the work done by this force does not depend on the path
taken by the object on which the force acts. The force is then called a conservative force
and the scalar function is referred to as the potential.

10.4.2 The Double Integral

Consider the region S ⊂ R2 and the continuous scalar function f : S → R : (x, y) 7→ f(x, y).
The double integral is defined as: ∫∫

S

f(x, y) dS

whereby dS represents a segment of the surface area of the region S. If we look at Fig. 10.12,
the double integral as defined above represents the volume of the shape bounded by the xy-
plane, by the surface of f(x, y) and by the surface that is made up of the lines parallel to
the z-axis and going through the edge of the region S.

Figure 10.12: Integrating over the two-dimensional region S
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To calculate the double integral, we can go about it in two ways, depending on the particu-
lar shape of the region S, whereby the boundaries of the integral corresponds to the x- and
y-coordinates in Fig. 10.13:

Option 1 :

∫∫
S

f(x, y) dS =

∫ x2

x1

dx

∫ b2(x)

b1(x)

f(x, y) dy

Option 2 :

∫∫
S

f(x, y) dS =

∫ y2

y1

dy

∫ d2(y)

d1(y)

f(x, y) dx

Figure 10.13: Calculating the double integral over the region S

• Example

We would like to calculate the volume of the region bounded by the xy-plane, by the right
circular cylinder with radius equal to 2 and whose axis is equal to the z-axis, and by the
scalar function f : R2 → R : (x, y) 7→ f(x, y) = x2 + y2. In below Fig. 10.14 we can see that
this volume corresponds to the volume of the cylinder with height 4 minus the volume of
the paraboloid of the same height.

Due to the symmetry of the region S, we can either choose option 1 or 2 to calculate this
volume. Let us go for option 1. With respect to the x-dimension, we wish to integrate
over the interval [-2, 2]. Regarding the y-direction, we can see that the edge of region S
is formed by the level curve x2 + y2 = 4. At the negative side of the y-axis, we find that
y = b1(x) = −

√
4− x2, whereas at the positive side, we have y = b2(x) =

√
4− x2. With

respect to the y-dimension, we will thus integrate over the interval [b1(x), b2(x)].

V =

∫∫
S

f(x, y) dS =

∫ x2

x1

dx

∫ b2(x)

b1(x)

f(x, y) dy

=

∫ 2

−2

dx

∫ b2(x)

b1(x)

(x2 + y2) dy
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=

∫ 2

−2

([
(x2y +

y3

3
)

]b2(x)=
√

4−x2

b1(x)=−
√

4−x2

)
dx

=
4

3

∫ 2

−2

x2
√

4− x2 dx+
8

3

∫ 2

−2

√
4− x2 dx

=
64

3

∫ π
2

−π
2

sin2(θ) cos2(θ) dθ +
32

3

∫ π
2

−π
2

cos2(θ) dθ

=
8

3

∫ π
2

−π
2

(1− cos(4θ)) dθ +
16

3

∫ π
2

−π
2

(1 + cos(2θ)) dθ

=
8

3

[
θ − sin(4θ)

4

]π
2

−π
2

+
16

3

[
θ +

sin(2θ)

2

]π
2

−π
2

= 8π

whereby we implemented the substitution x = 2 sin θ in line 5. We can check this result as
follows: given that the volume of the cylinder is equal to V = πr2h = 16π and that the

volume of the paraboloid is equal to V = πhr2

2
= 8π, we find that the volume by the double

integral is equal to 16π − 8π = 8π.

Figure 10.14: Calculating the double integral over the region S
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We can link line integrals to double integrals through Green’s theorem a.k.a. the Green-
Riemann formula, which states that the line integral of the vector field ~F : R2 → R2 :
(x, y) 7→ ~F (x, y) = (M(x, y), N(x, y)) that is enclosed by the parametrized curve C is equal
to the double integral over the region S, which is enclosed by the curve C:∮

C+

M(x, y) dx+N(x, y) dy =

∫∫
S

(
∂N

∂x
− ∂M

∂y

)
dS

whereby
∮
C+ stands for the line integral taken along the closed curve C+ and the integration

occurs in the counterclockwise direction, which is by convention the positive direction.

• Example

We would like to evaluate the integral
∫∫

S
(x+y) dS whereby S is the region bounded by the

curves 6y = (x− 1)2 − 4 and 4y2 = x2 − 9, as shown in Fig. 10.15. One way is to calculate
the double integral, but we will use the line integral via Green’s theorem.

Figure 10.15: An example of Green’s theorem

Let us in a first step determine the points of intersection ~s1 and ~s2, which we need to find
the boundaries of our line integral. If we rewrite the first curve 6y = (x − 1)2 − 4 as

2y =
(x−1)2

3
− 4

3
and plug it into the second equation, we find:[

(x− 1)2

3
− 4

3

]2

= x2 − 9 ⇔ (x− 1)4 − 8(x− 1)2 + 16 = 9x2 − 81

⇔ x4 − 4x3 − 11x2 + 12x+ 90 = 0

⇔ (x− 3)(x− 5)(x2 + 4x+ 6) = 0

We have the points of intersection ~s1 = (3, 0) and ~s2 = (5, 2). In a next step, we determine
the functions M,N : S ⊂ R2 → R:
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∫∫
S

(
∂N

∂x
− ∂M

∂y

)
dS =

∫∫
S

(x+ y) dS ⇔


∂N

∂x
= y

∂M

∂y
= −x

⇔

{
N(x, y) = xy

M(x, y) = −xy

Note that we also could have chosen the functions N(x, y) = x2

2
and M(x, y) = −y

2

2
, but

this does not affect the outcome. The line integral obtains the following form:∮
C+

M(x, y) dx+N(x, y) dy =

∮
C+

−xy dx+ xy dy

We will have to split up the line integral in two parts, whereby the two segments are de-
scribed by ~r1 and ~r2, respectively. We now evaluate the line integral of the first segment of

the curve C+, which is represented by ~r1 : [3, 5]→ R2 : t 7→ ~r1(t) = (t,
(t−1)2

6
− 2

3
). We have

the following values for the vectors d~r1 and ~F1(~r1(t)):


d~r1 = (1,

1

3
(t− 1)) dt

~F1(x, y) = (M(x, y), N(x, y)) = (−xy, xy) ⇔ ~F1(~r1(t)) = (− t
6
(t− 1)2 + 2t

3
, t

6
(t− 1)2 − 2t

3
)

The line integral related to the first segment is calculated as follows:∫ 5

3

~F1(~r1(t)) · d~r1 =

∫ 5

3

(− t
6

(t− 1)2 +
2t

3
,
t

6
(t− 1)2 − 2t

3
) · (1, 1

3
(t− 1)) dt

=

∫ 5

3

[
− t

6
(t− 1)2 +

2t

3
+

t

18
(t− 1)3 − 2t

9
(t− 1)

]
dt

=

∫ 5

3

[
t4

18
− t3

3
+

5t2

18
+

2t

3

]
dt

=

[
t5

90
− t4

12
+

5t3

54
+
t2

3

]5

3

=
148

135

Next, we evaluate the line integral of the second segment of the curve C+, which is described
by ~r2 : [3, 5]→ R2 : t 7→ ~r2(t) = (t, 1

2

√
t2 − 9). For d~r2 and ~F2(~r2(t)) we have:

d~r2 = (1,
t

2
√
t2 − 9

) dt

~F2(~r2(t)) = (− t
2

√
t2 − 9,

t

2

√
t2 − 9)

Remember that the orientation of C+ is counterclockwise so the parameter t of ~r2 runs from
5 to 3. The line integral of the second segment then becomes:
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∫ 3

5

~F2(~r2(t)) · d~r2 =

∫ 3

5

(− t
2

√
t2 − 9,

t

2

√
t2 − 9) · (1, t

2
√
t2 − 9

) dt

=

∫ 3

5

[
− t

2

√
t2 − 9 +

t2

4

]
dt

= −27

2

∫ θ2

θ1

sec2(θ) tan2(θ) dθ +

∫ 3

5

t2

4
dt

= −27

2

∫ s2

s1

s2 ds+

∫ 3

5

t2

4
dt

= −27

2

[
s3

3

]s2=0

s1= 4
3

+

[
t3

12

]3

5

=
5

2

whereby we applied the substitution t = 3 sec θ in line 3 and s = tan θ in line 4. Remember

that tan (arccos(t)) =
√

1
cos2(arccos(t))

− 1 =
√

1
t2
− 1.

The full line integral is then equal to:∮
C+

M(x, y) dx+N(x, y) dy =

∫ 5

3

~F1(~r1(t)) · d~r1 +

∫ 3

5

~F2(~r2(t)) · d~r2 =
148

135
+

5

2
=

971

270

Green’s theorem can also be used to calculate the surface area of a certain region S. If we
consider the respective vector fields ~F (x, y) = (−y, x), ~F (x, y) = (0, x), and ~F (x, y) = (−y, 0)
in Green’s theorem, we obtain the following three equivalent expressions for the surface area
of S: ∫∫

S

dS =
1

2

∮
C+

xdy − ydx =

∮
C+

xdy = −
∮
C+

ydx

• Example

Consider the scalar function f : R → R : x 7→ f(x) = 3x − x3. We wish to calcu-
late the surface area of the region S that is bounded by f(x) within the first quadrant
(see below Fig. 10.16). Given that f intersects the x-axis at x = 0 and x =

√
3, that

~r1 : [0,
√

3] → R2 : t 7→ ~r1(t) = (t, 0), and that d~r1 = (1, 0) dt, we can see that the line
integral of ~r1(t) is equal to zero:

−
∫ √3

0

ydx = −
∫ √3

0

0 · dt = 0

The surface area of the region S is thus found by evaluating the line integral of ~r2 : [0,
√

3]→
R2 : t 7→ ~r2(t) = (t, 3t− t3), with d~r2 = (1, 3− 3t2) dt:∫∫

S

dS = −
∮
C+

ydx = −
∫ 0

√
3

(3t− t3) · 1 dt = −
[

3t2

2
− t4

4

]0

√
3

=
9

4
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Figure 10.16: An example of Green’s theorem

If we would like to introduce a change of coordinates whereby we exchange the variables
x and y for the variables u and v, with x = φ1(u, v) and y = φ2(u, v), the double integral is
transformed in the following way:

∫∫
S

f(x, y) dS =

∫∫
A

f(φ1(u, v), φ2(u, v))

∣∣∣∣∂(φ1, φ2)

∂(u, v)

∣∣∣∣ dA
Remember that

∣∣∣∂(φ1,φ2)
∂(u,v)

∣∣∣ represents the Jacobian determinant (see section 10.2.1).

• Example

Consider the scalar function f : R2 \ {(0, 0)} → R : (x, y) 7→ f(x, y) = 5+4x

y+
√
x2+y2

. We

want to calculate the volume bounded by the graph of f when integrating over the region
S, which is the circle sector with ρ = 3 and restricted by 0 ≤ θ ≤ π

2
. The volume is shown

in below Fig. 10.17.

Before writing down the double integral, let us first calculate the Jacobian determinant.
Given the circular symmetry of the problem at hand, we choose polar coordinates to solve
the integral, i.e., x = ρ cos θ and y = ρ sin θ. The Jacobian determinant is then equal to:

det (L ) =

∣∣∣∣∂(x, y)

∂(ρ, θ)

∣∣∣∣ =

∣∣∣∣∣∣
∂x
∂ρ

∂x
∂θ

∂y
∂ρ

∂y
∂θ

∣∣∣∣∣∣ =

∣∣∣∣∣ cos θ −ρ sin θ

sin θ ρ cos θ

∣∣∣∣∣ = ρ cos2 θ + ρ sin2 θ = ρ
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Figure 10.17: Calculating the volume through a change of coordinates

The volume is then calculated as follows:∫∫
S

f(x, y) dS =

∫∫
A

f(φ1(u, v), φ2(u, v))

∣∣∣∣∂(φ1, φ2)

∂(u, v)

∣∣∣∣ dA
=

∫ π
2

0

∫ 3

0

5 + 4 (ρ cos θ)

ρ sin θ +
√

(ρ cos θ)2 + (ρ sin θ)2
· ρ dρ dθ

=

∫ π
2

0

∫ 3

0

[
5

sin θ + 1
+

4ρ cos θ

sin θ + 1

]
dρ dθ

=

∫ π
2

0

[
5

sin θ + 1
· [ρ]30 +

4 cos θ

sin θ + 1
·
[
ρ2

2

]3

0

]
dθ

= 15

∫ π
2

0

1

sin θ + 1
dθ + 18

∫ π
2

0

cos θ

sin θ + 1
dθ

= 30

∫ 1

0

1

(1 + t)2
dt+ 36

∫ 1

0

[
−t

1 + t2
+

1

1 + t

]
dt

= 30

[
− 1

1 + t

]1

0

+ 36

[
−1

2
ln
∣∣1 + t2

∣∣+ ln |1 + t|
]1

0

= 15 + 18 ln 2

whereby we introduced the substitution t = tan θ
2

in line 6 and subsequently performed
partial fraction decomposition on the second integral of that same line.
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10.4.3 The Surface Integral

While the double integral
∫∫

S
dS calculates the area of a two-dimensional surface S in two-

dimensional space, the surface integral
∫∫

S∗
dS calculates the area of a two-dimensional

surface S∗ in three-dimensional space.

If the surface S∗ is described by the vector function ~r : G ⊂ R2 → R3 : (u, v) 7→ ~r(u, v), the
surface integral can be defined as:∫∫

S∗
dS =

∫∫
G

∥∥∥∥∂~r∂u × ∂~r

∂v

∥∥∥∥ dG
whereby G is the projection of S∗ onto the uv-plane. This integral calculates the surface
area of the surface S∗.

• Density function f

If we define a scalar function f : R3 → R : (x, y, z) 7→ f(x, y, z) that represents the density
of a massive surface S∗, the surface integral of f over S∗ calculates the mass of S∗ and is
given by: ∫∫

S∗
f(x, y, z)dS =

∫∫
G

f(~r(u, v))

∥∥∥∥∂~r∂u × ∂~r

∂v

∥∥∥∥ dG

• Change of coordinates in 2D

Note that if the surface S∗ would lie within the xy-plane, i.e., z = 0 and thus S∗ = S,
the above formula would transform into the expression of the double integral in the case of
changing coordinate systems (see previous section 10.4.2). Since ~r : G ⊂ R2 → R3 : (u, v) 7→
~r(u, v) = (r1(u, v), r2(u, v), 0), we find that:

∥∥∥∥∂~r∂u × ∂~r

∂v

∥∥∥∥ =

∥∥∥∥∥∥∥∥


∂r1
∂u
∂r2
∂u

0

×


∂r1
∂v
∂r2
∂v

0


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥


0

0

∂(r1,r2)
∂(u,v)


∥∥∥∥∥∥∥∥ =

∣∣∣∣∂(r1, r2)

∂(u, v)

∣∣∣∣
In other words:

∫∫
S

f(x, y, 0)dS =

∫∫
G

f(~r(u, v))

∥∥∥∥∂~r∂u × ∂~r

∂v

∥∥∥∥ dG =

∫∫
G

f(~r(u, v))

∣∣∣∣∂(r1, r2)

∂(u, v)

∣∣∣∣ dG
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• Parametrization in terms of x and y

If we use the parameters x and y, the vector function ~r has the form ~r : G ⊂ R2 → R3 :
(x, y) 7→ ~r(x, y) = (x, y, z(x, y)), so that we get:

∥∥∥∥∂~r∂x × ∂~r

∂y

∥∥∥∥ =

∥∥∥∥∥∥∥∥
 1

0

∂z
∂x

×


0

1

∂z
∂y


∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥

− ∂z
∂x

−∂z
∂y

1


∥∥∥∥∥∥∥∥ =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

The surface integral then obtains the following form:∫∫
S∗
f(x, y, z)dS =

∫∫
G

f(~r(x, y))

∥∥∥∥∂~r∂x × ∂~r

∂y

∥∥∥∥ dG
=

∫∫
G

f(~r(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dG

whereby G is the projection of S∗ onto the xy-plane.

Let us for instance consider the surface S∗, which is described by the vector function
~r : [−2, 4] × [−1, 3] → R3 : (x, y) 7→ ~r(x, y) = (x, y, x2 − 2(x + y)) and shown in below
Fig. 10.18.

Figure 10.18: The surface S∗

Given that ∂z
∂x

= 2(x− 1) and ∂z
∂y

= −2, we calculate the surface area of S∗ as follows:
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∫∫
S∗
dS =

∫∫
G

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dG

=

∫ 3

−1

dy

∫ 4

−2

√
1 + [2(x− 1)]2 + [−2]2 dx

= [y]3−1

∫ 4

−2

√
5

√
4

5
(x− 1)2 + 1 dx

= 10

∫ s2

s1

√
s2 + 1 ds

= 10

∫ θ2

θ1

sec3(θ) dθ

= 10

[
1

2
tan(θ) sec θ

]θ2
θ1

+ 5

∫ θ2

θ1

sec(θ) dθ

= 10

[
1

2
tan(θ) sec θ

]θ2
θ1

+
5

2

∫ u2

u1

(
1

1− u
+

1

1 + u

)
du

= 10

[
1

2
tan(θ) sec θ

]θ2
θ1

+
5

2

[
ln

∣∣∣∣1 + u

1− u

∣∣∣∣]u2
u1

= 5

[
6√
5
·
√

41√
5
−
(
− 6√

5

)
·
√

41√
5

]
+

5

2

[
ln

∣∣∣∣∣1 + 6√
41

1− 6√
41

∣∣∣∣∣− ln

∣∣∣∣∣1−
6√
41

1 + 6√
41

∣∣∣∣∣
]

= 12
√

41 + 5 ln

∣∣∣∣∣77 + 12
√

41

5

∣∣∣∣∣
≈ 93.97

whereby we implemented the substitution s = 2√
5

(x−1) in line 4, the substitution s = tan θ

in line 5, and the substitution u = sin θ in line 7. Going from line 5 to 6, we applied the
reduction formula as discussed in Example 2 of the subsection F. Integration of Irrational
Functions of section 9.1.2. We also applied partial fraction decomposition to the integral of
line 7. Note furthermore that sinα = tanα√

1+tan2 α
, so that sin(arctan(s)) = s√

1+s2
.

• Spherical coordinates

If the surface S∗ is spherically symmetrical, we can use the spherical coordinates to write up
the vector function ~r that describes S∗.

