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Summary of Exercises

Exercise 1

Gansukh is driving his car at a velocity of ~vcar = 115 ·~ix km/h along some dusty roads in Tunkh,
Mongolia. At a certain moment, the road runs more or less parallel to a railway track, and Gansukh
catches up with a train that is following the Trans-Mongolian Railway route and currently travels
at ~vtrain = 95.0 ·~ix km/h. (1) If you know that the train’s length measures L = 850 m, how long
does it take Gansukh to completely overtake the train? (2) What distance has he covered during
this manoeuvre? (3) If Gansukh were moving in the opposite direction to the train, what would
your answers be to the questions in part (1) and (2)? (4) Suppose in the scenario of part (1) that at
some point Gansukh slows down for about 3.20 s, after which he drives right beside the mid point
of the train at the same constant speed. At which position relative to the train did Gansukh start
to decelerate?

Exercise 2

In the midst of a police car pursuit close to Parque Kanata in Cochabamba, Bolivia, Blanca, who
is the police woman in the front passenger seat with an extremely keen eyesight, suddenly spots a
squirrel at a distance of d = 150 m and shouts to her colleague Manuela in the driver’s seat:“Watch
out, a squirrel!” It takes Manuela approximately tr = 1.20 s to understand the situation before slam-
ming the breaks at a deceleration of ~a = −11.1 m/s2. (1) At what distance from the squirrel does
Manuela manage to get the car to a complete standstill, knowing that she is driving at ~vp = 165 ·~ix
km/h? (2) How much time has passed from the moment her colleague Blanca warned her? (3)
Suppose that Blanca saw the same squirrel but only this time it is running towards the police car at
~vsq = −2.30 ·~ix m/s. If you know that Manuela stopped the car at a distance of ds = 10.0 cm from
the squirrel, how much harder did Manuela have to hit the breaks?

Exercise 3

Kopano is a physics teacher at the Newton International School in Gaborone, Botswana, and he just
bought some new measuring devices for the physics course he is teaching at the students of Grade
12. Kopano is trying out his new equipment whereby he places a tennis ball pitching machine on the
ground next to a building and vertically shoots a tennis ball up in the air. Kopano is standing at
the window on the second floor and has measured that the ball takes tw = 0.25 s to travel from the
window sill to the top edge of the window. (1) If you know that the sill is positioned at a distance
of ds = 6.5 m above the ground and that the height of the window is equal to h = 1.5 m, with
which speed did the tennis ball depart from the pitching machine? (2) How high will the ball go?
(3) Assuming that the tennis ball is traveling upwards, how many seconds ago was the ball launched
when it is now at eye level with Kopano (suppose that this is half way the height h of the window)?
(4) Finally, after how many seconds, starting from the point in part (3), will the tennis ball fall to
the ground?
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Exercise 4

On a crisp Sunday afternoon, you are cycling at an average velocity of ~v = 22.0 ·~ix km/h in the
middle of the countryside nearby the town Katvari in Latvia. At a certain moment, another cyclist
passes by you and after treact = 2.00 s you realize it’s Ilja, a friend of yours. You then start to
accelerate (~a = 0.385 ·~ix m/s2) and overtake Ilja after exactly tsprint = 12.3 s. (1) Determine the
average velocity ~vfriend at which your friend is cycling. (2) Instead of overtaking Ilja, you wish to
end up cycling right next to Ilja. Therefore, after t1 = 10.0 s of sprinting, you slow down at a rate of
~as = −a ·~ix. What is the distance ds covered during this period of deceleration? (3) How long does
it now take you to catch up with Ilja under the scenario described in part (2)? (4) How much more
total distance do you now need compared to the situation in part (2)?

Exercise 5

Bart and Tina are training in their hometown Ninove, Belgium, for the ultramarathon “The Bali
Hope Ultra”, which takes place in Bali, one of the islands of the Indonesian archipelago, in Septem-
ber 2022 and whereby the participants are crossing the island overnight from north to south over a
distance of 84.9 km. According to their training schedule, they are running today a distance of 35.0
km. About d = 88.0 m before the end of their run, Bart maintains a velocity of ~vB = 5.04 ·~ix m/s,
while Tina is running at a higher pace of ~vT = 6.22 ·~ix m/s and is a distance of xBT = 24.5 m ahead
of Bart. Tina feels a cramp coming up in the calf muscles of her right leg which slows her down at a
rate of ~aT = −0.27 ·~ix m/s2. (1) If Bart wishes to overtake Tina just df = 5.00 m before the end of
their run, at what rate should Bart then start to accelerate? (2) What is Bart’s velocity right at the
moment when his GPS marks a total distance covered of 35.0 km? (3) Suppose that Bart maintains
his acceleration calculated in part (1), but now after trec = 8.50 s Tina recovers from her cramp and
runs the last bit with a constant velocity. Who sees the 35.0 km mark on their GPS first?

Exercise 6

Luca is standing at the edge of the White Cliffs of Dover in the county of Kent, the United Kingdom,
and he wants to show his son Michael how to estimate their height h when you only have the elements
of nature at your disposal. When Luca throws a cobblestone vertically into the air with an initial
velocity of ~v0 = −2.50 ·~ix m/s, they hear the characteristic splash of water about ttot = 5.32 s later.
(1) Given a speed of sound equal to vs = 343 m/s, what is the estimated height h of the White Cliffs
of Dover that Luca and his son have calculated? (2) With what velocity does the cobblestone hit the
water? (3) Michael also throws a cobblestone at an initial speed of vM = 4.35 m/s under an angle of
θ = 61.5◦ with the horizontal. When do they hear the splash?

Exercise 7

Fig. 6 shows the position-time graph for two swans swimming in the same direction in the Evros Delta
in the north of Greece. Formulate an answer for the following questions: (1) Do the swans at some
point move at the same velocity? (2) Which swan has the greatest acceleration? (3) Are the swans
overtaking each other at any particular instant? (4) Which swan registers the largest instantaneous
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velocity? (5) Which swan undergoes the greatest displacement? (6) How do the average velocities of
the swans compare to one another?

Exercise 8

Marwah is traveling at ~vM = 115 ·~ix km/h on a two-lane expressway east of Imilchil, Morocco,
and approaching a L = 45.0 m-long double-trailer truck, which is going at ~vt = 90.0 ·~ix km/h. To
overtake the truck, Marwah needs dL = 12.0 m of leeway at each end of the truck. However, there is
an oncoming minivan traveling at a speed of ~vm = −85.0 ·~ix km/h approximately d = 500 m away.
(1) Can Marwah safely overtake the truck without accelerating? (2) If not, by how much should
Marwah accelerate if she wants the minivan to pass by her at least tmargin = 2.00 s after she has
overtaken the truck, and what would be her velocity after this manoeuvre? (3) How much distance
has Marwah traveled during this manoeuvre?

Exercise 9

Yusef and Hasan are sitting at the back of the classroom in the Jordan National School in Irbid,
Jordan, and are interested in anything but the current geography class. They started to make little
wads of paper which they subsequently flick away with the tip of their finger from the edge of their
desk, giving them a horizontal velocity of ~v0x = 3.50 ·~ix m/s. (1) At which angle and with what
velocity does one little ball of paper hit the ground, measured at h = 1.50 m below the edge of the
desk? (2) How far (horizontally speaking) from the edge of the desk does the paper land? (3) If
Yusef drops a wad of paper vertically from the edge of the desk at the same time that Hasan flicks
another, identical wad of paper away from the desk, which one touches the floor first? (4) If a wad
of paper is flung away at a greater horizontal velocity of ~v0x2 = 4.15 ·~ix m/s, how does this change
the answer to part (3)?

Exercise 10

You feel like throwing a pineapple from your bedroom window into the rectangular pond you had
recently installed in the garden. You launch the pineapple at an initial speed of v0 = 8.80 m/s under
an angle θ and it hits the water dwe = 1.10 m from the edge of the pond closest to the back of your
house. (1) If your bedroom is located h = 9.50 m above ground level and the distance between the
house and the closest edge measures dhe = 7.00 m, under what angle are you throwing the pineapple?
(2) If the pond is half a meter deep and the water slows the pineapple down with an acceleration
whose magnitude is equal to aw = 65.0 m/s2, will the pineapple hit the bottom of the pond?

Exercise 11

Ning is a professional archer and she is currently training for the Paris 2024 Olympic Games. During
her next training, she aims to hit a target on the ground while leaning out of a helicopter, which is
flying horizontally at ~vh = 139 ·~ix km/h at an altitude of h = 40.0 m near the Dongqian Lake in
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Ningbo, China. On the day of her training, there is a forecasted headwind of ~vw = −54.0 ·~ix km/h
and Ning has brought a compound bow that is able to shoot arrows at a speed of va = 80.0 m/s. (1)
How far will Ning’s arrows travel under these conditions? (2) If Ning lowers her bow, making an angle
of θ = 20.0◦ with the direction of flight, at what horizontal distance must the helicopter be away
from the target if she wants to hit the mark? (3) Suppose that in part (1) the headwind is making an
angle α < 90◦ with the vertical, so that the y-component of the arrow’s velocity right before hitting
the mark is equal to ~vy = −29.9 ·~iy m/s. At what distance from the mark did Ning release her arrow?