If we consider the sphere x2 + y2 + z2 = R2 and the vector ~a = (xa, ya, za), which represents
a point on the sphere, we define the angle θ as the angle between the z-axis and the vector ~a
and the angle φ as the angle between the orthogonal projection of ~a onto the xy-plane and
the x-axis. These angles are shown in below Fig. 10.19.
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Figure 10.19: The spherical coordinate system

The spherical coordinates then take on the following form, whereby ρ : 0 → R, θ : 0 → π,
and φ : 0→ 2π: 

x = ρ sin(θ) cosφ

y = ρ sin(θ) sinφ

z = ρ cos θ

As an example, we wish to calculate the surface area of the surface S∗, which corresponds
to the part of the sphere, with equation x2 + y2 + z2 = 25, that lies in the second octant
above the xy-plane and between the planes x = 0 and α : y = − 2√

21
x, under the condition

that the angle between the two planes is less than 90◦. Fig. 10.20 depicts the surface S∗.

Given the spherical symmetry, we can describe S∗ through the spherical coordinates whereby
ρ remains constant, i.e., ρ = 5. The vector function of S∗ is equal to ~r : G ⊂ R2 → R3 :
(θ, φ) 7→ ~r(θ, φ) = (5 sin(θ) cosφ, 5 sin(θ) sinφ, 5 cos θ).

Regarding the domain G, we know that θ : 0 → π
2

. Since the surface S∗ is located in the

second octant, the initial value of the angle φ is equal to φ1 = π
2

. The final value φ2 is

determined by the plane α : y = − 2√
21
x. Because the general form of a plane perpendic-

ular to the xy-plane and going through the origin is equal to y = tan(φ)x, we have that

tanφ2 = − 2√
21
⇔ φ2 = arctan(− 2√

21
). As S∗ lies within the second octant, we correct the

value of φ2 by an angle of π so that we have φ2 = arctan(− 2√
21

) + π.
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Figure 10.20: The surface of a part of a sphere

In a next step, we find the value of the norm of the curl between the partial derivatives of
the vector function ~r(θ, φ):

∥∥∥∥∂~r∂θ × ∂~r

∂φ

∥∥∥∥ =

∥∥∥∥∥∥∥
 5 cos(θ) cosφ

5 cos(θ) sinφ

−5 sin θ

×
 −5 sin(θ) sinφ

5 sin(θ) cosφ

0


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
 25 sin2(θ) cosφ

25 sin2(θ) sinφ

25 sin(θ) cos θ


∥∥∥∥∥∥∥

= 25 sin θ

The surface area of S∗ is then calculated as follows:∫∫
S∗
dS =

∫∫
G

∥∥∥∥∂~r∂θ × ∂~r

∂φ

∥∥∥∥ dG =

∫ φ2

π
2

dφ

∫ π
2

0

25 sin(θ) dθ = 25 [θ]φ2π
2
· [− cos θ]

π
2
0

= 25

[
arctan(− 2√

21
) +

π

2

]

• Surface area of a solid of revolution

In section 9.2.3 we discussed how to calculate the volume of a solid of revolution. Now we
wish to understand how to calculate the surface area S∗ of such a solid.

Consider, for instance, the curve C in the yz-plane, which is described by the vector function
~rC : [a, b] → R3 : z 7→ ~rC(z) = (0, f(z), z) whereby f is one-variable scalar function. Now,
we let the curve C rotate one complete revolution of 360◦ about the z-axis to obtain a solid
of revolution.
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If we consider a point ~p on the surface S∗ of our solid of revolution, we use two parameters
to construct the vector function ~r to describe S∗: the parameter z and the parameter θ,
which is the angle between the y-axis and the orthogonal projection of the vector ~p onto the
xy-plane. The vector function ~r then becomes ~r : [a, b] × [0, 2π[→ R3 : (z, θ) 7→ ~r(z, θ) =
(f(z) sin θ, f(z) cos θ, z).

Figure 10.21: The surface of a solid of revolution

The norm of the curl between the partial derivatives of the vector function ~r(z, θ) is equal to:

∥∥∥∥∂~r∂z × ∂~r

∂θ

∥∥∥∥ =

∥∥∥∥∥∥∥
 f ′(z) sin θ

f ′(z) cos θ

1

×
 f(z) cos θ

−f(z) sin θ

0


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
 f(z) sin θ

f(z) cos θ

−f(z)f ′(z)


∥∥∥∥∥∥∥

= f(z)

√
1 + [f ′(z)]2

The surface area of S∗ is then found as follows:∫∫
S∗
dS =

∫∫
G

∥∥∥∥∂~r∂z × ∂~r

∂θ

∥∥∥∥ dG =

∫ 2π

0

dθ

∫ b

a

f(z)

√
1 + [f ′(z)]2 dz

= 2π

∫ b

a

f(z)

√
1 + [f ′(z)]2 dz

If instead of the variable z, we choose the variable y to describe the curve C and rotate the
curve around the y-axis, the above expression changes slightly to:∫∫

S∗
dS = 2π

∫ b

a

g(y)

√
1 + [g′(y)]2 dy
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whereby g(y) is a one-variable scalar function that is used to define the vector function
~rC : [a, b] → R3 : y 7→ ~rC(y) = (0, y, g(y)); note that the domain [a, b] now refers to an
interval in the y-direction.

As an example, we take the curve C, which is described by the vector function ~rC : [1
2
, 7

2
]→

R3 : y 7→ ~rC(y) = (0, y, (y−2)2−y+ 5), whereby g(y) = (y−2)2−y+ 5, and rotate it about
the z-axis for one full revolution. The surface S∗ is then described by the vector function
~r : [1

2
, 7

2
]× [0, 2π[→ R3 : (y, θ) 7→ ~r(y, θ) = (y sin θ, y cos θ, (y − 2)2 − y + 5).

Figure 10.22: The surface of a solid of revolution: an example

Given that g′(y) = 2y − 5, the surface area of S∗ is then equal to:∫∫
S∗
dS = 2π

∫ b

a

y

√
1 + [g′(y)]2 dy

= 2π

∫ 7
2

1
2

y

√
1 + (2y − 5)2 dy

= 2π

∫ 7
2

1
2

y

√
4

(
y − 5

2

)2

+ 1 dy

=
π

2

∫ 2

−4

(s+ 5)
√
s2 + 1 ds
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=
π

2

∫ 2

−4

s
√
s2 + 1 ds+

5π

2

∫ 2

−4

√
s2 + 1 ds

=
π

6

[(
s2 + 1

) 3
2

]2

−4
+

5π

2

∫ θ2

θ1

sec3(θ) dθ

=
π

6

(
5

3
2 − 17

3
2

)
+

5π

4

[
[tan(θ) sec θ]θ2θ1 +

∫ θ2

θ1

sec(θ) dθ

]

=
π

6

(
5

3
2 − 17

3
2

)
+

5π

4

[
[tan(θ) sec θ]θ2θ1 +

∫ u2

u1

1

1− u2
du

]

=
π

6

(
5

3
2 − 17

3
2

)
+

5π

4

[
(2
√

5 + 4
√

17) +
1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣u2
u1

]

=
π

6

(
5

3
2 − 17

3
2

)
+

5π

4

[
(2
√

5 + 4
√

17) + ln
[
(2 +

√
5)(4 +

√
17)
]]

≈ 65.38

whereby we introduced the substitution s = 2(y − 5
2

) in line 4, the substitution s = tan θ in
line 6, and the substitution u = sin θ in line 8. The respective boundaries of the variables
θ and u are θ : arctan(−4) → arctan(2) and u : − 4√

17
→ 2√

5
. Remember hereby that

sinα = tanα√
1+tan2 α

, so that sin(arctan(s)) = s√
1+s2

. Note also that going from line 6 to

7, we applied the reduction formula as per Example 2 of the subsection F. Integration of
Irrational Functions of section 9.1.2.

• Flux through the surface S∗

So far, we have considered the surface integral of a scalar function f(x, y, z) across a surface
S∗. In all of the above numerical examples, note that we have taken f(x, y, z) = 1 in order
to calculate the surface area of S∗.

Apart from evaluating the surface integral of a scalar function f , we can equally integrate
a vector field ~F across the surface S∗. In that regard, the surface integral is an extension
of the line integral (see section 10.4.1) to the situation of two variables: whereas the line
integral of a vector field integrates a vector field along a curve, the surface integral evaluates
a vector function across a surface.

What we are measuring when evaluating a vector field ~F across the surface S∗, is the
flow or flux of ~F through S∗ and is denoted by the symbol Φ. Given a vector function
~r : G ⊂ R2 → R3 : (u, v) 7→ ~r(u, v) that describes the surface S∗ and a vector field
~F : H ⊂ R3 → R3 : (x, y, z) 7→ ~F (x, y, z), whereby S∗ ⊂ H, the surface integral of the vector

field ~F across S∗ is defined as follows:

Φ =

∫∫
S∗

~F (x, y, z) · d~S =

∫∫
S∗

~F (x, y, z) · ~n dS
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whereby ~n represents the unit normal vector to the surface S∗ at a certain point. Let us

have a closer look at the unit normal vector. Since the two vectors ∂~r
∂u

(u, v) and ∂~r
∂v

(u, v) at
a certain point of the surface S∗ lie within the tangent plane at that point (see Fig. 10.3 of
section 10.2.1), we know that the curl of these two vectors is oriented perpendicular to the
tangent plane, i.e., the curl represents a normal vector.

If we then turn the curl into a unit vector, i.e., we give it a length equal to 1 by dividing the
vector through its norm, we can write the unit normal vector ~n of the surface S∗ as follows:

~n = ε ·
∂~r
∂u

(u, v)× ∂~r
∂v

(u, v)∥∥∥ ∂~r∂u (u, v)× ∂~r
∂v

(u, v)
∥∥∥

whereby ε = ±1. When one of the two values of ε is assigned to ~n, we say that the surface
S∗ is oriented. The successful orientation of a surface implies that all the normal vectors are
directed to the same side of the surface.

Inserting this expression for ~n into the above definition of the flux Φ, we find that the surface
integral of the vector field ~F across S∗ takes on the following form:

∫∫
S∗

~F (x, y, z) · ~n dS

=

∫∫
G

~F (~r(u, v)) · ~n
∥∥∥ ∂~r∂u (u, v)× ∂~r

∂v
(u, v)

∥∥∥ dG
=

∫∫
G

~F (~r(u, v)) ·

ε · ∂~r
∂u

(u, v)× ∂~r
∂v

(u, v)∥∥∥ ∂~r∂u (u, v)× ∂~r
∂v

(u, v)
∥∥∥
∥∥∥ ∂~r∂u (u, v)× ∂~r

∂v
(u, v)

∥∥∥ dG
= ε

∫∫
G

~F (~r(u, v)) ·
[
∂~r

∂u
(u, v)× ∂~r

∂v
(u, v)

]
dG

whereby in line 2 we applied the definition of the surface integral as discussed at the beginning
of this section.

As an example, we wish to calculate the flux of the vector field ~F : R3 → R3 : (x, y, z) 7→
~F (x, y, z) = (−2x, y,−z2) through the surface S∗, which is bounded by the scalar function

f : ]0,+∞[× ]0,+∞[→ R3 : (x, y) 7→ f(x, y) =
√
x
y

and the three planes α, β, and γ, with

equations α : y = 2x−2, β : y = −2x+ 10, and γ : y = 1
5

. Note hereby that the unit normal
vector ~n is pointing to the outer side of the curvature.

The surface S∗ is shown in below Fig. 10.23. To construct the vector function ~r(x, y) that
describes S∗, we need to determine the boundaries of the region G, which is the projection
of S∗ onto the xy-plane. With respect to the x-direction, the lower and upper boundary is
established by the plane α and β, respectively. That is, the x-variable runs from x1 =

y
2

+ 1

to x2 = 5− y
2

.
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In terms of the boundary of G in the y-direction, the variable y runs from y1 = 1
5

to the
y-component of the point of intersection between plane α and β. Setting the respective
equations equal to each other, we find that 2x − 2 = −2x + 10 ⇔ x = 3, so that the
y-component is y2 = 4.

The vector function ~r is then equal to ~r : G ⊂ R2 → R3 : (x, y) 7→ ~r(x, y) = (x, y,
√
x
y

). The

vector field ~F in terms of the parameters x and y is written as ~F (~r(x, y)) = (−2x, y,− x
y2

).

Given that ∂~r
∂x

(x, y) = (1, 0, 1
2y
√
x

) and ∂~r
∂y

(x, y) = (0, 1,−
√
x
y2

), we find that the curl between

these two vectors is equal to:

∂~r

∂x
(x, y)× ∂~r

∂y
(x, y) = (− 1

2y
√
x
,
√
x
y2
, 1)

As we know that the variables x and y take on only positive values and that the normal
vector ~n points to the outside of the curvature, i.e., into the negative y and z direction,
the curl vector, which points into the direction of the normal, tells us that we must choose
ε = −1 in the definition of the normal.

Figure 10.23: Calculating the flux through the surface S∗
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We can now calculate the flux Φ through the surface S∗:

Φ = ε

∫∫
G

~F (~r(x, y)) ·
[
∂~r

∂x
(x, y)× ∂~r

∂y
(x, y)

]
dG

= −
∫ 4

1
5

dy

∫ 5− y
2

y
2

+1

(−2x, y,− x

y2
) · (− 1

2y
√
x
,

√
x

y2
, 1) dx

= −
∫ 4

1
5

dy

∫ 5− y
2

y
2

+1

(
2
√
x

y
− x

y2

)
dx

= −
∫ 4

1
5

dy

[
4x

3
2

3y
− x2

2y2

]5− y
2

y
2

+1

= −
∫ 4

1
5

[
4

3y

(
5− y

2

)√
5− y

2
− 4

3y

(y
2

+ 1
)√y

2
+ 1− 1

2y2

(
5− y

2

)2

+
1

2y2

(y
2

+ 1
)2
]
dy

= −
∫ 4

1
5

20

3y

√
5− y

2
dy +

2

3

∫ 4

1
5

√
5− y

2
dy +

2

3

∫ 4

1
5

√
y

2
+ 1 dy +

∫ 4

1
5

4

3y

√
y

2
+ 1 dy

+ 12

∫ 4

1
5

1

y2
dy − 3

∫ 4

1
5

1

y
dy

=
40

3

∫ u2

u1

−1 +
1

1− u2

5

 du− 8

9

[(√
5− y

2

) 3
2

]4

1
5

+
8

9

[(√
y

2
+ 1

) 3
2

]4

1
5

+
8

3

∫ s2

s1

(
1 +

1

s2 − 1

)
ds− 12

[
1

y

]4

1
5

− 3 [ln y]41
5

=
40

3

[
[−u]u2u1 +

√
5

∫ t2

t1

1

1− t2
dt

]
− 8

9

[(√
5− y

2

) 3
2

]4

1
5

+
8

9

[(√
y

2
+ 1

) 3
2

]4

1
5

+
8

3

[
s− 1

2
ln

∣∣∣∣s+ 1

s− 1

∣∣∣∣]s2
s1

− 12

[
1

y

]4

1
5

− 3 [ln y]41
5

=
40

3

[
[−u]u2u1 +

√
5

2

[
ln

∣∣∣∣1 + t

1− t

∣∣∣∣]t2
t1

1

1− t2
dt

]
− 8

9

[(√
5− y

2

) 3
2

]4

1
5

+
8

9

[(√
y

2
+ 1

) 3
2

]4

1
5

+
8

3

[
s− 1

2
ln

∣∣∣∣s+ 1

s− 1

∣∣∣∣]s2
s1

− 12

[
1

y

]4

1
5

− 3 [ln y]41
5

=

√
10(2786−82

√
11)

225
− 32

√
3

3
+

20
√

5
3

ln

∣∣∣∣ 4+
√

15
99+70

√
2

∣∣∣∣− 4

3
ln

∣∣∣∣ 2+
√

3
21+2

√
110

∣∣∣∣+ 57− 3 ln 20

≈ 20.03
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whereby we introduced the substitution u =
√

5− y
2

and s =
√

y
2

+ 1 in line 7 and the

substitution t = u√
5

in line 8. The respective boundaries are equal to u : 7√
10
→
√

3,

s :
√

11
10
→
√

3, and t : 7
5
√

2
→
√

3
5

. We furthermore applied partial fraction decomposition

twice in line 7.

• Stokes’ Theorem

In section 10.4.2 we have seen how the line integral of a vector field along a two-dimensional
curve can be linked to the double integral through Green’s theorem.

Stokes’ theorem links the line integral of a vector field along a three-dimensional curve C
to the surface integral. More specifically, this theorem tells us that the amount of rotation
of a continuous vector field ~F : H ⊂ R3 → R3 : (x, y, z) 7→ ~F (x, y, z) across the surface S∗,
which is described by the vector function ~r : G ⊂ R2 → R3 : (u, v) 7→ ~r(u, v) and whereby
S∗ ⊂ H, is connected to the line integral of the curve C, which encloses the surface S∗:∫∫

S∗

[(
∇× ~F (x, y, z)

)
· ~n
]
dS =

∮
C+

~F (~r(u, v)) · d~r(u, v)

Note hereby that the orientation of S∗ must be aligned with the direction in which the line
integral is evaluated across the curve C. That is, the unit normal vector ~n is oriented accord-
ing to the right-hand rule when applied to the direction of circulation along C. Remember
that C+ implies a positive direction of circulation and is taken to be counterclockwise.

The left-hand side of Stokes’ theorem takes on the following form when the vector field ~F is
expressed in terms of the parameters u and v:∫∫

S∗

[(
∇× ~F (x, y, z)

)
· ~n
]
dS

=

∫∫
G

[(
∇× ~F (~r(u, v))

)
· ~n
] ∥∥∥ ∂~r∂u (u, v)× ∂~r

∂v
(u, v)

∥∥∥ dG
=

∫∫
G

(∇× ~F (~r(u, v))
)
·

ε · ∂~r
∂u

(u, v)× ∂~r
∂v

(u, v)∥∥∥ ∂~r∂u (u, v)× ∂~r
∂v

(u, v)
∥∥∥
∥∥∥ ∂~r∂u (u, v)× ∂~r

∂v
(u, v)

∥∥∥ dG
= ε

∫∫
G

(
∇× ~F (~r(u, v))

)
·
[
∂~r

∂u
(u, v)× ∂~r

∂v
(u, v)

]
dG

whereby G represents the projection of the surface S∗ onto the uv-plane.

As an example, consider the vector field ~F : R3 → R3 : (x, y, z) 7→ ~F (x, y, z) = (x2 + z, x−
y,−xy − z) and the surface S∗, which consists of the part of the paraboloid with equation
x2 + y2 − 4 = −z located above the xy-plane and bounded by the plane α : 4y + z = 4 so
that y ≥ 1− z

4
. We will calculate both the left-hand side and the right-hand side of Stokes’

theorem which should produce the same answer.
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Figure 10.24: Stokes’ theorem: an example

Before we start, we wish to construct the vector function ~r(x, y) that describes the surface
S∗. The plane α intersects the xy-plane at y = 1 which gives two points of intersection with
the paraboloid: ~a = (−

√
3, 1, 0) and ~b = (

√
3, 1, 0). The intersection between the plane α

and the paraboloid produces an ellipse of which part of its projection onto the xy-plane is
given by the pink circular curve C1 with equation C1 : y = 2−

√
4− x2. The yellow circular

curve C2 represents the level curve of the paraboloid for z = 0 whose equation is equal to
C2 : y =

√
4− x2.

Based on the above information, we find that the region G, which is the projection of
S∗ onto the xy-plane, is bounded by the interval [−

√
3,
√

3] in the x-direction and [2 −√
4− x2,

√
4− x2 ] in the y-direction. We can then describe the surface S∗ by the vector

function ~r : G ⊂ R2 → R3 : (x, y) 7→ ~r(x, y) = (x, y, 4− (x2 + y2)).

We will first calculate the right-hand side of the Stokes’ theorem, i.e., the line integral. The
curve C that encloses the surface S∗ consists of two parts: the green curve ~r1 that is part
of the elliptical intersection between plane α and the paraboloid and the yellow segment
~r2 which lies on the curve C2. Given that the unit normal vector ~n points outwards, the
right-hand rule informs us that the circulation of C is positive, i.e., counterclockwise.

With respect to the green curve ~r1, if we implement the parameterization x = t and y =
2−
√

4− t2, whereby t runs from −
√

3 to
√

3, and substitute these parameters for x and y
in the vector function ~r(x, y)—after all, both ~r1 and ~r2 make up the edges of S∗—we can
write ~r1 as ~r1 : R→ R3 : t 7→ ~r1(x(t), y(t)) = (t, 2−

√
4− t2, 4

√
4− t2 − 4).

Based on this parameterization of ~r1, we can write its differential d~r1 and the vector field
~F1(~r1(x(t), y(t))) as follows:
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d~r1(x(t), y(t)) = (1,

t√
4− t2

,− 4t√
4− t2

) dt

~F1(~r1(x(t), y(t))) = (t2 − 4 + 4
√

4− t2, t− 2 +
√

4− t2,−2t+ 4− (4− t)
√

4− t2)

The line integral for the part of C described by ~r1 is equal to:∫
C+

1

~F1(~r1(x(t), y(t))) · d~r1(x(t), y(t))

=

∫ √3

−
√

3

(t2 − 4 + 4
√

4− t2, t− 2 +
√

4− t2,−2t+ 4− (4− t)
√

4− t2) · (1, t√
4−t2 ,−

4t√
4−t2 ) dt

=

∫ √3

−
√

3

[
−3t2 + 17t− 4 + 4

√
4− t2 +

9t2√
4− t2

− 18t√
4− t2

]
dt

=

[
−t3 +

17

2
t2 − 4t

]√3

−
√

3

+ 16

∫ π
3

−π
3

cos2(θ) dθ + 36

∫ π
3

−π
3

sin2(θ) dθ + 18
[√

4− t2
]√3

−
√

3

=
(
−14
√

3
)

+

(
16π

3
+ 4
√

3

)
+
(

12π − 9
√

3
)

=
52π

3
− 19
√

3

whereby we introduced the substitution t = 2 sin θ in line 4.

A similar reasoning as above for the yellow line segment ~r2 gives us the following expressions,
whereby we used the parameterization x = t and y =

√
4− t2 and this time the parameter

t runs from
√

3 to −
√

3, i.e., from point ~b to ~a :

~r2 : R→ R3 : t 7→ ~r2(x(t), y(t)) = (t,
√

4− t2, 0)

d~r2(x(t), y(t)) = (1,− t√
4− t2

, 0) dt

~F2(~r2(x(t), y(t))) = (t2, t−
√

4− t2,−t
√

4− t2)

The line integral for the second part of the curve C described by ~r2 is then equal to:∫
C+

2

~F2(~r2(x(t), y(t))) · d~r2(x(t), y(t))

=

∫ −√3

√
3

(t2, t−
√

4− t2,−t
√

4− t2) · (1,− t√
4− t2

, 0) dt

=−
∫ √3

−
√

3

[
t2 + t− t2√

4− t2

]
dt
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= −
[
t3

3
+
t2

2

]√3

−
√

3

+

∫ √3

−
√

3

t2√
4− t2

dt

=
(
−2
√

3
)

+ 4

∫ π
3

−π
3

sin2(θ) dθ

=
(
−2
√

3
)

+

(
4π

3
−
√

3

)

=
4π

3
− 3
√

3

whereby we implemented the substitution t = 2 sin θ in line 5.

The total line integral is then equal to:∮
C+

~F (~r(x(t), y(t))) · d~r(x(t), y(t)) =

∫
C+

1

~F1(~r1(x(t), y(t))) · d~r1(x(t), y(t))

+

∫
C+

2

~F2(~r2(x(t), y(t))) · d~r2(x(t), y(t))

=

(
52π

3
− 19
√

3

)
+

(
4π

3
− 3
√

3

)

=
56π

3
− 22
√

3

In second step, we calculate the left-hand side of Stokes’ theorem, i.e., the surface integral.
The curl of the vector field ~F (x, y, z) is equal to rot(~F (x, y, z)) = (−x, 1+y, 1). Note that in
terms of the x and y parameterization, the curl remains unchanged. The partial derivatives

of the vector function ~r(x, y) are ∂~r
∂x

= (1, 0,−2x) and ∂~r
∂y

= (0, 1,−2y). Their curl is equal

to the vector (2x, 2y, 1). Since the unit normal vector ~n, which is parallel to this curl, points
into the positive z-direction at every point of S∗, we have that ε = +1.

The left-hand side of Stokes’ theorem is then equal to:∫∫
S∗

[(
∇× ~F (x, y, z)

)
· ~n
]
dS

= ε

∫∫
G

(
∇× ~F (~r(x, y))

)
·
[
∂~r

∂x
(x, y)× ∂~r

∂y
(x, y)

]
dG

=

∫ √3

−
√

3

dx

∫ √4−x2

2−
√

4−x2
(−x, 1 + y, 1) · (2x, 2y, 1) dy

=

∫ √3

−
√

3

dx

∫ √4−x2

2−
√

4−x2

(
−2x2 + 2y + 2y2 + 1

)
dy

=

∫ √3

−
√

3

dx

[
−2x2y + y2 +

2

3
y3 + y

]√4−x2

2−
√

4−x2
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=

∫ √3

−
√

3

dx

[
−16

3
x2
√

4− x2 + 8x2 +
58

3

√
4− x2 − 82

3

]
dx

= − 256

3

∫ π
3

−π
3

sin2(θ) cos2(θ) dθ +
8

3

[
x3
]√3

−
√

3
+

232

3

∫ π
3

−π
3

cos2(θ) dθ − 82

3
[x]
√

3

−
√

3

=

−32

3

[
θ − sin(4θ)

4

]π
3

−π
3

+
(

16
√

3
)

+

116

3

[
θ +

sin(2θ)

2

]π
3

−π
3

+

(
−164

√
3

3

)

=

(
−64π

9
− 8
√

3

3

)
+
(

16
√

3
)

+

(
232π

9
+

58
√

3

3

)
+

(
−164

√
3

3

)

=
56π

3
− 22
√

3

whereby we implemented the substitution x = 2 sin θ in line 7.

10.4.4 The Triple Integral

In section 10.4.2 we have seen how the double integral allows us to calculate the volume of
the region between the graph of a function f : S ⊂ R2 → R and the surface S. The triple
integral is a further generalization as it enables us to calculate the volume not necessarily
of regions below the graph of f but also of regions comprised between any bounded surfaces.

If D ⊂ R3 is a region in three-dimensional space, the volume of D can be calculated through
the following triple integral: ∫∫∫

D

dD =

∫∫∫
D

dxdydz

• Example

We wish to calculate the volume of the region D that is bounded by the graph of the scalar
function f : R2 → ] −∞, 4[ : (x, y) 7→ f(x, y) = − 1

2ey
+ 4, the surface W described by the

vector function ~rW : [−8, 4] × [−2, 6] → R3 : (x, z) 7→ ~rW (x, z) = (x, 4 + ln
[

2
3

(x+ 5)
]
, z),

and by the planes x = 0, x = −4 and α : 2x − 3z = −10. The region D is shown in below
Fig. 10.25.

With respect to the integral boundaries in the x-direction, we have that x : −4 → 0.
Regarding the y-direction, the parameter y runs from the intersection between the graph of

f and the plane α to the surface W . In other words, we have that y : y1 = ln
[

3
4(1−x)

]
→

y2 = 4+ln
[

2
3

(x+ 5)
]
. Finally, the z-variable runs from the plane α to the graph of f . That

is, z : z1 = 2
3

(x+ 5)→ z2 = − 1
2ey

+ 4.
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Figure 10.25: Calculating the volume with the triple integral

The volume of the region D is then found as follows:

V =

∫∫∫
D

dxdydz

=

∫ 0

−4

dx

∫ y2

y1

dy

∫ z2

z1

dz

=

∫ 0

−4

dx

∫ y2

y1

[z]
z2=− 1

2ey
+4

z1= 2
3

(x+5)
dy

=

∫ 0

−4

dx

∫ y2

y1

(
− 1

2ey
+

2

3
− 2x

3

)
dy

=

∫ 0

−4

[
1

2ey
+

2y

3
− 2xy

3

]y2=4+ln[ 23 (x+5)]

y1=ln[ 3
4(1−x) ]

dx

=

∫ 0

−4

3

4e4(x+ 5)
dx+

∫ 0

−4

2

3

(
4 + ln

[
2

3
(x+ 5)

])
dx−

∫ 0

−4

2x

3

(
4 + ln

[
2

3
(x+ 5)

])
dx

−
∫ 0

−4

2(1− x)

3
dx−

∫ 0

−4

2

3

(
ln

[
3

4(1− x)

])
dx+

∫ 0

−4

2x

3

(
ln

[
3

4(1− x)

])
dx
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=
3

4e4
[ln(x+ 5)]0−4 +

8

3
[x]0−4 +

2

3

[
x ln

[
2

3
(x+ 5)

]
− x+ 5 ln(x+ 5)

]0

−4

− 4

3

[
x2
]0
−4

− 2

3

[
x2

2
ln

[
2

3
(x+ 5)

]
− x2

4
+

5x

2
− 25

2
ln(x+ 5)

]0

−4

− 2

3
[x]0−4 +

1

3

[
x2
]0
−4

− 2

3

[
x ln

[
3

4

]
− x ln(1− x) + x+ ln(1− x)

]0

−4

+
2

3

[
x2

2
ln

[
3

4

]
− x2

2
ln(1− x) +

x2

4
+
x

2
+

1

2
ln(1− x)

]0

−4

=

(
3

4e4
+ 20

)
ln(5)− 16 ln(3) + 24 ln(2) + 8

≈ 39.27

whereby we applied partial integration and/or partial fraction decomposition to the second,
third, fifth and sixth integral of line 6, when going from line 6 to line 7.

• Density function f

If the scalar function f : R3 → R : (x, y, z) 7→ f(x, y, z) represents the density function, the
triple integral across a volume D calculates the mass within that volume and is given by:∫∫∫

D

f(x, y, z)dD =

∫∫∫
D

f(x, y, z)dxdydz

• Change of coordinates: Spherical coordinates

If our problem has spherical symmetry, we can opt to change from the usual (x, y, z) system
to a coordinate system expressed in spherical coordinates. As already introduced in sec-
tion 10.4.3, the spherical coordinates are defined as follows, whereby ρ : 0 → R, θ : 0 → π,
and φ : 0→ 2π: 

x = ρ sin(θ) cosφ

y = ρ sin(θ) sinφ

z = ρ cos θ

The triple integral then obtains the following form:

∫∫∫
D

f(x, y, z) dxdydz =

∫∫∫
D

f(x(ρ, θ, φ), y(ρ, θ, φ), z(ρ, θ, φ))

∣∣∣∣∂(x, y, z)

∂(ρ, θ, φ)

∣∣∣∣ dρdθdφ
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The Jacobian determinant is equal to:

det (L ) =

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂θ

∂x
∂φ

∂y
∂ρ

∂y
∂θ

∂y
∂φ

∂z
∂ρ

∂z
∂θ

∂z
∂φ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
sin(θ) cosφ ρ cos(θ) cosφ −ρ sin(θ) sinφ

sin(θ) sinφ ρ cos(θ) sinφ ρ sin(θ) cosφ

cos θ −ρ sin θ 0

∣∣∣∣∣∣∣
= sin(θ) cos(φ)

[
ρ2 sin2(θ) cosφ

]
+ ρ cos(θ) cos(φ) [ρ sin(θ) cos(θ) cosφ]

− ρ sin(θ) sin(φ)
[
−ρ sin2(θ) sinφ− ρ cos2(θ) sinφ

]
= ρ2 sin θ

• Example

We would like to calculate the volume of the region D that consists of the region outside
the cylinder L with radius r =

√
6 but within the sphere S : x2 + y2 + z2 = 36. The

cylinder L lies entirely within the sphere so that its upper and lower edge are tangent to
the sphere. This means that the region D is made up of the region D1 and two regions
D2: D1 refers to the region that extends radially and horizontally beyond the cylinder and
within the sphere, and the two regions D2 are the regions right above and below the cylinder.

Figure 10.26: Calculating the volume with spherical coordinates

252



Mathematics Preparation Course Olivier Loose

Let us begin with region D1. In terms of the spherical coordinates, the domain of the
parameter φ is equal to [0, 2π[ . With respect to the angle θ, we want it to have an initial
value of θ1 (indicated in yellow in Fig. 10.26) and a final value of θ2 = π − θ1. Given that
the radius of the cylinder is r =

√
6, we find that the height of the cylinder above the xy-

plane—if we set, for instance, x =
√

6 and y = 0 in the equation of the sphere—is equal to

z =
√

30. This means that θ1 is equal to tan θ1 =
√

6√
30
⇔ θ1 = arctan(

√
5

5
).

The parameter ρ has to be taken into account only from the surface of the cylinder onwards,
extending radially towards the edge of the sphere. In other words, we have to find an equation
for the cylinder and express it in spherical coordinates. The cylinder can be described by

the equation x2 + y2 = 6, so that (ρL sin(θ) cosφ)2 + (ρL sin(θ) sinφ)2 = 6 ⇔ ρL =
√

6
sin θ

.
Since ρL represents the distance from the origin to a point on the cylinder, we have that
ρ : ρL → ρS, whereby ρS is the radius of the sphere S, i.e., ρS = 6.

The volume V1 of region D1 is then calculated as follows:

V1 =

∫∫∫
D1

dxdydz =

∫∫∫
D1

ρ2 sin(θ) dρdθdφ

=

∫ 2π

0

dφ

∫ θ2

θ1

dθ

∫ ρS

ρL

ρ2 sin(θ) dρ

=

∫ 2π

0

dφ

∫ θ2

θ1

[
ρ3

3

]ρS=6

ρL=
√
6

sin θ

sin(θ) dθ

=

∫ 2π

0

dφ

∫ θ2

θ1

(
72 sin θ − 2

√
6

sin2 θ

)
dθ

=

∫ 2π

0

(
72

∫ θ2

θ1

sin(θ) dθ − 2
√

6

∫ t2

t1

1

t2
dt

)
dφ

=

∫ 2π

0

72 [− cos(θ)]
θ2=π−arctan(

√
5

5
)

θ1=arctan(
√
5

5
)
− 2
√

6

[
−1

t

]t2=−
√
5

5

t1=
√
5

5

 dφ

=

∫ 2π

0

(
24
√

30− 4
√

30
)
dφ

= 40π
√

30

whereby we introduced the substitution t = tan θ in line 5. Also remember that cos θ =
1√

1+tan2 θ
and that tan(π − α) = − tanα.

We now focus on the two regions D2. For the parameters φ and θ, we have that φ : 0→ 2π
and θ : 0 → θ1. With respect to the upper region D2, the parameter ρ can only run from
a point on the upper horizontal surface of the cylinder L to the edge of the sphere. Again,
we need to find an expression for the distance ρU from the origin to the upper horizontal
surface and express it in spherical coordinates. Since the height is equal to z =

√
30, the

Pythagorean theorem tells us that ρU =
√
x2 + y2 + 30. From the definition of the spherical
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coordinates, we also see that x2 + y2 = ρ2
U sin2 θ. Combining both equations, we find that

ρU =
√

30
cos θ

. Therefore, we have that ρ : ρU → ρS.

Given the symmetry, we will calculate the volume of the upper region D2 and double it to
find the total volume V2 of the two regions D2 together:

V2 = 2

∫∫∫
D2

dxdydz = 2

∫∫∫
D2

ρ2 sin(θ) dρdθdφ

= 2

∫ 2π

0

dφ

∫ θ1

0

dθ

∫ ρS

ρU

ρ2 sin(θ) dρ

= 2

∫ 2π

0

dφ

∫ θ1

0

[
ρ3

3

]ρS=6

ρU=
√
30

cos θ

sin(θ) dθ

= 2

∫ 2π

0

dφ

∫ θ1

0

(
72 sin θ − 10

√
30 sin θ

cos3 θ

)
dθ

= 2

∫ 2π

0

(
72

∫ θ1

0

sin(θ) dθ + 10
√

30

∫ t2

t1

1

t3
dt

)
dφ

= 2

∫ 2π

0

72 [− cos(θ)]
θ1=arctan(

√
5

5
)

0 + 10
√

30

[
− 1

2t2

]t2=
√
5

6

t1=1

 dφ

= 2

∫ 2π

0

(
72− 12

√
30−

√
30
)
dφ

= 288π − 52π
√

30

whereby we introduced the substitution t = cos θ in line 5.