Exercise 12

Due to the lower gravity on the planet Mars, its atmosphere is thinner and more volatile relative
to Earth. One of the consequences is that dust is easily swept up and lingers throughout the at-
mosphere. Some of the chemical compounds and elements that constitute Martian dust include
phosphorus pentoxide (P4O10), titanium dioxide (TiO2), zinc (Zn), and manganese(II) oxide (MnO).
Suppose now that a TiO2 compound finds itself above the Gusev Crater and that, at t = 0 s, at the
position ~r(t) = 1.0 ·~ix+1.0 ·~iy +2.0 ·~iz m, it has a velocity of ~v0(t) = 6.5 ·~iy +2.0 ·~iz m/s. If the TiO2

compound is being accelerated by an upcoming dust storm at a rate of ~a(t) = 2.3 ·~ix−3.1 ·~iy +0.5 ·~iz
m/s2, what is the compound’s position and velocity when the y coordinate reaches its maximum?

Exercise 13

Juan is a locally famous stuntman in the region around the city of Bayamo, Cuba, and he is about
to try out a new stunt in his home in the outskirts of Bayamo. Juan takes place in his self-made
ejector seat, which is installed upon a rotatable and tiltable platform, so that he sits s = 1.55 m
above ground level. Facing north, he directs his seat in a straight line with the ridge of the barn
that is right in front of him, and tilts it in the forward direction until it makes a θ = 65.0◦ angle
with the ground. When Juan gets ejected from his seat, he manages to travel a horizontal distance
of dx = 10.5 m and ends up on the w = 4.00 m wide balcony that is attached perfectly symmetrical
to the front of the barn. (1) If you know that the balcony hangs h = 8.65 m above the ground, what
is the launching speed v0 of his home-made ejector seat? (2) After a couple of runs, one of the bolts
in the platform is partially unscrewed, so that by the time of the next ejection round Juan’s seat has
effectively rotated φ = 5.00◦ east of north. Will Juan still make it to the balcony?

Exercise 14

Giulia, an extreme sports fanatic, stands on the edge of the 754 m high sea cliff Cape Enniberg at
the Faroe Islands and is looking over the Norwegian Sea ready to take her next parachute jump. She
takes a run-up in the northeastern (NE) direction and dives from the cliff head first with a speed of
3.50 m/s under a 25.0◦ angle with the horizontal. After a free fall of tfree = 8.50 s, she opens her
parachute and about topen = 2.50 s later Giulia is descending at a constant velocity with her horizon-
tal speed reduced to 1.00 m/s. At the very moment that her downward velocity becomes constant, a
southeastern (SE) wind kicks in with an initial speed of 2.00 m/s and gradually picks up speed with
a rate of 0.112 m/s2. After the onset of the SE wind, Giulia touches the water tdescend = 38.9 s later.
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(1) At what height does Giulia’s downward velocity become constant and what is the value of this
velocity? (2) What is the total acceleration during the opening of the parachute? (3) What are the
coordinates of Giulia’s landing spot? (4) With what velocity and under which angle does Giulia land
into the water?

Exercise 15

You’re practicing your snowboard skills in the indoor ski resort Sayama Indoor Skiing Ground in
Tokorozawa, Japan, and when you come to a halt at the bottom of the last slope, you take some
time to rest. While you’re tossing around a snowball, your mind wanders off to that last slope and
suddenly it dawns on you how to solve that particular physics problem you’ve been thinking about
for the past two weeks: If I know the angle φ of a slope, under which angle θ with the horizontal
should I throw a snowball with a given initial velocity v0, so that it ends up the farthest as possible
on the slope (point d)? Write down the solution you have in your mind.

Exercise 16

Sarki is participating in the Kenyan national competition of acrobatic aircraft racing and during the
semifinals, he is required to steer his Zirko Edge 540 plane with a wingspan of 7.42 m right between
two buildings that stand 10.0 m apart from each other. The opening through which the aircraft has
to pass lies in the south-southwest (SSW) direction and the Zirko Edge 540 has an average air speed
of vplane = 275 km/h. If Sarki has to deal with a sturdy west wind of vw = 65.0 km/h on the day
of his competition, at what angle (west of south) should he better steer his airplane so that it safely
whizzes through the opening between the two buildings? What is the magnitude of the resultant
(effective) velocity vR at which Sarki pulls off this manoeuvre?