The total volume V of region D is then equal to:

V = V1 + V2 =
(

40π
√

30
)

+
(

288π − 52π
√

30
)

= 288π − 12π
√

30

We can check this result by calculating the volume of the sphere and subtracting from it the
volume of the cylinder: 4

3
πR3 − πr2h = 4

3
π63 − π(

√
6)2(2

√
30) = 288π − 12π

√
30.

• Divergence theorem

Green’s theorem connects the line integral of a vector field ~F to the double integral (see

section 10.4.2) and Stokes’ theorem enables a link between the line integral of ~F and the
surface integral (see section 10.4.3).

The divergence theorem or Ostrogradsky’s theorem makes a connection between the sur-
face integral and the triple integral. Given a region D ⊂ R3 and a continuous vector field
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~F : H ⊂ R3 → R3 : (x, y, z) 7→ ~F (x, y, z), whereby the surface S∗ that encloses the region
D is defined within H, the divergence theorem states that the surface integral of the vector
field ~F across the surface S∗—this is the flux of ~F through S∗—is equal to the triple integral
of the divergence of the vector field ~F :∫∫

S∗

~F (x, y, z) · ~n dS =

∫∫∫
D

~∇ · ~F (x, y, z) dxdydz

whereby the unit normal vector ~n is oriented towards the outer side of the surface S∗.

The divergence theorem says that if the vector field ~F is constant, its divergence is zero,
so that no flux is measured across the surface S∗. What is more, if the divergence of ~F is
equal to 1, we can see from this theorem that the surface integral calculates the volume of
the region D.

• Example

Consider the region D, which is bounded by the graph of the scalar function f : R2 → R :
(x, y) 7→ f(x, y) = −x2y + 4y − y2 and the plane z = 0, and the continuous vector field
~F : H ⊂ R3 → R3 : (x, y, z) 7→ ~F (x, y, z) = (cosh(2x), xy, z + y2). We will calculate both
the left-hand and right-hand side of Ostrogradsky’s theorem which should produce the same
answer.

Figure 10.27: An example of Ostrogradsky’s theorem

The surface S∗ that encloses D consists of two parts: the surface S∗1 , which corresponds to
the surface above the xy-plane, and the surface S∗2 , which describes the bottom of region D.
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We first calculate the left-hand side of the divergence theorem and we start with the surface
S∗1 .

The surface S∗1 can be described by the vector function ~r1 : G ⊂ R2 → R3 : (x, y) 7→
~r1(x, y) = (x, y,−x2y + 4y − y2) and the vector field ~F1 expressed in this x and y parame-

terization is equal to ~F1(~r1(x, y)) = (cosh(2x), xy,−x2y + 4y). With respect to the domain
of G, we let the x parameter run from −2 to 2, whereas for the y variable we have that
y : 0 → 4 − x2, whose right boundary we obtained by considering the level curve z = 0 of
the graph of f .

The partial derivatives of the vector function ~r1(x, y) are equal to ∂~r1
∂x

= (1, 0,−2xy) and
∂~r1
∂y

= (0, 1,−x2 − 2y + 4), so that their curl is the vector (2xy, x2 + 2y − 4, 1). Given that

the unit normal vector ~n, which is parallel to this curl, points into the positive z-direction
at every point across the surface S∗1 , we have that ε = +1.

The left-hand side of the divergence theorem with respect to the surface S∗1 is equal to:

∫∫
S∗1

~F1(x, y, z) · ~n dS1

= ε

∫∫
G

~F1(~r1(x, y)) ·
[
∂~r1

∂x
(x, y)× ∂~r1

∂y
(x, y)

]
dG

= (+1)

∫ 2

−2

dx

∫ 4−x2

0

(cosh(2x), xy,−x2y + 4y) · (2xy, x2 + 2y − 4, 1) dy

=

∫ 2

−2

dx

∫ 4−x2

0

(
2xy cosh(2x) + x3y + 2xy2 − 4xy − x2y + 4y

)
dy

=

∫ 2

−2

[
xy2 cosh(2x) +

x3y2

2
+

2xy3

3
− 2xy2 − x2y2

2
+ 2y2

]4−x2

0

dx

=

∫ 2

−2

(
x(4− x2)2 cosh(2x)+

x3(4−x2)2

2
+ 2x(4−x2)3

3
−2x(4− x2)2−x

2(4−x2)2

2
+2(4− x2)2

)
dx

=

∫ 2

−2

(
16x cosh(2x)− 8x3 cosh(2x) + x5 cosh(2x)− x7

6
− x6

2
+ 2x5 + 6x4 − 8x3 − 24x2 + 32x

3
+ 32

)
dx

=

∫ 2

−2

(
16x cosh(2x)− 8x3 cosh(2x)

)
dx+

([
x5

2
sinh(2x)− 5x4

4
cosh(2x)

]2

−2

)
(

+5

∫ 2

−2

x3 cosh(2x) dx

)
+

[
−x

8

48
− x7

14
+
x6

3
+

6x5

5
− 2x4 − 8x3 +

16x2

3
+ 32x

]2

−2

=

∫ 2

−2

(
16x cosh(2x)− 3x3 cosh(2x)

)
dx+ [0] +

2048

35
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=

∫ 2

−2

16x cosh(2x) dx− 3

([
x3

2
sinh(2x)− 3x2

4
cosh(2x)

]2

−2

+
3

2

∫ 2

−2

x cosh(2x) dx

)
+

2048

35

=
23

2

∫ 2

−2

x cosh(2x) dx− 3 [0] +
2048

35

=
23

2

[
x

2
sinh(2x)− 1

4
cosh(2x)

]2

−2

+
2048

35

=
2048

35

whereby we applied the below reduction formula in line 8 and 10 and partial integration
in line 12.

∫
xa+2 cosh(bx) dx =

xa+2

b
sinh(bx)− (a+ 2)

b2
xa+1 cosh(bx)+

(a+ 1)(a+ 2)

b2

∫
xa cosh(bx) dx

We now consider the bottom of region D, i.e., the surface S∗2 . This surface is described by

the vector function ~r2 : G ⊂ R2 → R3 : (x, y) 7→ ~r2(x, y) = (x, y, 0) and the vector field ~F2

expressed in this x and y parameterization is equal to ~F2(~r2(x, y)) = (cosh(2x), xy, y2).

The partial derivatives of the vector function ~r2(x, y) are equal to ∂~r2
∂x

= (1, 0, 0) and ∂~r2
∂y

=

(0, 1, 0), so that their curl is the vector (0, 0, 1). Given that the unit normal vector ~n, which
is parallel to this curl, points into the negative z-direction at every point across the surface
S∗2 , we have that ε = −1. Remember that the unit normal vector ~n points towards the
outside of region D.

The left-hand side of the divergence theorem with respect to the surface S∗2 is calculated as
follows:

∫∫
S∗2

~F2(x, y, z) · ~n dS2 = ε

∫∫
G

~F2(~r2(x, y)) ·
[
∂~r2

∂x
(x, y)× ∂~r2

∂y
(x, y)

]
dG

= (−1)

∫ 2

−2

dx

∫ 4−x2

0

(cosh(2x), xy, y2) · (0, 0, 1) dy

= (−1)

∫ 2

−2

dx

∫ 4−x2

0

y2 dy

= −
∫ 2

−2

[
y3

3

]4−x2

0

dx

= −
∫ 2

−2

[
(4− x2)3

3

]
dx

257



Mathematics Preparation Course Olivier Loose

=

∫ 2

−2

[
−64

3
+ 16x2 − 4x4 +

x6

3

]
dx

=

[
−64x

3
+

16x3

3
− 4x5

5
+
x7

21

]2

−2

= − 4096

105

The left-hand side of the divergence theorem with respect to the surface S∗ = S∗1 + S∗2 is
then equal to:∫∫

S∗

~F (x, y, z) · ~n dS =

∫∫
S∗1

~F1(x, y, z) · ~n dS1 +

∫∫
S∗2

~F2(x, y, z) · ~n dS2

=
2048

35
− 4096

105

=
2048

105

The right-hand side of Ostrogradsky’s theorem is calculated as follows:∫∫∫
D

~∇ · ~F (x, y, z) dxdydz

=

∫ 2

−2

dx

∫ 4−x2

0

dy

∫ −x2y+4y−y2

0

~∇ · (cosh(2x), xy, z + y2) dz

=

∫ 2

−2

dx

∫ 4−x2

0

dy

∫ −x2y+4y−y2

0

(2 sinh(2x) + x+ 1) dz

=

∫ 2

−2

dx

∫ 4−x2

0

(2 sinh(2x) + x+ 1) [z]−x
2y+4y−y2

0 dy

=

∫ 2

−2

dx

∫ 4−x2

0

(2 sinh(2x) + x+ 1)
(
−x2y + 4y − y2

)
dy

=

∫ 2

−2

dx

∫ 4−x2

0

(−2x2y sinh(2x) + 8y sinh(2x)− 2y2 sinh(2x)− x3y + 4xy − xy2 − x2y + 4y − y2) dy

=

∫ 2

−2

dx

[
−x2y2 sinh(2x) + 4y2 sinh(2x)− 2y3

3
sinh(2x)− x3y2

2
+ 2xy2 − xy3

3
− x2y2

2

]
[
+2y2 − y3

3

] ]4−x2

0

=

∫ 2

−2

(
−x2(4− x2)2 sinh(2x) + 4(4− x2)2 sinh(2x)− 2(4− x2)3

3
sinh(2x)− x3(4− x2)2

2

)
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(
+2x(4− x2)2 − x(4− x2)3

3
− x2(4− x2)2

2
+ 2(4− x2)2 − (4− x2)3

3

)
dx

=

∫ 2

−2

(
−x

6

3
sinh(2x) + 4x4 sinh(2x)− 16x2 sinh(2x) +

64

3
sinh(2x)− x7

6
− x6

6
+ 2x5

)
(

+2x4 − 8x3 − 8x2 +
32x

3
+

32

3

)
dx

=

([
−x

6

6
cosh(2x) +

3x5

2
sinh(2x)

]2

−2

− 5

2

∫ 2

−2

x4 sinh(2x) dx

)
+ 4

∫ 2

−2

x4 sinh(2x) dx

− 16

∫ 2

−2

x2 sinh(2x) dx+
64

3

[
cosh(2x)

2

]2

−2

+

[
−x

8

48
− x7

42
+
x6

3
+

2x5

5
− 2x4 − 8x3

3

]
[
+

16x2

3
+

32x

3

] ]2

−2

= [0] +
3

2

∫ 2

−2

x4 sinh(2x) dx− 16

∫ 2

−2

x2 sinh(2x) dx+
64

3
[0] +

2048

105

=

([
3x4

4
cosh(2x)− 3x3

2
sinh(2x)

]2

−2

+
9

2

∫ 2

−2

x2 sinh(2x) dx

)
+

2048

105

=− 23

2

∫ 2

−2

x2 sinh(2x) dx+
2048

105

=

([
−23x2

4
cosh(2x) +

23x

4
sinh(2x)

]2

−2

− 23

4

∫ 2

−2

sinh(2x) dx

)
+

2048

105

= [0]− 23

4

[
cosh(2x)

2

]2

−2

+
2048

105

=− 23

4
[0] +

2048

105

=
2048

105

whereby we applied the below reduction formula in line 10, 12 and 14. The reduction for-
mula is the same as the one we used earlier except that the hyperbolic sine and cosine have
swapped places.

∫
xa+2 sinh(bx) dx =

xa+2

b
cosh(bx)− (a+ 2)

b2
xa+1 sinh(bx)+

(a+ 1)(a+ 2)

b2

∫
xa sinh(bx) dx

As we expected, both the left-hand side and right-hand side of the divergence theorem give
the same result.
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11 Methods for Solving Differential Equations

11.1 Definitions

A differential equation is an equation that contains the variable x, the function f : R→
R : x 7→ f(x) = y, as well as the derivatives of f . Recall that the nth derivative of f is

written as y(n) or
dny
dxn

.

We can express the differential equation as the following function g:

g : Rn+2 → R : (x, y, y′, y′′, . . . , y(n)) 7→ g(x, y, y′, y′′, . . . , y(n)) = 0

The order of a differential equation is equal to the number that corresponds to the highest
derivative present within the equation. The degree of a differential equation refers to the
number that is equal to the exponent of the variable y(n).

For example, the differential equation −xy′′ + x2y
′3 + y2y

′′′2 = 0 is a differential equation of
order 3 and degree 2. Another example is the differential equation 5y′ + 2xy(4) + x4y2 = 0,
which is a differential equation of order 4 and degree 1.

In the sections 11.3, 11.4, 11.5 and 11.6, we discuss how differential equations can be solved.

11.2 Change of Variables

Given is a differential equation g(x, y, y′, y′′, . . . , y(n)) = 0, whereby y is a function of x. We
would like to rewrite the differential equation in terms of two new variables u and v, if we
know that u is a function of v. The equations whereby we transform from one set of variables
to the other are the following: {

x = φ1(u, v)

y = φ2(u, v)

Since u is a function of v, we start with differentiating the above equations with respect to
v: 

dx

dv
=
∂φ1

∂u

du

dv
+
∂φ1

∂v

dv

dv
=
∂φ1

∂u

du

dv
+
∂φ1

∂v

dy

dv
=
∂φ2

∂u

du

dv
+
∂φ2

∂v

dv

dv
=
∂φ2

∂u

du

dv
+
∂φ2

∂v

We can now find the following expression for the first derivative of y (with respect to x):

dy

dx
=
dy

dv

dv

dx
=
dy

dv

(
dx

dv

)−1

=

(
∂φ2

∂u

du

dv
+
∂φ2

∂v

)(
∂φ1

∂u

du

dv
+
∂φ1

∂v

)−1
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Regarding the second derivative of y, we first write out the second-order derivatives of the
two equations of transformation, using the chain rule:


d2x

dv2
=
∂2φ1

∂u2

(
du

dv

)2

+ 2
∂2φ1

∂u∂v

du

dv
+
∂φ1

∂u

d2u

dv2
+
∂2φ1

∂v2

d2y

dv2
=
∂2φ2

∂u2

(
du

dv

)2

+ 2
∂2φ2

∂u∂v

du

dv
+
∂φ2

∂u

d2u

dv2
+
∂2φ2

∂v2

An expression for the second derivative of y (with respect to x) is found as follows:

d

dv

(
dy

dv

)
=

d

dv

(
dy

dx

dx

dv

)
⇔ d2y

dv2
=
d2y

dx2

(
dx

dv

)2

+
dy

dx

d2x

dv2

⇔ d2y

dx2
=

(
d2y

dv2
− dy

dx

d2x

dv2

)(
dx

dv

)−2

The derivations of higher derivates are found in a similar way. When we substitute these
expressions for the derivatives of y (with respect to x) in our original differential equation
g(x, y, y′, y′′, . . . , y(n)) = 0, we find a differential equation expressed in terms of u and v,
whereby u is a function of v.

• Example 1

For a function y of x, we are given the differential equation y′′ = 0. We would like to write
this equation in terms of the variables u and v, considering that u is a function of v, with
the following transformation between the variables:

{
x = cosu+ sin v

y = sinu+ cos v

The first and second derivatives of these equations with respect to v are:



dx

dv
= − sin(u)

du

dv
+ cos v

dy

dv
= cos(u)

du

dv
− sin v

d2x

dv2
= − cos(u)

(
du

dv

)2

− sin(u)
d2u

dv2
− sin v

d2y

dv2
= − sin(u)

(
du

dv

)2

+ cos(u)
d2u

dv2
− cos v
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The first derivative of y (with respect to x) is equal to:

dy

dx
=
dy

dv

(
dx

dv

)−1

=
cos(u)du

dv
− sin v

− sin(u)du
dv

+ cos v

The second derivative of y (with respect to x) is found as follows:

d2y

dx2
=

(
d2y

dv2
− dy

dx

d2x

dv2

)(
dx

dv

)−2

=
d2y

dv2

(
dx

dv

)−2

− dy

dx

d2x

dv2

(
dx

dv

)−2

=

[
− sin(u)

(
du

dv

)2

+ cos(u)
d2u

dv2
− cos v

] [
− sin(u)

du

dv
+ cos v

]−2

−

[
cos(u)du

dv
− sin v

− sin(u)du
dv

+ cos v

][
− cos(u)

(
du

dv

)2

− sin(u)
d2u

dv2
− sin v

] [
− sin(u)

du

dv
+ cos v

]−2

=

[
− sin(u)

(
du

dv

)2

+ cos(u)
d2u

dv2
− cos v

] [
− sin(u)

du

dv
+ cos v

] [
− sin(u)

du

dv
+ cos v

]−3

−
[
cos(u)

du

dv
− sin v

][
− cos(u)

(
du

dv

)2

− sin(u)
d2u

dv2
− sin v

] [
− sin(u)

du

dv
+ cos v

]−3

=

[
sin2(u)

(
du

dv

)3

− sin(u) cos(v)

(
du

dv

)2

− sin(u) cos(u)

(
du

dv

)(
d2u

dv2

)]
[

+ cos(u) cos(v)

(
d2u

dv2

)
+ sin(u) cos(v)

(
du

dv

)
− cos2(v) + cos2(u)

(
du

dv

)3
]

[
+ sin(u) cos(u)

(
du

dv

)(
d2u

dv2

)
+ sin(v) cos(u)

(
du

dv

)
− sin(v) cos(u)

(
du

dv

)2
]

[
− sin(u) sin(v)

(
d2u

dv2

)
− sin2(v)

] [
− sin(u)

du

dv
+ cos v

]−3

=

[(
du
dv

)3

+ sin(u+ v)
(
du
dv

)(
1− du

dv

)
+ cos(u+ v)

(
d2u
dv2

)
− 1

] [
− sin(u)du

dv
+ cos v

]−3

The differential equation y′′ = 0 in terms of the new variables u and v then becomes:

(
du

dv

)3

+ sin(u+ v)

(
du

dv

)(
1− du

dv

)
+ cos(u+ v)

(
d2u

dv2

)
− 1 = 0
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• Example 2

We would like to write the differential equation 2yy′ − xy′2 + xyy′′ = 0 in terms of the
variables u and v, given that y is a function of x and v is a function of u with the following
relations between the two sets of variables:

{
u = e−2x

v = 2x ln y

In a first step, we consider the derivative of v with respect to x:

dv

dx
=
dv

du

du

dx
⇔ 2 ln y +

2x

y

dy

dx
=
dv

du

(
−2e−2x

)
If we differentiate the above equation again with respect to the variable x, we obtain the
following expression:

d

dx

[
2 ln y +

2x

y

dy

dx

]
=

d

dx

[
dv

du

(
−2e−2x

)]

⇔ 2

y

dy

dx
+

(
2y − 2x dy

dx

y2

)
dy

dx
+

2x

y

d2y

dx2
=
d2v

du2

du

dx

(
−2e−2x

)
+
dv

du

(
4e−2x

)
⇔ 2y′

y
+

2y′

y
− 2xy′2

y2
+

2xy′′

y
=
d2v

du2

(
−2e−2x

) (
−2e−2x

)
+
dv

du

(
4e−2x

)
⇔ 4yy′ − 2xy′2 + 2xyy′′ = 4y2e−4x d

2v

du2
+ 4y2e−2x dv

du

Given that the differential equation is equal to 2yy′ − xy′2 + xyy′′ = 0, we find that the
differential equation in terms of the variables u and v has the following form:

4y2e−4x d
2v

du2
+ 4y2e−2x dv

du
= 0 ⇔ u

d2v

du2
+
dv

du
= 0 ⇔ uu′′ + u′ = 0

• Example 3

In a final example, we wish to explore how a differential equation changes when we switch the
role of the variables x and y. Consider the differential equation 5xy2y′− 5xy′′+ yy′′′ lnx = 0
whereby y is a function of x. We implement the following transformations, given that u is a
function of v: {

x = u

y = v
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The first derivative of y (with respect to x) is calculated as follows:

dy

dx
=
dy

dv

dv

dx
=

(
dx

dv

)−1

The second derivative of y (with respect to x) is found by differentiating the first derivative
with respect to v:

d

dv

[
dy

dx

]
=

d

dv

[(
dx

dv

)−1
]
⇔ d2y

dx2

dx

dv
= −

(
dx

dv

)−2
d2x

dv2

⇔ d2y

dx2
= −d

2x

dv2

(
dx

dv

)−3

Differentiating the second derivative with respect to v gives us the third derivative of y (with
respect to x):

d

dv

[
d2y

dx2

]
=

d

dv

[
−d

2x

dv2

(
dx

dv

)−3
]
⇔ d3y

dx3

dx

dv
= −d

3x

dv3

(
dx

dv

)−3

+ 3
d2x

dv2

(
dx

dv

)−4
d2x

dv2

⇔ d3y

dx3
= −d

3x

dv3

(
dx

dv

)−4

+ 3

(
d2x

dv2

)2(
dx

dv

)−5

The differential equation then obtains the following form:

5xy2y′ − 5xy′′ + yy′′′ lnx = 0

⇔ 5uv2

(
dx

dv

)−1

+ 5u
d2x

dv2

(
dx

dv

)−3

− v ln(u)
d3x

dv3

(
dx

dv

)−4

+ 3v ln(u)

(
d2x

dv2

)2(
dx

dv

)−5

= 0

⇔ 5uv2

(
dx

dv

)4

+ 5u
d2x

dv2

(
dx

dv

)2

− v ln(u)
d3x

dv3

dx

dv
+ 3v ln(u)

(
d2x

dv2

)2

= 0

⇔ 5xy2x′4 + 5xx′′x′2 − y ln(x)x′′′x′ + 3y ln(x)x′′2 = 0

whereby in the last line we switched back to the x and y variables. Note that, for instance,
the expression x′ represents the first derivative of x with respect to y, so we have effectively
swapped the roles of x and y.
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11.3 Differential Equations of Order 1 and Degree 1

In this section, we will discuss differential equations of the general form g : R3 → R :
(x, y, y′) 7→ g(x, y, y′) = 0 that are linear with respect to the variable y′, i.e., the degree of
the differential equation is equal to 1.

11.3.1 Total Differential Equations

Consider a scalar function f : R2 → R : (x, y) 7→ z = f(x, y). As we discussed in sec-
tion 10.2.2, the total differential of f is equal to:

dz =
∂f

∂x
dx+

∂f

∂y
dy

Recall that, whereas a partial derivative of f can be used to linearly approximate f in one
particular dimension, the total differential can provide us with such linear approximation
across all the respective dimensions taken together (in our case, the dimensions x and y).

In the reverse case, whereby we are given the expression P1(x, y)dx+P2(x, y)dy, this expres-
sion represents a total differential if and only if:

∂P1

∂y
=
∂P2

∂x

In this case, we call the differential equation P1(x, y)dx + P2(x, y)dy = 0 the total differ-
ential equation. The solution to this total differential equation is then equal to:

f(x, y) = a with a ∈ R

• Example

Consider the differential equation (x3y2− xyex2) dx+ (
x4y
2
− ex

2

2
) dy = 0. If this differential

equation is a total differential equation, we wish to find its solution.

In a first step, we determine whether the condition ∂P1

∂y
= ∂P2

∂x
is satisfied:

∂P1

∂y
= 2yx3 − xex2

∂P2

∂x
= 2x3y − xex2

Since the condition has been met, we are dealing with a total differential equation. In a next
step, let us take, for instance, P2(x, y) and integrate this scalar function with respect to y
to obtain a general expression for the function z = f(x, y):

∂z

∂y
= P2(x, y) =

x4y

2
− ex

2

2
⇔ z =

∫ (
x4y

2
− ex

2

2

)
dy

265



Mathematics Preparation Course Olivier Loose

=
x4y2

4
− yex

2

2
+ c(x)

Note that the integration constant c(x) is a function of x as we are integrating with respect
to y; as c(x) does not depend on y, differentiating this constant with respect to y gives zero
as a result, which is the definition of integrating a constant.

Next, we differentiate the obtained expression for z with respect to the other variable x:

∂z

∂x
= x3y2 − xyex2 + c′(x)

Since ∂z
∂x

is also equal to P1(x, y) we can set both expressions equal to each other:

∂z

∂x
= P1(x, y) ⇔ x3y2 − xyex2 + c′(x) = x3y2 − xyex2

⇔ c′(x) = 0

⇔ c(x) = c with c ∈ R

In a final step, we can write down the solution z = f(x, y) = a:

x4y2

4
− yex

2

2
+ c(x) = a ⇔ x4y2

4
− yex

2

2
+ c = a

11.3.2 Separation of Variables

If the differential equation g : R3 → R : (x, y, y′) 7→ g(x, y, y′) = 0 can be written in the
following way:

p1(x) dx = p2(y) dy

then the solution to g(x, y, y′) = 0 is found by directly integrating both sides:∫
p1(x) dx =

∫
p2(y) dy

• Example

Consider the following differential equation:(
tanhx+ 1

coth y + 1

)
y′ − sechx

csch y
= 0

We solve this differential equation as follows:
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(
tanhx+ 1

coth y + 1

)
y′ − sechx

csch y
= 0 ⇔ csch y

coth y + 1
dy =

sechx

tanhx+ 1
dx

⇔ 1

cosh y + sinh y
dy =

1

coshx+ sinhx
dx

⇔
∫
e−y dy =

∫
e−x dx

⇔ − e−y + c1 = −e−x + c2

⇔ ey =
ex

1 + (c1 − c2)ex

⇔ y = x− ln |1 + (c1 − c2)ex|

whereby the integration constants c1 and c2 are real numbers.

11.3.3 Homogenous Differential Equations

Consider two homogeneous polynomials H1(x, y) and H2(x, y) of degree m—remember that
in a homogeneous polynomial every term has the same degree (see section 2.3). A homo-
geneous differential equation has the following form:

H1(x, y) dx−H2(x, y) dy = 0

To solve this differential equation, we follow three steps:

1. Divide the homogeneous differential equation by xm

2. Implement the substitution u =
y
x

, whereby dy = u dx+ x du

3. Solve the new differential equation through the method of separation of variables

• Example

Let us consider the homogeneous differential equation (3x3y2 − xy4) dx+ (x2y3 + 2x5) dy =
0, whereby the polynomials H1(x, y) and H2(x, y) are homogeneous polynomials of degree
m = 5.

We find the solution as follows:

(3x3y2 − xy4) dx+ (x2y3 + 2x5) dy = 0

(Step 1 ) ⇔ (
3y2

x2
− y4

x4
) dx+ (

y3

x3
+ 2) dy = 0

(Step 2 ) ⇔ (3u2 − u4) dx+ (u3 + 2)(u dx+ x du) = 0

⇔ (3u2 + 2u) dx+ x(u3 + 2) du = 0
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(Step 3 ) ⇔ −
∫

1

x
dx =

∫
u3 + 2

3u2 + 2u
du

⇔ ln

∣∣∣∣1x
∣∣∣∣+ c1 =

∫ (
u

3
− 2

9
+

4
9
u+ 2

3u2 + 2u

)
du

⇔ ln

∣∣∣∣1x
∣∣∣∣+ c1 =

∫ (
u

3
− 2

9
+

6u+ 2

3u2 + 2u
− 50

9

1

(3u+ 2)

)
du

⇔ ln

∣∣∣∣1x
∣∣∣∣+ c1 =

u2

6
− 2u

9
+ ln

∣∣3u2 + 2u
∣∣− 50

27
ln |3u+ 2|+ c2

⇔ ln

∣∣∣∣1x
∣∣∣∣+ c1 =

y2

6x2
− 2y

9x
+ ln

∣∣∣∣3y2

x2
+

2y

x

∣∣∣∣− 50

27
ln

∣∣∣∣3yx + 2

∣∣∣∣+ c2

whereby we applied partial fraction decomposition in line 6 and we have split in line 7 the
last term of the integral of line 6 into two fractions.

Apart from a general solution, a differential equation can also have singular solutions,
which are unique solutions that satisfy the differential equation but cannot be obtained
through the general solution regardless of the value of the integration constant(s). In our
example, the homogeneous differential equation has three singular solutions: x = 0, y = 0,
and y = −2x

3
.

11.3.4 Reducible to Homogenous Differential Equations

If a differential equation is of the form S1(x, y) dx + S2(x, y) dy = 0 whereby S1(x, y) = 0
and S2(x, y) = 0 represent the equation of a straight line in two-dimensional space and at
least one of these two lines does not go through the origin of the coordinate system, we can
reduce this differential equation to a homogeneous differential equation.

To solve this type of differential equation we distinguish two cases: the lines S1 and S2

intersect or the lines are parallel to each other.

Case A. S1 and S2 intersect

Suppose that the straight lines S1 and S2 intersect at the point ~a = (a1, a2). To solve the
differential equation, we introduce the following transformation of coordinates, which rep-
resents a translation of both lines in such a way that they now go through the origin and
become homogeneous: {

x = u+ a1

y = v + a2

After this change of variables, we can apply the method for homogeneous differential equa-
tions, as discussed in the previous subsection.
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• Example

Let us consider the differential equation (5x− 2y + 2) dx+ (2x+ 5y − 34) dy = 0. Since the
two straight lines 5x− 2y + 2 = 0 and 2x+ 5y − 34 = 0 intersect at the point ~a = (2, 6), we
implement the following transformation of coordinates:{

x = u+ 2

y = v + 6

We now solve this differential equation as follows:

(5x− 2y + 2) dx+ (2x+ 5y − 34) dy = 0

⇔ [5(u+ 2)− 2(v + 6) + 2] du+ [2(u+ 2) + 5(v + 6)− 34] dv = 0

⇔ (5u− 2v) du+ (2u+ 5v) dv = 0

⇔ (5− 2
v

u
) du+ (2 + 5

v

u
) dv = 0

⇔ (5− 2t) du+ (2 + 5t)(t du+ u dt) = 0

⇔ 5(1 + t2) du+ u(2 + 5t) dt = 0

⇔ 2 + 5t

5(t2 + 1)
dt = −1

u
du

⇔ 2

5

∫
1

t2 + 1
dt+

∫
t

t2 + 1
dt = ln

∣∣∣∣1u
∣∣∣∣+ c1

⇔ 2

5
arctan(t) +

1

2
ln(t2 + 1) + c2 = ln

∣∣∣∣1u
∣∣∣∣+ c1

⇔ 2

5
arctan

(
y − 6

x− 2

)
+

1

2
ln

[(
y − 6

x− 2

)2

+ 1

]
+ c2 = ln

∣∣∣∣ 1

x− 2

∣∣∣∣+ c1

whereby we applied the method for solving homogeneous differential equations in line 5 with
the corresponding substitutions t = v

u
and dv = t du + u dt. Note that the point ~a = (2, 6)

is a singular solution.

Case B. S1 and S2 are parallel

Suppose that S1(x, y) = a1x+b1y+d1 and S2(x, y) = a2x+b2y+d2. If the lines S1(x, y) = 0
and S2(x, y) = 0 are parallel, it means that their slope is equal so that we can write:

a1

a2

=
b1

b2

We now follow these two steps to solve this differential equation:
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1. Using the above equation, we write S1(x, y) as S1(x, y) = a1x + b1y + d1 = a1
a2

(a2x +
a2b1
a1

y) + d1 = a1
a2

(a2x+ b2y) + d1.

2. Introduce the substitution t = a2x+ b2y in both S1(x, y) and S2(x, y).

• Example

Consider the differential equation (−6x+ y− 9) dx+ (12x− 2y− 70) dy = 0. Given that the

lines −6x + y − 9 = 0 and 12x − 2y − 70 = 0 are parallel and that a1
a2

= −1
2

, we solve this

differential equation in the following way:

(−6x+ y − 9) dx+ (12x− 2y − 70) dy = 0

⇔
[
−1

2
(12x− 2y)− 9

]
dx+ (12x− 2y − 70) dy = 0

⇔
(
− t

2
− 9

)
dx+ (t− 70)

(
6 dx− dt

2

)
= 0

⇔
(

11t

2
− 429

)
dx− 1

2
(t− 70) dt = 0

⇔ − 2 dx =
t− 70

11t
2
− 429

dt

⇔ − 2

∫
dx =

∫ (
2

11
+

8
11t
2
− 429

)
dt

⇔ − 2x+ c1 =
2t

11
+

16

11
ln

∣∣∣∣11t

2
− 429

∣∣∣∣+ c2

⇔ − 2x+ c1 =
2

11
(12x− 2y) +

16

11
ln

∣∣∣∣11

2
(12x− 2y)− 429

∣∣∣∣+ c2

whereby we introduced the substitutions t = 12x−2y and dy = 6 dx− dt
2

in line 3 and applied
long division in line 6. This differential equation also has the singular solution y = 6x− 39.

11.3.5 Linear Differential Equations

A differential equation g : R3 → R : (x, y, y′) 7→ g(x, y, y′) = 0 that is linear with respect to
both the variable y and y′ is called a linear differential equation and has the following
general form:

a(x)y′ + b(x)y = k(x)
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If we are unable to appeal to the method of separation of variables, we can rely on another
method whereby we make use of the fact that we can write the general solution y of the
linear differential equation as the sum of a homogeneous solution yh and a particular solution
yp: y = yh + yp.

This method involves two steps:

1. Turn the original differential equation into a homogeneous differential equation by set-
ting k(x) = 0 and solve the new differential equation through the method of separation
of variables. The homogeneous solution yh will be of the form yh = cf(x), with c ∈ R
the integration constant.

2. The particular solution yp is found through the method of variation of constants, which

says that yp has the form yp = c(x)f(x), whereby c(x) =
∫ k(x)
a(x)f(x)

dx.

• Example

Consider the differential equation (y sinx+ 2x+ 1) dx− cos(x) dy = 0 for which we wish to
find all the solutions.

Since the method of separation of variables cannot be used here, we first check whether this
differential equation is a linear differential equation:

(y sinx+ 2x+ 1) dx− cos(x) dy = 0 ⇔ cos(x)y′ − sin(x)y = 2x+ 1

As we are indeed dealing with a linear differential equation, we apply the method as dis-
cussed above. In a first step, we solve the corresponding homogeneous differential equation:

cos(x)y′ − sin(x)y = 0 ⇔ 1

y
dy =

sinx

cosx
dx ⇔

∫
1

y
dy =

∫
sinx

cosx
dx

⇔ ln(y) + c1 = −
∫

1

u
du

⇔ ln(y) + c1 = ln

∣∣∣∣1u
∣∣∣∣+ c2

⇔ ln(y) + c1 = ln |secx|+ c2

⇔ yh = c secx

whereby we introduced the substitution u = cosx in line 2 and in the last line we replaced
the constant ec2−c1 by the constant c.

In a next step, we wish to find the particular solution yp = c(x)f(x). First, we calculate the
term c(x), whereby f(x) = sec x:
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c(x) =

∫
k(x)

a(x)f(x)
dx =

∫
2x+ 1

cos(x) sec(x)
dx =

∫
(2x+ 1) dx = x2 + x

The particular solution yp is then equal to:

yp = c(x)f(x) =
(
x2 + x

)
secx

So that the general solution is found to be:

y = yh + yp = c secx+
(
x2 + x

)
secx =

(
x2 + x+ c

)
secx

Note that this linear differential equation also has an infinite number of singular solutions
equal to x = π

2
+ kπ with k ∈ Z.

11.3.6 Bernoulli Differential Equations

A Bernoulli differential equation has the following form:

a(x)y′ + b(x)y = d(x)yr

If r = 0 or r = 1 the differential equation is linear and we can apply the method discussed
in the previous subsection. If r ∈ Z0 \ {1} we follow these two steps to solve the Bernoulli
differential equation:

1. Linearize the Bernoulli differential equation by implementing the substitution t = y1−r.

2. Apply the method discussed in the previous subsection for solving the new (linear)
differential equation.

• Example

Consider the Bernoulli differential equation y′ + [1 + ln(3x)]y = (3x)2xy3. In a first step,

we introduce the substitution t = y1−r = y1−3 = y−2, whereby dy = − 1
2t
√
t
dt, so that the

differential equation becomes:

y′ + [1 + ln(3x)]y = (3x)2xy3 ⇔ − 1

2t
√
t
t′ + [1 + ln(3x)]

1√
t

= (3x)2x 1

t
√
t

⇔ − t′

2
+ [1 + ln(3x)] t = (3x)2x

We now are dealing with a linear differential equation for which the solution has the form
t = th + tp according to the method as discussed in section 11.3.5. We find the homogeneous
solution th = cf(x) as follows:
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−t
′

2
+ [1 + ln(3x)] t = 0 ⇔ [1 + ln(3x)] dx =

1

2t
dt

⇔
∫

[1 + ln(3x)] dx =

∫
1

2t
dt

⇔
∫
dx+

∫
ln(3x) dx =

1

2
ln |t|+ c1

⇔ x+ c2 +

(
x ln(3x)−

∫
dx

)
=

1

2
ln |t|+ c1

⇔ x+ c2 + x ln(3x)− x =
1

2
ln |t|+ c1

⇔ 2x ln(3x) + 2(c2 − c1) = ln |t|

⇔ e2x ln(3x)e2(c2−c1) = th

⇔ (3x)2xc = th

whereby we applied partial integration in line 4 and we replaced in the last line the constant
expression e2(c2−c1) by the integration constant c. Also remember that xx = eln(xx) = ex lnx.