Exercise 17

Nastya and Keril are taking part in a local sports competition in Nizhny Novgorod, Russia, that
involves four main parts: long-distance running, archery, mountain biking, and swimming. They are
in the lead and reached the last activity, i.e., swimming. The Volga river is the final leg of the race
that stands between them and the finish line, which lies right across the other side of the Volga.
Since there is a current of ~vriver = −1.05 ·~ix m/s, they might end up some distance away from the
finish line, in which case they have to sprint the last couple of meters.

(1) Given the magnitudes of their swimming and running velocity vswim and vrun, respectively, deter-
mine a general formula for the fastest route across the Volga. (2) While Nastya is a faster swimmer
than Keril (vswim,N = 1.95 m/s versus vswim,K = 1.85 m/s), she runs at a lower pace (vrun,N = 4.15
m/s versus vrun,K = 5.20 m/s). If Keril has an advantage of 19.5 s with respect to Nastya, who wins
the competition if both follow their optimal routes? Where do the athletes come ashore? Suppose
that the Volga is d = 850 m wide at the point where they enter the water.
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Exercise 18

Sophia is casually riding her brand-new snowboard on a 32◦-blue square slope of the Whistler Moun-
tain in Canada. Being all warmed up after an hour of doing slaloms, Sophia heads towards a first
jump, which makes a 13◦ angle with the horizontal, and pulls off a Chicken Salad grab. She suc-
cessfully lands her trick 28 m down the hill. (1) What was Sophia’s initial velocity? (2) What is her
landing velocity? (3) What is the airtime of her jump?

Exercise 19

Tommaso is cruising at sunset at vCessna = 232 km/h in his Cessna 172 Skyhawk above the hilly
landscape of Val d’Orcia, Italy. As he is headed north-west towards the town of Siena, he is en-
joying the endless vineyards and the picturesque villages, such as Pienza, Monticchiello, and Bagno
Vignoni. Due to this mesmerizing scenery, Tommaso forgot to check his instruments during the past
50.0 minutes, and it appears that he already covered 210 km since he last checked and that he is
actually flying in the direction of 27.5◦ west of north. What is the magnitude and direction of the
wind velocity ~vwind that is responsible for the shift in his trajectory?

Exercise 20

After spending a day on turbulent waters in the Gulf of Siam, Rangsei is steering her shrimp boat
θi = 30.0◦ north of east towards her docking station at the port of Sihanoukville, Cambodia. When
she is 1.50 km away from the port, Rangsei receives a radio call from the local command centre
with the message that she must dock 300 m north-west from her usual docking station due to some
hindrance caused by local festivities. Given a north-west current of vcur = 1.20 m/s, determine the
angle θ under which Rangsei must redirect her shrimp boat to safely reach her new docking station,
if you know that the boat maintains a velocity of vboat = 6.52 kts (1 knot is equal to 1.852 km/h)
with respect to still water.
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Exercise 1

Problem Statement

Gansukh is driving his car at a velocity of ~vcar = 115 ·~ix km/h along some dusty roads in Tunkh,
Mongolia. At a certain moment, the road runs more or less parallel to a railway track, and Gansukh
catches up with a train that is following the Trans-Mongolian Railway route and currently travels
at ~vtrain = 95.0 ·~ix km/h. (1) If you know that the train’s length measures L = 850 m, how long
does it take Gansukh to completely overtake the train? (2) What distance has he covered during
this manoeuvre? (3) If Gansukh were moving in the opposite direction to the train, what would
your answers be to the questions in part (1) and (2)? (4) Suppose in the scenario of part (1) that at
some point Gansukh slows down for about 3.20 s, after which he drives right beside the mid point
of the train at the same constant speed. At which position relative to the train did Gansukh start
to decelerate?

Solution

(1) We first need to establish the velocity ~vcar,r of the car seen from the perspective of someone
sitting in the train. If we consider the coordinate system (x’,y’) that moves along with the train and
whereby the positive x-direction points towards the front of the train, then the velocity of the train is
equal to the null vector (~vtrain = 0 ·~ix′ km/h) and the surroundings are passing by in the negative x-
direction, from the front towards the back of the train, at a velocity of ~vsurroundings = −95.0 ·~ix′ km/h.

By simply adding the velocity vectors, a car traveling at ~vcar = 115·~ix km/h in the positive x-direction
of the coordinate system (x,y) relative to the ground is moving at ~vcar,r = (vcar − vsurroundings) ·~ix′ =

(115− 95.0) ·~ix′ = 20.0 ·~ix′ km/h in the positive x’-direction of the coordinate system (x’,y’) relative
to the train.