The particular solution tp has the form tp = c(x)f(x). Let us now find the term c(x):

c(x) =

∫
k(x)

a(x)f(x)
dx =

∫
(3x)2x

−1
2
(3x)2x

dx = −2

∫
dx = −2x

The particular solution is therefore equal to tp = c(x)f(x) = −2x(3x)2x so that the general
solution becomes:

t = th + tp = (3x)2xc− 2x(3x)2x = (c− 2x)(3x)2x

If we change back to the original y variable, the solution is equal to:

t = y−2 ⇔ y = ± (3x)−x√
c− 2x

Note that we only find solutions if 0 < x < c
2

with c ∈ R+
0 . Finally, the Bernoulli differential

equation also has the singular solution y = 0.
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11.4 Differential Equations of Order 1 and Degree n

In this section, we discuss differential equations of the general form g : R3 → R : (x, y, y′) 7→
g(x, y, y′) = 0 that are not necessarily linear with respect to the variable y′, i.e., we allow
the power of y′ to be greater than 1.

11.4.1 Factoring Differential Equations

If the differential equation g : R3 → R : (x, y, y′) 7→ g(x, y, y′) = 0 can be factored and
written as:

g(x, y, y′) = 0 ⇔ [y′ − f1(x, y)] [y′ − f2(x, y)] [y′ − f3(x, y)] . . . [y′ − fn(x, y)] = 0

whereby n ∈ N0, the solution of the differential equation has the form of:

F1(x, y, d1)F2(x, y, d2)F3(x, y, d3) . . . Fn(x, y, dn) = 0

whereby di is the aggregate integration constant of the solution Fi (with i ∈ {1, 2, . . . , n}).

• Example

Let us consider the following differential equation:

2y4y′2 − x3y2y′ + 2y5y′ sin(x) cos(2x)− x3y3 sin(x) cos(2x)− 2xy2y′3 + x4y′2

− 2xy3y′2 sin(x) cos(2x) + x4yy′ sin(x) cos(2x) = 0

We can factor this equation as follows:

2y4y′2 − x3y2y′ + 2y5y′ sin(x) cos(2x)− x3y3 sin(x) cos(2x)− 2xy2y′3 + x4y′2

− 2xy3y′2 sin(x) cos(2x) + x4yy′ sin(x) cos(2x) = 0

⇔ 2y2y′2(y2 − xy′)− x3y′(y2 − xy′) + y(2y4y′ − x3y2 − 2xy2y′2 + x4y′) sin(x) cos(2x) = 0

⇔ y′(2y2y′ − x3)(y2 − xy′) + y
[
2y2y′(y2 − xy′)− x3(y2 − xy′)

]
sin(x) cos(2x) = 0

⇔ (y2 − xy′)
[
y′(2y2y′ − x3) + y(2y2y′ − x3) sin(x) cos(2x)

]
= 0

⇔ (y2 − xy′)(2y2y′ − x3) [y′ + y sin(x) cos(2x)] = 0

⇔ g1(x, y, y′)g2(x, y, y′)g3(x, y, y′) = 0

whereby in the last line we defined the three individual differential equations g1, g2, and g3

as g1(x, y, y′) = y2 − xy′, g2(x, y, y′) = 2y2y′ − x3, and g3(x, y, y′) = y′ + y sin(x) cos(2x).
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With respect to g1(x, y, y′) = y2 − xy′, we solve this equation as follows:

y2 − xy′ = 0 ⇔ 1

x
dx =

1

y2
dy ⇔

∫
1

x
dx =

∫
1

y2
dy

⇔ ln |x|+ c1 = −1

y
+ c2

⇔ 1

y
= c2 − c1 − ln |x|

⇔ y =
1

d1 − ln |x|

whereby in the last line we introduced the substitution d1 = c2−c1 with d1 ∈ R and whereby
d1 6= ln |x|. This differential equation has the singular solutions y = 0 and the point (0, 0).

Regarding g2(x, y, y′) = 2y2y′ − x3, we find the following solution:

2y2y′ − x3 = 0 ⇔ x3 dx = 2y2 dy ⇔
∫
x3 dx = 2

∫
y2 dy

⇔ x4

4
+ c1 =

2y3

3
+ c2

⇔ y = 3

√
3

2

(
x4

4
+ d2

)

whereby we implemented the substitution d2 = c1 − c2 in the last line.

Finally, we find the solution of the third differential equation g3(x, y, y′) = y′+y sin(x) cos(2x)
in the following way:

y′ + y sin(x) cos(2x) = 0 ⇔ − 1

y
dy = sin(x) cos(2x) dx

⇔ −
∫

1

y
dy =

∫
sin(x) cos(2x) dx

⇔ − ln |y|+ c1 =
1

2

∫
sin(−x) dx+

1

2

∫
sin(3x) dx

⇔ − ln |y|+ c1 =
1

2
cos(x)− 1

6
cos(3x) + c2

⇔ y = e−
1
2

cos(x)e
1
6

cos(3x)ec1−c2

⇔ y = d3e
− 1

2
cos(x)e

1
6

cos(3x)

whereby we implemented the substitution d3 = ec1−c2 in the last line. This differential
equation has the singular solution y = 0.
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The general solution of this differential equation is then equal to:

(
y − 1

d1 − ln |x|

)(
y − 3

√
3

2

(
x4

4
+ d2

) )(
y − d3e

− 1
2

cos(x)e
1
6

cos(3x)
)

= 0

11.4.2 Parameterization of Differential Equations

If the differential equation g : R3 → R : (x, y, y′) 7→ g(x, y, y′) = 0 cannot be factored, we can
check whether g falls within four specific cases: the variable x is missing from the equation,
the variable y is absent, none of the variables are missing and g is homogeneous in both x
and y, or g can be written in the form of y = ψ(x, y′).

If the differential equation g(x, y, y′) = 0 pertains to one of these four categories, we can
solve g via an adequate parameterization.

Case A. The variable x is missing

In this case, the differential equation takes on the form g : R2 → R : (y, y′) 7→ g(y, y′) = 0
which we solve by following these three steps:

1. Write y and y′ in parametric form: {
y = φ1(t)

y′ = φ2(t)

2. In step 1, take the differential of the first equation and rewrite the second one as
follows: {

dy = φ′1(t) dt

dy = φ2(t) dx

3. Combine the two equations in step 2 and write down the solution of g(y, y′) = 0 in
parametric form:  x =

∫
φ′1(t)

φ2(t)
dt

y = φ1(t)

• Example

Consider the following differential equation:

7(y′ − 2)2 − 4(y′ − 1)2 + 4y(y′ − 3) + y′(1− 2y) + y(11− 2y′) + 12y′ − 23 = 0
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In a first step, we set y′ = φ2(t) = t, so that the differential equation obtains the following
form:

7(t− 2)2 − 4(t− 1)2 + 4y(t− 3) + t(1− 2y) + y(11− 2t) + 12t− 23 = 0

Simplifying this equation gives us the following expression for y = φ1(t):

7(t− 2)2 − 4(t− 1)2 + 4y(t− 3) + t(1− 2y) + y(11− 2t) + 12t− 23 = 0

⇔ 7(t2 − 4t+ 4)− 4(t2 − 2t+ 1) + 4yt− 12y + t− 2yt+ 11y − 2yt+ 12t− 23 = 0

⇔ 7t2 − 4t2 − 28t+ 8t+ t+ 12t+ 4yt− 2yt− 2yt− 12y + 11y + 28− 4− 23 = 0

⇔ 3t2 − 7t+ 1 = y

Step 2 gives us the following two equations:{
y = φ1(t) = 3t2 − 7t+ 1

y′ = φ2(t) = t
⇔

{
dy = φ′1(t) dt = (6t− 7) dt

dy = φ2(t) dx = t dx

In a final step, we write down the parametric solution of the differential equation:


x =

∫
φ′1(t)

φ2(t)
dt =

∫
6t− 7

t
dt =

∫ (
6− 7

t

)
dt = 6t− 7 ln |t|+ c

y = φ1(t) = 3t2 − 7t+ 1

Case B. The variable y is missing

In the second case, the differential equation has the form g : R2 → R : (x, y′) 7→ g(x, y′) = 0
which is solved in a way similar to Case A:

1. Write x and y′ in parametric form: {
x = φ1(t)

y′ = φ2(t)

2. In step 1, take the differential of the first equation and rewrite the second one as
follows: {

dx = φ′1(t) dt

dy = φ2(t) dx
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3. Combine the two equations in step 2 and write down the solution of g(x, y′) = 0 in
parametric form: 

x = φ1(t)

y =

∫
φ2(t)φ′1(t) dt

• Example

Let us consider the differential equation 5xy′ − 52xy′2 − 25x + 5 = 0. In a first step, we in-
troduce the substitution t = 5xy′, so that the differential equation obtains the following form:

5xy′ − 52xy′2 − 25x+ 5 = 0 ⇔ t− t2 − 25x + 5 = 0

The expression x = φ1(t) is found as follows:

t− t2 − 25x + 5 = 0 ⇔ t− t2 + 5 = 25x

⇔ t− t2 + 5 = 52x

⇔ 1

2
log5(t− t2 + 5) = x

Step 2 gives us the following two equations:
dx = φ′1(t) dt =

d

dt

[
1

2
log5(t− t2 + 5)

]
dt =

(−2t+ 1)

2 ln(5)(t− t2 + 5)
dt

dy = φ2(t) dx =
t

5x
dx =

t√
t− t2 + 5

dx

The solution for the variable y in parametric form is then found as follows:

dy =
t√

t− t2 + 5
dx

=
t√

t− t2 + 5

[
(−2t+ 1)

2 ln(5)(t− t2 + 5)
dt

]

⇔ y =
1

2 ln(5)

∫
t(−2t+ 1)

(t− t2 + 5)
3
2

dt

=
1

2 ln(5)

∫
t(−2t+ 1)[

21
4
−
(
t− 1

2

)2
] 3

2

dt

= − 1

ln(5)

∫
u(u+ 1)

(21− u2)
3
2

du

= − 1

ln(5)

∫
tan2(θ) dθ − 1√

21 ln(5)

∫
tan(θ) sec(θ) dθ
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= − 1

ln(5)

∫ [
sec2 θ − 1

]
dθ +

1√
21 ln(5)

∫
1

s2
ds

= − 1

ln(5)
[tan θ − θ] +

1√
21 ln(5)

(
−1

s

)
+ c

=
(−2t+ 1)

2 ln(5)(t− t2 + 5)
+

1

ln(5)
arcsin

(
2t− 1√

21

)
− 1

2 ln(5)
√
t− t2 + 5

+ c

=
−t

ln(5)
√
t− t2 + 5

+
1

ln(5)
arcsin

(
2t− 1√

21

)
+ c

whereby we implemented the substitution u = 2(t − 1
2

) in line 5, the substitution u =√
21 sin θ in line 6, and the substitution s = cos θ in line 7. Remember also that tan θ =

sin θ√
1−sin2 θ

, so that tan θ = u√
21−u2 = 2t−1

2
√
−t2+t+5

.

To summarize, the solution to this integral in parametric form is equal to:


x =

1

2
log5(t− t2 + 5)

y =
−t

ln(5)
√
t− t2 + 5

+
1

ln(5)
arcsin

(
2t− 1√

21

)
+ c

Note that a solution only exists if t ∈ ]1−
√

21
2

, 1+
√

21
2

[ .

Case C. Homogeneous in both x and y

In the final case, the differential equation is written in the form of g : R3 → R : (x, y, y′) 7→
g(x, y, y′) = 0 whereby g is homogeneous of degree m in both x and y. The differential
equations that fall under this category are solved in a similar way to the other two cases:

1. Divide each term by xm and write
y
x

and y′ in parametric form:{y
x

= φ1(t)

y′ = φ2(t)

2. In step 1, take the differential of the first equation and rewrite the second one as
follows: {

dy = xφ′1(t) dt+ φ1(t) dx

dy = φ2(t) dx

3. Combine the two equations in step 2 and write down the solution of g(x, y, y′) = 0 in
parametric form:
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dx

x
=

φ′1(t)

φ2(t)− φ1(t)
dt ⇔ x = c exp

[∫
φ′1(t)

φ2(t)− φ1(t)
dt

]
y = xφ1(t)

• Example

Consider the differential equation y2(y′ − 1)2 − x2y′2 + 2y2y′ = 0, which is homogeneous of
degree m = 2 in both x and y.

In a first step, we divide each term by xm = x2 and we introduce the substitution
y
x

=
φ1(t) = t, so that we can find an expression for y′ = φ2(t):

y2(y′ − 1)2 − x2y′2 + 2y2y′ = 0 ⇔
(y
x

)2

(y′ − 1)2 − y′2 + 2
(y
x

)2

y′ = 0

⇔ t2(y′ − 1)2 − y′2 + 2t2y′ = 0

⇔ t2y′2 − 2t2y′ + t2 − y′2 + 2t2y′ = 0

⇔ t2y′2 + t2 − y′2 = 0

⇔ y′ =
t√

1− t2

whereby we have arbitrarily chosen to work with the positive root of y′2 for the remainder
of this exercise.

In a next step, we write down the following two equations for the differential of the variable y:


y = xt ⇔ dy = x dt+ t dx

dy = φ2(t) dx =
t√

1− t2
dx

Setting the above two expressions for dy equal to each other, we find a parametric solution
for x:

x dt+ t dx =
t√

1− t2
dx

⇔ dx

x
=

√
1− t2

t
(
1−
√

1− t2
) dt

⇔
∫
dx

x
=

∫ √
1− t2

t
(
1−
√

1− t2
) dt

⇔ ln |x| =

∫
cos2(θ)

sin(θ) (1− cos(θ))
dθ
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=
1

2

∫
(1− u2)2

u3(1 + u2)
du

=
1

2

∫ (
4u

1 + u2
− 3

u
+

1

u3

)
du

=

∫
2u

1 + u2
du− 3

2

∫
1

u
du+

1

2

∫
1

u3
du

= ln
∣∣1 + u2

∣∣− 3

2
ln |u| − 1

4u2
+ c

= ln

∣∣∣∣1 + u2

u
√
u

∣∣∣∣− 1

4u2
+ c

= ln

∣∣∣∣∣∣ 2√
t
(
1−
√

1− t2
)
∣∣∣∣∣∣− t2

4
(
1−
√

1− t2
)2 + c

⇔ x =
2√

t
(
1−
√

1− t2
) exp

[
− t2

4
(
1−
√

1− t2
)2

]
ec

whereby we implemented the substitution t = sin θ in line 4 and the substitution u = tan( θ
2

)
in line 5. We furthermore applied partial fraction decomposition in line 6.

The parametric solution of this differential equation is then equal to:



x =
2√

t
(
1−
√

1− t2
) exp

[
− t2

4
(
1−
√

1− t2
)2

]
ec

y = xφ1(t) = xt =
2
√
t√(

1−
√

1− t2
) exp

[
− t2

4
(
1−
√

1− t2
)2

]
ec

Note that a solution only exists for the interval t ∈ ]0, 1[ . This differential equation has also
the singular solution x = y = 0.

Case D. Differential equations in the form of y = ψ(x, y′)

If the differential equation g : R3 → R : (x, y, y′) 7→ g(x, y, y′) = 0 can be written in the form
of y = ψ(x, y′), we can implement the following three steps to solve the equation:

1. Set the variable y′ equal to y′ = t, so that we can write the variable y in parametric
form y = ψ(x, t).
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2. In step 1, take the derivative of y with respect to x and set subsequently y′ = t :

y′ =
∂ψ

∂x
(x, t) +

∂ψ

∂t
(x, t) · t′ ⇔ t =

∂ψ

∂x
(x, t) +

∂ψ

∂t
(x, t) · t′

3. The new differential equation in step 2 is of order 1 and degree 1. If we can integrate
this equation, we obtain a solution of the form Ψ(x, t, c) = 0, so that the parametric
solution of the original differential equation is equal to:{

Ψ(x, t, c) = 0

y = ψ(x, t)

• Example

Let us consider the differential equation y′2 + yy′ − x − 1 = 0. In a first step, we write the
equation in the form of y = ψ(x, t) with t = y′:

y′2 + yy′ − x− 1 = 0 ⇔ y =
x+ 1

y′
− y′

=
x+ 1

t
− t

Next, we take the derivative of y with respect to x to obtain a linear differential equation:

d

dx
(y) =

d

dx

[
x+ 1

t
− t
]
⇔ y′ =

t− (1 + x)t′

t2
− t′

⇔ t =
1

t
−
[

(1 + x)

t2
+ 1

]
dt

dx

⇔ t(1− t2)
dx

dt
− x = 1 + t2

Note that in the above obtained linear differential equation the variable t is the independent
variable and x the dependent variable. The solution will therefore be of the form x = xh+xp.

The homogeneous solution xh is found by solving the following differential equation:

t(1− t2)
dx

dt
− x = 0 ⇔ dx

x
=

dt

t(1− t2)

⇔
∫

1

x
dx =

∫
1

t(1− t2)
dt

⇔ ln |x| =

∫
1

t
dt+

1

2

∫
1

1− t
dt− 1

2

∫
1

1 + t
dt

= ln |t| − 1

2
(ln |1− t|+ ln |1 + t|) + c

= ln |t| − 1

2
ln
∣∣1− t2∣∣+ c
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= ln |t|+ ln

∣∣∣∣ 1√
1− t2

∣∣∣∣+ c

⇔ xh =
tec√
1− t2

whereby we applied partial fraction decomposition in line 3.

The particular solution xp has the form xp = c(t)f(t) with f(t) = t√
1−t2 . Given the general

differential equation a(t)x′ + b(t)x = k(t), we first find an expression for c(t):

c(t) =

∫
k(t)

a(t)f(t)
dt =

∫
(1 + t2)

√
1− t2

t2(1− t2)
dt

=

∫
1 + t2

t2
√

1− t2
dt

=

∫
1

t2
√

1− t2
dt+

∫
1√

1− t2
dt

=

∫
csc2(θ) dθ + arcsin(t)

= − cot(θ) + arcsin(t)

= −
√

1− t2
t

+ arcsin(t)

whereby we introduced the substitution t = sin θ in line 4. Also remember that cot θ =√
1−sin2 θ

sin θ
.

The particular solution xp is then equal to:

xp = c(t)f(t) =

[
−
√

1− t2
t

+ arcsin(t)

]
t√

1− t2
= −1 +

t arcsin(t)√
1− t2

For x = xh + xp we then find:

x = xh + xp =
tec√
1− t2

− 1 +
t arcsin(t)√

1− t2
= −1 +

t [ec + arcsin(t)]√
1− t2

To summarize, the parametric solution to the original differential equation is equal to:
x = −1 +

t [ec + arcsin(t)]√
1− t2

y =
x+ 1

t
− t

whereby t ∈ ]0, 1[ . The differential equation also has the singular solution y = x.
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11.5 Differential Equations of Order n and Degree n

In this section, we explore differential equations of the general form g : Rn+2 → R :
(x, y, y′, y′′, . . . , y(n)) 7→ g(x, y, y′, y′′, . . . , y(n)) = 0 whereby the order is not necessarily re-
stricted to n = 1.

In particular, we discuss differential equations that fall under four categories: only the
variables x and y(n) are present, the variable y is missing, the variable x is missing, or the
equation is homogeneous in the variables y, y′, . . . , y(n).

Case A. Only the variables x and y(n) are present

The differential equation has the form of g : R2 → R : (x, y(n)) 7→ g(x, y(n)) = 0 and can be
rewritten as y(n) = φ(x).

If we integrate this expression we obtain:∫
y(n) dx =

∫
φ(x) dx ⇔ y(n−1) + c1 =

∫
φ(x) dx

We continue to integrate until we have reduced the order to n = 0, at which point we have
found a solution for the differential equation.

• Example

Consider the differential equation x2y(4) − x3 − 2 = 0. If we first rewrite the equation in
the form of y(4) = φ(x) and subsequently integrate this expression four times, we obtain a
solution for this differential equation:

x2y(4) − x3 − 2 = 0 ⇔ y(4) = x+
2

x2

⇔
∫
y(4) dx =

∫ (
x+

2

x2

)
dx

⇔ y′′′ =
x2

2
− 2

x
+ c1

⇔
∫
y′′′ dx =

∫ (
x2

2
− 2

x
+ c1

)
dx

⇔ y′′ =
x3

6
− 2 ln |x|+ c1x+ c2

⇔
∫
y′′ dx =

∫ (
x3

6
− 2 ln |x|+ c1x+ c2

)
dx

⇔ y′ =
x4

24
− 2 (x ln |x| − x) +

c1x
2

2
+ c2x+ c3

284



Mathematics Preparation Course Olivier Loose

⇔
∫
y′ dx =

∫ [
x4

24
− 2 (x ln |x| − x) +

c1x
2

2
+ c2x+ c3

]
dx

⇔ y =
x5

120
− 2

[(
x2

2
ln |x| − x2

4

)
− x2

2

]
+
c1x

3

6
+
c2x

2

2
+ c3x+ c4

=
x5

120
+
c1x

3

6
+
x2

2
(−2 ln |x|+ 3 + c2) + c3x+ c4

whereby x 6= 0.

Case B. The variable y is missing

As the variable y is missing, the differential equation has the form of g : Rn+1 → R :
(x, y′, y′′, . . . , y(n)) 7→ g(x, y′, y′′, . . . , y(n)) = 0.

The idea is to reduce the order of the differential equation and the following three steps help
us solve the differential equation:

1. Introduce the substitution t = y′, so that the newly obtained differential equation is
of the form G : Rn+1 → R : (x, t, t′, . . . , t(n−1)) 7→ G(x, t, t′, . . . , t(n−1)) = 0.

2. If possible, determine an expression for t.

3. Integrate t to find an expression for the solution y.

• Example

Let us consider the differential equation cscx − sin(x)y′′ − cos(x)y′ = 0. In a first step, we
implement the substitution t = y′, so that we obtain the following differential equation:

cscx− sin(x)y′′ − cos(x)y′ = 0 ⇔ cscx− sin(x)t′ − cos(x)t = 0

⇔ sin(x)t′ + cos(x)t = cscx

Since this differential equation is linear, we can apply the method discussed in section 11.3.5
whereby the solution is of the form t = th + tp. In a first instance, we determine the homo-
geneous solution th:

sin(x)t′ + cos(x)t = 0 ⇔ dt

t
= − cot(x) dx

⇔
∫
dt

t
= −

∫
cot(x) dx

⇔ ln |t| = ln |cscx|+ c1

⇔ th = ec1 cscx
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In a next step, we calculate the particular solution tp, which has the form tp = c(x)f(x) with
f(x) = cscx. Given the general differential equation a(x)t′ + b(x)t = k(x), we first find an
expression for c(x):

c(x) =

∫
k(x)

a(x)f(x)
dx =

∫
csc(x)

sin(x) csc(x)
dx =

∫
1

sin(x)
dx = −

∫
1

1− u2
du

= − arctanh (u)

= −1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣
= −1

2
ln

∣∣∣∣1 + cos x

1− cosx

∣∣∣∣
= − ln |cscx+ cotx|

whereby we implemented the substitution u = cosx in the last integral of line 1. The par-
ticular solution tp is then equal to:

tp = c(x)f(x) = − ln |cscx+ cotx| cscx

The total solution t = th + tp then becomes:

t = th + tp = ec1 cscx− ln |cscx+ cotx| cscx

We find the solution y for our original differential equation by integrating the above expres-
sion for t, given that at the beginning we introduced the substitution t = y′:

y =

∫
t dx =

∫
(ec1 cscx− ln |cscx+ cotx| cscx) dx

= ec1
∫

csc(x) dx−
∫

ln |cscx+ cotx| csc(x) dx

= −ec1 ln |cscx+ cotx|+ 1

2
ln2 |cscx+ cotx|+ c2

with x 6= 2kπ (k ∈ Z) and whereby the first integral has already been calculated earlier in
this exercise and the second integral is found by applying partial integration in the following
way (note that we have set u = ln |cscx+ cotx| and dv = csc(x) dx in the formula of partial
integration):∫

ln |cscx+ cotx| csc(x) dx = − ln2 |cscx+ cotx| −
∫

ln |cscx+ cotx| csc(x) dx

⇔ 2

∫
ln |cscx+ cotx| csc(x) dx = − ln2 |cscx+ cotx|

⇔
∫

ln |cscx+ cotx| csc(x) dx = −1

2
ln2 |cscx+ cotx|
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Case C. The variable x is missing

If the variable x is missing from the differential equation, it has the form of g : Rn+1 → R :
(y, y′, y′′, . . . , y(n)) 7→ g(y, y′, y′′, . . . , y(n)) = 0.

The below two steps help us solve the differential equation:

1. Reverse the roles of the variables x and y: treat y as the independent variable so
that differential equation obtains the form of G : Rn+1 → R : (y, x′, x′′, . . . , x(n)) 7→
G(y, x′, x′′, . . . , x(n)) = 0.

2. Follow the procedure as explained under Case B to solve the differential equation
whereby x and y have swapped roles.

During the first step, we have to transform y′, y′′, . . . , y(n) into an expression in terms of
x′, x′′, . . . , x(n). Let us look at the first three derivatives of y to see how this works.

For y′, we find that:

y′ =
dy

dx
=

1
dx
dy

=
1

x′

With respect to y′′, we find the following expression:

y′′ =
d

dx

(
dy

dx

)
=

d

dx

 1
dx
dy

 =
d

dy

 1
dx
dy

(dx
dy

)−1

=

− d2x
dy2(
dx
dy

)2

(dx
dy

)−1

= − x
′′

x′3

Finally, we transform y′′′ as follows:

y′′′ =
d

dx

− d2x
dy2(
dx
dy

)3

 =
d

dy

− d2x
dy2(
dx
dy

)3

(dx
dy

)−1

=

−d
3x
dy3

(
dx
dy

)3

+ 3
d2x
dy2

(
dx
dy

)2
d2x
dy2(

dx
dy

)6

(dx
dy

)−1

=

−d
3x
dy3

(
dx
dy

)
+ 3

d2x
dy2

d2x
dy2(

dx
dy

)4

(dx
dy

)−1

=
−x′′′x′ + 3x′′2

x′5
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• Example

Consider the differential equation 6y′′ − 7yy′ = 0. In a first step, we reverse the roles of the
variables x and y:

6y′′ − 7yy′ = 0 ⇔ 6

(
− x

′′

x′3

)
− 7y

(
1

x′

)
= 0 ⇔ −6x′′ − 7yx′2 = 0

Now, we follow the procedure as explained under Case B whereby we set t = x′ and find an
expression for t:

−6x′′ − 7yx′2 = 0 ⇔ −6t′ − 7yt2 = 0 ⇔ −7yt2 = 6
dt

dy
⇔ − 7y dy =

6

t2
dt

⇔ − 7

∫
y dy = 6

∫
1

t2
dt

⇔ − 7y2

2
= −6

t
+ c1

⇔ t =
12

7y2 + 2c1

In a final step, we replace t by x′ and integrate both sides to find a solution y of the original
differential equation:

t = x′ =
12

7y2 + 2c1

⇔ dx

dy
=

12

7y2 + 2c1

⇔ dx =
12

7y2 + 2c1

dy

⇔
∫
dx =

∫
12

7y2 + 2c1

dy

⇔ x =
12

2c1

∫
1(

y
√

7
2c1

)2

+ 1
dy

=
12√
14c1

∫
1

u2 + 1
du

=
12√
14c1

arctan(u) + c2

=
12√
14c1

arctan

(
y

√
7

2c1

)
+ c2

⇔ y =

√
2c1

7
tan

[√
14c1

12
(x− c2)

]

whereby we implemented the substitution u = y
√

7
2c1

in line 4.
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Case D. Homogeneous in the variables y, y′, . . . , y(n)

If the differential equation g : Rn+2 → R : (x, y, y′, y′′, . . . , y(n)) 7→ g(x, y, y′, y′′, . . . , y(n)) = 0
is homogeneous in the variables y, y′, . . . , y(n), we can reduce the order by introducing the

substitution t =
y′

y
.

Given that y′ = yt, we find the expressions for, for instance, the second and third derivative
of y (with respect to x) as follows:

{
y′′ = (yt)′ = y′t+ yt′ = (yt)t+ yt′ = y(t2 + t′)

y′′′ = y′(t2 + t′) + y(2tt′ + t′′) = (yt)(t2 + t′) + y(2tt′ + t′′) = y(t3 + 3tt′ + t′′)

Once the new differential equation is found, we can try to apply any of the known methods
to solve the differential equation.

• Example

Let us consider the differential equation xyy′′−xy′2−9y2(x2−1) = 0, which is homogeneous
of degree 2 in the variables y, y′, and y′′. In a first instance, we implement the substitution

t =
y′

y
:

xyy′′ − xy′2 − 9y2(x2 − 1) = 0 ⇔ xy2(t2 + t′)− xy2t2 − 9y2(x2 − 1) = 0

⇔ xt′ − 9(x2 − 1) = 0

This newly obtained differential equation is of order 1 and degree 1, which we can solve by
the method of separation of variables:

xt′ − 9(x2 − 1) = 0 ⇔ dt =

(
9x− 9

x

)
dx

⇔
∫
dt =

∫ (
9x− 9

x

)
dx

⇔ t =
9x2

2
− 9 ln |x|+ c1

If we now replace t by t =
y′

y
, we find the solution y for the original differential equation as

follows:

t =
y′

y
=

9x2

2
− 9 ln |x|+ c1 ⇔ dy

y
=

(
9x2

2
− 9 ln |x|+ c1

)
dx

⇔
∫

1

y
dy =

∫ (
9x2

2
− 9 ln |x|+ c1

)
dx

289



Mathematics Preparation Course Olivier Loose

⇔ ln |y| = 3x3

2
− 9 (x ln |x| − x) + c1x+ c2

⇔ y = e
3x3

2 x−9xe9xec1xec2

whereby we applied partial integration in line 3. Note that this differential equation has the
singular solutions y = 0 and the point (0, 0).

11.6 Differential Equations with Constant Coefficients

In this section, we study the differential equation g : Rn+2 → R : (x, y, y′, y′′, . . . , y(n)) 7→
g(x, y, y′, y′′, . . . , y(n)) = 0 that is linear in all the variables y, y′, y′′, . . . , y(n) and whereby the
coefficients of these variables are real constants with the constant of y(n) equal to 1. This
differential equation has therefore the following form:

y(n) + a1y
(n−1) + a2y

(n−2) + . . .+ an−2y
′′ + an−1y

′ + any = b(x)

11.6.1 The General Method

The general solution y of this differential equation consists of a homogeneous solution yh and
a particular solution yp and can thus written as y = yh + yp.

• The homogeneous solution

The homogeneous solution is the solution of the differential equation whereby we set b(x) = 0.
The linear homogeneous differential equation is thus of the form:

y(n) + a1y
(n−1) + a2y

(n−2) + . . .+ an−2y
′′ + an−1y

′ + any = 0

Before we propose a solution to the general homogeneous differential equation let us first
consider the case n = 1. We can solve the differential equation y′ + a1y = 0 through the
method of separation of variables, so that its solution is equal to:

y′ + a1y = 0 ⇔
∫

1

y
dy = −a1

∫
dx ⇔ ln |y| = −a1x+ c1 ⇔ y = ec1e−a1x

For the general case, it would thus make sense to propose a solution of the form y = eλx.

If we remember that y(n) =
(
eλx
)(n)

= λneλx, we can write the homogeneous differential
equation in the following way:
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y(n) + a1y
(n−1) + a2y

(n−2) + . . .+ an−2y
′′ + an−1y

′ + any = 0

⇔ λneλx + a1λ
n−1eλx + a2λ

n−2eλx + . . .+ an−2λ
2eλx + an−1λe

λx + ane
λx = 0

⇔ eλx
[
λn + a1λ

n−1 + a2λ
n−2 + . . .+ an−2λ

2 + an−1λ+ an
]

= 0

⇔ λn + a1λ
n−1 + a2λ

n−2 + . . .+ an−2λ
2 + an−1λ+ an = 0

This last equation is referred to as the characteristic equation. Suppose that this poly-
nomial has r roots λ1, λ2, . . . , λr−1, λr whereby the root λi has multiplicity mi. Note that
r ≤ n, mi ≤ n, and

∑r
k=1 mk = n. The characteristic equation becomes:

(λ− λ1)m1 (λ− λ2)m2 . . . (λ− λr−1)mr−1 (λ− λr)mr = 0

The general solution for the root λi has the form:

y = xpeλix

whereby p ∈ {0, 1, . . . ,mi − 1}. The n solutions for the linear homogeneous differential
equation are thus equal to:

eλ1x xeλ1x x2eλ1x . . . xm1−2eλ1x xm1−1eλ1x

eλ2x xeλ2x x2eλ2x . . . xm2−2eλ2x xm2−1eλ2x

...
...

...
...

...
...

eλ(r−1)x xeλ(r−1)x x2eλ(r−1)x . . . xm(r−1)−2eλ(r−1)x xm(r−1)−1eλ(r−1)x

eλrx xeλrx x2eλrx . . . xmr−2eλrx xmr−1eλrx

The homogeneous solution yh is equal to a linear combination of all these individual solutions:

yh = c1e
λ1x + c2xe

λ1x + . . .+ cn−1x
mr−2eλrx + cnx

mr−1eλrx

with c1, c2, . . . , cn ∈ R.

In case that, let’s say, the root λ1 is complex, i.e., λ1 = α + iβ, the individual solution is
written as follows:

y = xpeλ1x = xpe(α+iβ)x = xpeαx [cos (βx) + i sin (βx)]

with p ∈ {0, 1, . . . ,m1 − 1} and whereby we made use of the definition of the complex
exponential function (see section 8.4).

It follows automatically that the complex conjugate λ1 of the root λ1 is also a root of the
characteristic equation, whose solution is equal to:
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y = xpeλ1x = xpe(α−iβ)x = xpeαx [cos (βx)− i sin (βx)]

In other words, for a complex root its solution is a linear combination of the terms xpeαx cos (βx)
and xpeαx sin (βx) whereby the coefficients might be complex.

• The particular solution

We write the full differential equation as follows, whereby we set b(x) = P (x)eqx with P (x)
a polynomial function of degree p and q ∈ C (remember that R ⊂ C):

y(n) + a1y
(n−1) + a2y

(n−2) + . . .+ an−2y
′′ + an−1y

′ + any = P (x)eqx

If q is a root of the corresponding characteristic equation with multiplicity m, the particular
solution yp of the linear differential equation is equal to:

yp = xmPs(x)eqx

whereby Ps(x) is a polynomial function of degree p, i.e., the same degree as P (x). If q is not
a root of the characteristic equation, then we set m = 0.

11.6.2 Examples

• Example 1

Let us consider the differential equation y′′′ − 5y′′ + 8y′ − 4y = x3 − 2x + 1. In a first step,
we look for the solution yh of the following homogeneous differential equation:

y′′′ − 5y′′ + 8y′ − 4y = 0

If we write the general solution as y = eλ, the characteristic equation becomes the following:

y′′′ − 5y′′ + 8y′ − 4y = 0 ⇔ λ3eλx − 5λ2eλx + 8λeλx − 4eλx = 0

⇔ eλx
(
λ3 − 5λ2 + 8λ− 4

)
= 0

⇔ λ3 − 5λ2 + 8λ− 4 = 0

⇔ (λ− 1)
(
λ2 − 4λ+ 4

)
= 0

⇔ (λ− 1) (λ− 2)2 = 0

292



Mathematics Preparation Course Olivier Loose

In other words, the root λ1 = 1 has the multiplicity m1 = 1 and the root λ2 = 2 has the
multiplicity m2 = 2. With respect to λ1 = 1, its solution is equal to y = x0eλ1x = ex.
Regarding λ2 = 2, it has two solutions: y = x0eλ2x = e2x and y = x1eλ2x = xe2x.

The homogeneous solution yh of this differential equation is therefore equal to a linear com-
bination of these three individual solutions:

yh = c1e
x + c2e

2x + c3xe
2x = c1e

x + (c2 + c3x) e2x

In a next step, we determine the particular solution yp. If we look at the right-hand side of
the differential equation and compare it with the general expression b(x) = P (x)eqx, we can
see that q = 0 and that P (x) = x3 − 2x + 1 with degree p = 3. Since q = 0 is not a root of
the characteristic equation, we can set m = 0 in the general form of the particular solution
yp = xmPs(x)eqx.

As a result, the particular solution yp of our differential equation will be of the form
yp = Ps(x) = Ax3 + Bx2 + Cx + D. If we insert this particular solution into the left-
hand side of the differential equation, we obtain the following expression:

y′′′p − 5y′′p + 8y′p − 4yp

= (6A)− 5(6Ax+ 2B) + 8(3Ax2 + 2Bx+ C)− 4(Ax3 +Bx2 + Cx+D)

= − 4Ax3 + (24A− 4B)x2 + (−30A+ 16B − 4C)x+ (6A− 10B + 8C − 4D)

If we compare the above expression with the right-hand side of the differential equation, i.e.,
x3 − 2x+ 1, we find a system of four equations and four unknown variables:



− 4A = 1

24A− 4B = 0

− 30A+ 16B − 4C = −2

6A− 10B + 8C − 4D = 1

⇔



A = −1

4

B = −3

2

C = −29

8

D = −33

8

The particular solution yp of the differential equation is therefore equal to:

yp = −x
3

4
− 3x2

2
− 29x

8
− 33

8

The total general solution y = yh + yp then becomes:

y = yh + yp = c1e
x + (c2 + c3x) e2x − x3

4
− 3x2

2
− 29x

8
− 33

8
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• Example 2

Consider the following differential equation:

y(5) − 15y(4) + 92y′′′ − 288y′′ + 460y′ − 300y = e3x cosx

In a first step, we determine the roots of the characteristic equation of the corresponding
homogeneous differential equation:

y(5) − 15y(4) + 92y′′′ − 288y′′ + 460y′ − 300y = 0

⇔ eλ
[
λ5 − 15λ4 + 92λ3 − 288λ2 + 460λ− 300

]
= 0

⇔ λ5 − 15λ4 + 92λ3 − 288λ2 + 460λ− 300 = 0

⇔
(
λ4 − 12λ3 + 56λ2 − 120λ+ 100

)
(λ− 3) = 0

⇔
[(
λ4 − 12λ3 + 36λ2

)
+
(
20λ2 − 120λ

)
+ 100

]
(λ− 3) = 0

⇔
[(
λ2 − 6λ

)2
+ 20

(
λ2 − 6λ

)
+ 100

]
(λ− 3) = 0

⇔
(
λ2 − 6λ+ 10

)2
(λ− 3) = 0

⇔ [λ− (3 + i)]2 [λ− (3− i)]2 (λ− 3) = 0

For the root λ1 = 3 with multiplicity m1 = 1, we have the solution y = x0eλ1x = e3x.

With respect to the complex root λ2 = α + iβ = 3 + i with multiplicity m2 = 2, its
solutions are equal to y = x0eαx [cos (βx) + i sin (βx)] = e3x [cos (x) + i sin (x)] and y =
x1eαx [cos (βx) + i sin (βx)] = xe3x [cos (x) + i sin (x)].

We find two similar solutions for the complex root λ3 = α + iβ = 3 − i with multiplicity
m3 = 2: y = e3x [cos (x)− i sin (x)] and y = xe3x [cos (x)− i sin (x)].

With respect to the complex roots, the homogeneous solution entails a linear combination
of the terms e3x cosx, e3x sinx, xe3x cosx, and xe3x sinx.

The homogeneous solution yh of the differential equation is equal to:

yh = c1e
3x + c2e

3x cosx+ c3e
3x sinx+ c4xe

3x cosx+ c5xe
3x sinx

= [c1 + (c2 + c4x) cosx+ (c3 + c5x) sinx] e3x

Regarding the particular solution yp, we want it to have the form yp = xmPs(x)eqx. Recall

from section 8.4 that the cosine in complex terms can be written as cosx = eix+e−ix

2
. The

right-hand side of the differential equation then becomes:

P (x)eqx = e3x

[
eix + e−ix

2

]
=
e(3+i)x + e(3−i)x

2
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Given that q1 = 3 + i and q2 = 3 − i are both a root of the characteristic equation with
multiplicity m = 2, the particular solution has the following form:

yp = x2Ps1(x)e(3+i)x + x2Ps2(x)e(3−i)x = x2C1e
(3+i)x + x2C2e

(3−i)x

= x2C1e
3x(cosx+ i sinx) + x2C2e

3x(cosx− i sinx)

= x2e3x [(C1 + C2) cosx+ i(C1 − C2) sinx)]

= x2e3x (A cosx+B sinx)

Since in the right-hand side of the original differential equation P (x) = 1
2

, which has a degree
equal to p = 0, we have set Ps1(x) and Ps2(x) equal to the constants C1 and C2.

Next, we calculate the first five derivatives of yp and insert them into the left-hand side of
the differential equation. These derivatives are the following:

• y′p =
([

2Ax+ (3A+B)x2
]

cosx+
[
2Bx+ (−A+ 3B)x2

]
sinx

)
e3x

• y′′p =
([

2A+ (12A+ 4B)x+ (8A+ 6B)x2
]

cosx+ [2B + (−4A+ 12B)x]
)

([
+ (−6A+ 8B)x2

]
sinx

)
e3x

• y′′′p =
([

(18A+ 6B) + (48A+ 36B)x+ (18A+ 26B)x2
]

cosx+ [(−6A+ 18B)]
)

([
+ (−36A+ 48B)x+ (−26A+ 18B)x2

]
sinx

)
e3x

• y(4)
p =

([
(96A+ 72B) + (144A+ 208B)x+ (28A+ 96B)x2

]
cosx+ [(−72A+ 96B)]

)
([

+ (−208A+ 144B)x+ (−96A+ 28B)x2
]

sinx
)
e3x

• y(5)
p =

([
(360A+ 520B) + (280A+ 960B)x+ (−12A+ 316B)x2

]
cosx

)
(
+
[
(−520A+ 360B) + (−960A+ 280B)x+ (−316A− 12B)x2

]
sinx

)
e3x

If we insert these expressions into the left-hand side of the differential equation, we obtain
the following result:

y(5)
p − 15y(4)

p + 92y′′′p − 288y′′p + 460y′p − 300yp = (−8B cosx+ 8A sinx) e3x

Given that the right-hand side of the original differential equation is equal to e3x cosx, we
have that A = 0 and B = −1

8
. Therefore, the particular solution yp becomes:

yp = x2e3x (A cosx+B sinx) = −x
2

8
e3x sinx

The general solution y = yh + yp to this differential equation is then equal to:

y = yh + yp = [c1 + (c2 + c4x) cosx+ (c3 + c5x) sinx] e3x − x2

8
e3x sinx

=

[
c1 + (c2 + c4x) cosx+

(
c3 + c5x−

x2

8

)
sinx

]
e3x
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• Example 3

Let us consider the differential equation 15y′′′ − y′′ − 11y′ − 3y = 15xex. First, we find the
roots of the characteristic equation of the corresponding homogeneous differential equation:

15y′′′ − y′′ − 11y′ − 3y = 0 ⇔ y′′′ − y′′

15
− 11y′

15
− y

5
= 0

⇔ eλ
[
λ3 − λ2

15
− 11λ

15
− 1

5

]
= 0

⇔ λ3 − λ2

15
− 11λ

15
− 1

5
= 0

⇔ (λ− 1)

(
λ2 +

14λ

15
+

1

5

)
= 0

⇔ (λ− 1)

(
λ+

1

3

)(
λ+

3

5

)
= 0

The root λ1 = 1 with multiplicity m1 = 1 produces the individual solution y = ex. The next

root λ2 = −1
3

with multiplicity m2 = 1 has the solution y = e−
x
3 . Finally, the third root

λ3 = −3
5

with multiplicity m3 = 1 gives the individual solution y = e−
3x
5 .

The homogeneous solution yh of the differential equation is a linear combination of these
three individual solutions:

yh = c1e
x + c2e

−x
3 + c3e

−3x
5

With respect to the particular solution yp = xmPs(x)eqx, we find that q = 1 and m = 1
because λ1 = 1 is a root of the characteristic equation with multiplicity m1 = 1. In the
right-hand side of the original differential equation, we see that P (x) = 15x, which has a
degree p = 1. Therefore, Ps(x) constitutes a polynomial with an equal degree p = 1 and of
the form Ps(x) = Ax+B. The particular solution yp thus looks as follows:

yp = xmPs(x)eqx = x(Ax+B)ex

Next, we calculate its first three derivatives and insert them into the left-hand side of the
differential equation. These three derivatives are the following:

• y′p =
[
Ax2 + (2A+B)x+B

]
ex

• y′′p =
[
Ax2 + (4A+B)x+ 2 (A+B)

]
ex

• y′′′p =
[
Ax2 + (6A+B)x+ 3 (2A+B)

]
ex

If we insert these expressions into the left-hand side of the differential equations, we find the
following result:
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15
([
Ax2 + (6A+B)x+ 3 (2A+B)

]
ex
)
−
([
Ax2 + (4A+B)x+ 2 (A+B)

]
ex
)

− 11
([
Ax2 + (2A+B)x+B

]
ex
)
− 3

([
Ax2 +Bx

]
ex
)

= 15xex

⇔ [64Ax+ 88A+ 32B] ex = 15xex

Comparing both sides gives us the following set of equations:

{
64A = 15

88A+ 32B = 0
⇔


A =

15

64

B = −165

256

The particular solution then becomes:

yp = x(Ax+B)ex =

[
15x2

64
− 165x

256

]
ex

The general solution y = yh + yp of the differential equation is therefore equal to:

y = yh + yp = c1e
x + c2e

−x
3 + c3e

−3x
5 +

[
15x2

64
− 165x

256

]
ex

=

[
c1 +

15x2

64
− 165x

256

]
ex + c2e

−x
3 + c3e

−3x
5

• Example 4

Consider the differential equation y(4) + y′′ = 6 cos(3x) cos(4x). Before we proceed to solve
this equation, we wish to rewrite the right-hand side in a form that is recognizable with
respect to the general form b(x) = P (x)eqx.

Simpson’s formulas (see section 5.3) tell us that:

6 cos(3x) cos(4x) = 3 [2 cos(3x) cos(4x)]

= 3 [cos(3x− 4x) + cos(3x+ 4x)]

= 3 [cos(x) + cos(7x)]

In a first step, we determine the roots of the characteristic equation corresponding to the
homogeneous differential equation:

y(4) + y′′ = 0 ⇔ eλ
[
λ4 + λ2

]
= 0

⇔ λ4 + λ2 = 0

⇔ λ2
(
λ2 + 1

)
= 0

⇔ λ2 (λ+ i) (λ− i) = 0
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The first root λ1 = 0 is real and has multiplicity m1 = 2, so that its solutions are y =
x0eλ1x = 1 and y = x1eλ1x = x. In contrast, the second and third root λ2 = α + iβ = −i
and λ3 = α + iβ = i are complex with multiplicity m2 = 1 and m3 = 1, respectively, with
corresponding solutions y = x0eαx(cosx + i sinx) = cosx + i sinx and y = x0eαx(cosx −
i sinx) = cos x− i sinx.

The homogeneous solution yh is a linear combination of these individual solutions:

yh = c1 + c2x+ c3 cosx+ c4 sinx

Regarding the particular solution yp = xmPs(x)eqx, note that the right-hand side of the dif-
ferential equation has two parts: 3 cosx and 3 cos(7x). With respect to the first part, given

that cos x = eix+e−ix

2
, we have that q1 = −i and q2 = i with m = 1, which correspond to

the roots λ2 = −i and λ3 = i of the characteristic equation. The particular solution yp1 of
the first part has therefore the following form (with A1 and B1 two real constants):

yp1 = xmPs1(x)eq1x + xmPs2(x)eq2x = xA1e
−ix + xB1e

ix

= x [(A1 +B1) cosx+ i (B1 − A1) sinx]

= x(A cosx+B sinx)

With respect to the second part 3 cos(7x), the variables q1 = 7i and q2 = −7i do not corre-
spond to any of the three roots of the characteristic equation, so that m = 0. The particular
solution yp2 related to the second part has thus the following form (with A2, B2 ∈ R):

yp2 = xmPs1(x)eq1x + xmPs2(x)eq2x = x0A2e
7ix + x0B2e

−7ix

= (A2 +B2) cos(7x) + i (A2 −B2) sin(7x)

= C cos(7x) +D sin(7x)

Note furthermore that for both parts the polynomial P (x) is equal to P (x) = 3 with a degree
p = 0, so that the respective polynomial Psi(x) has been set equal to a constant.

The total particular solution yp is therefore equal to:

yp = yp1 + yp2 = x(A cosx+B sinx) + C cos(7x) +D sin(7x)

In a next step, we calculate the second and the fourth derivative of yp and insert these ex-
pressions into the left-hand side of the differential equation. These derivatives are equal to:

• y′′p = (−Ax+ 2B) cosx+ (−2A−Bx) sinx− 49 [C cos(7x) +D sin(7x)]

• y(4)
p = (Ax− 4B) cosx+ (4A+Bx) sinx+ 2401 [C cos(7x) +D sin(7x)]

If we insert these two expressions into the left-hand side of the differential equation, we
obtain the following equation:
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y(4) + y′′ = 3 [cos(x) + cos(7x)]

⇔ [(Ax− 4B) cosx+ (4A+Bx) sinx+ 2401 [C cos(7x) +D sin(7x)]]

+ [(−Ax+ 2B) cosx+ (−2A−Bx) sinx− 49 [C cos(7x) +D sin(7x)]]

= 3 [cos(x) + cos(7x)]

⇔ − 2B cosx+ 2A sinx+ 2352C cos(7x) + 2352D sin(7x) = 3 [cos(x) + cos(7x)]

This produces the following system of equations :



− 2B = 3

2A = 0

2352C = 3

2352D = 0

⇔



A = 0

B = −3

2

C =
1

784

D = 0

The particular solution yp can then be written in the following way:

yp = yp1 + yp2 = x(A cosx+B sinx) + C cos(7x) +D sin(7x) = −3x

2
sinx+

cos(7x)

784

For the general solution y = yh + yp we find the following result:

y = yh + yp = c1 + c2x+ c3 cosx+ c4 sinx− 3x

2
sinx+

cos(7x)

784

= c1 + c2x+ c3 cosx+
cos(7x)

784
+

(
c4 −

3x

2

)
sinx

• Example 5

Consider the differential equation y′′′ − 2y′′ − 7y′ − 4y = x coshx. In a first step, we deter-
mine the roots of the characteristic equation of the corresponding homogeneous differential
equation:

y′′′ − 2y′′ − 7y′ − 4y = 0 ⇔ eλ
[
λ3 − 2λ2 − 7λ− 4

]
= 0

⇔ λ3 − 2λ2 − 7λ− 4 = 0

⇔ (λ+ 1)
(
λ2 − 3λ− 4

)
= 0

⇔ (λ+ 1)2 (λ− 4) = 0
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The root λ1 = −1 has multiplicitym1 = 2 and produces the individual solutions y = x0eλ1x =
e−x and y = x1eλ1x = xe−x. The solution of the second root λ2 = 4 with multiplicity m2 = 1
is equal to y = x0eλ2x = e4x.

The homogeneous solution yh of the differential equation is equal to a linear combination of
these three individual solutions:

yh = (c1 + c2x) e−x + c3e
4x

With respect to the particular solution yp = xmPs(x)eqx, let us first have a closer look at
the right-hand side of the differential equation. Using the definition of the hyperbolic cosine
(see section 7.6.9), we can rewrite the right-hand side as follows:

b(x) = x coshx = x

[
ex + e−x

2

]
=
x

2
ex +

x

2
e−x

With respect to the first part x
2
ex, we have that q = 1, which does not correspond to any

root of the characteristic equation, so that m = 0. Given that P1(x) = x
2

with degree p = 1,
we demand that Ps1(x) has the same degree and is thus of the form Ps1(x) = Ax+ B. The
particular solution yp1 related to the first part is then equal to:

yp1 = xmPs1(x)eqx = (Ax+B)ex

Regarding the second part x
2
e−x, since q = −1 corresponds to the first root λ1 = −1 with

multiplicity m1 = m = 2 and since P2(x) = x
2

with degree p = 1, the particular solution yp2
related to the second part becomes:

yp2 = xmPs2(x)eqx = x2(Cx+D)e−x

The complete particular solution yp of the differential equation has therefore the following
form:

yp = yp1 + yp2 = (Ax+B)ex + x2(Cx+D)e−x

Next, we calculate the first three derivatives of yp and insert them into the left-hand side of
the differential equation. These derivates are equal to:

• y′p = [Ax+ (A+B)] ex +
[
−Cx3 + (3C −D)x2 + 2Dx

]
e−x

• y′′p = [Ax+ (2A+B)] ex +
[
Cx3 + (−6C +D)x2 + (6C − 4D)x+ 2D

]
e−x

• y′′′p = [Ax+ (3A+B)] ex +
[
−Cx3 + (9C −D)x2 + (−18C + 6D)x+ (6C − 6D)

]
e−x

Inserting these derivates into the left-hand side of the differential equation gives us the
following expression:
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y′′′p − 2y′′p − 7y′p − 4yp = [−12Ax+ (−8A− 12B)] ex + [−30Cx+ 6C − 10D] e−x

If we compare this expression with the right-hand side of our differential equation, i.e.,
x coshx = x

2
ex + x

2
e−x, we obtain the following set of equations:



− 12A =
1

2

− 8A− 12B = 0

− 30C =
1

2

6C − 10D = 0

⇔



A = − 1

24

B =
1

36

C = − 1

60

D = − 1

100

The particular solution yp then becomes:

yp = (Ax+B)ex + x2(Cx+D)e−x =

(
− x

24
+

1

36

)
ex + x2

(
− x

60
− 1

100

)
e−x

For the general solution y = yh + yp we find the following result:

y = yh + yp = (c1 + c2x) e−x + c3e
4x +

(
− x

24
+

1

36

)
ex + x2

(
− x

60
− 1

100

)
e−x

=

(
c1 + c2x−

x2

100
− x3

60

)
e−x +

(
− x

24
+

1

36

)
ex + c3e

4x
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