Figure 1

Taking into account the train’s length of L = 850 m, the time necessary for the car to overtake the
train is then calculated as follows (viewed from the reference frame moving along with the train):
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t =
L

vcar,r
=

850

5.56
= 153 s or 2 min 33 sec

Bear in mind that in the above calculation the speed expressed in km/h is converted into m/s:
vcar,r = 20.0 km/h corresponds to vcar,r = 20.0

3.60
= 5.56 m/s.

(2) To find the distance d that Gansukh has driven during this amount of time, we need to switch
back to the coordinate system (x,y) relative to the ground. That is, we must consider the car’s
velocity of ~vcar = 115 ·~ix km/h. The distance d becomes:

d = vcar · t = 31.9 · 153 = 4.89× 103 m or 4.89 km

(3) In the case where the car is passing the train in the opposite direction, i.e., from the front towards
the back of the train at a velocity ~vcar,o = −115 ·~ix km/h, the car’s velocity ~vcar,ro relative to the train

is equal to ~vcar,ro = − (vcar,o + vsurroundings) ·~ix′ = −(115 + 95.0) = −210 ·~ix′ km/h. The duration to
during which the car travels alongside the train together with the distance do covered are then the
following: 

to =
L

vcar,ro
=

850

58.3
= 14.6 s

do = vcar,o · to = 31.9 · 14.6 = 465 m

(4) The deceleration ~ad during the time period of td = 3.20 s is equal to (whereby vf = 0 m/s is the
speed of the train in the co-moving frame of reference):

~vf = ~vcar,r + ~ad · td ⇔ ~ad =

(
vf − vcar,r

td

)
·~ix′ =

0− 5.56

3.20
= −1.74 ·~ix′ m/s2

Given that the origin of the coordinate system (x’,y’) is located at the back of the train, the position
~xd at which Gansukh started to slow down is calculated as follows (whereby ~xf = L

2
·~ix′ is the position

of the mid point of the train):

~xf = ~xd + ~vcar,r · td +
~ad
2
· t2d ⇔ ~xd = ~xf − ~vcar,r · td −

~ad
2
· t2d

=

[
L

2
− vcar,r · td −

(−ad)
2
· t2d
]
·~ix′

=

[
850

2
− 5.56 · 3.20− (−1.74)

2
· 3.202

]
·~ix′

= 416 ·~ix′ m
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Exercise 2

Problem Statement

Figure 2

In the midst of a police car pur-
suit close to Parque Kanata in
Cochabamba, Bolivia, Blanca,
who is the police woman in the
front passenger seat with an ex-
tremely keen eyesight, suddenly
spots a squirrel at a distance of
d = 150 m and shouts to her col-
league Manuela in the driver’s
seat:“Watch out, a squirrel!” It takes Manuela approximately tr = 1.20 s to understand the sit-
uation before slamming the breaks at a deceleration of ~a = −11.1 m/s2. (1) At what distance from
the squirrel does Manuela manage to get the car to a complete standstill, knowing that she is driving
at ~vp = 165 ·~ix km/h? (2) How much time has passed from the moment her colleague Blanca warned
her? (3) Suppose that Blanca saw the same squirrel but only this time it is running towards the
police car at ~vsq = −2.30·~ix m/s. If you know that Manuela stopped the car at a distance of ds = 10.0
cm from the squirrel, how much harder did Manuela have to hit the breaks?

Solution

(1) Before hitting the brakes, Manuela needs tr = 1.20 s to react, during which the car travels a
distance of:

xr = vp · tr = 45.8 · 1.20 = 55.0 m

This leaves Manuela with a distance of dr = d − xr = 150 − 55.0 = 95.0 m to avoid hitting the
squirrel. The distance db covered during breaking is calculated as follows:

v2f − v2p = 2 · (−a) · db ⇔ db =
v2f − v2p
2 · (−a)

=
02 − 45.82

2 · (−11.1)
= 94.6 m

This means that the distance x (see Fig. 2) between the police car and the squirrel is equal to
x = dr − db = 95.0− 94.6 = 0.374 m or 37.4 cm.

(2) The time tb needed during breaking can be calculated as follows:

vf = vp − a · tb ⇔ tb =
vp − vf
a

=
45.8− 0

11.1
= 4.13 s
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The total time ttot that has passed from the moment Blanca spotted the squirrel to bringing the car
to a complete standstill is then equal to ttot = tr + tb = 1.20 + 4.13 = 5.33 s.

(3) We know from part (1) that the breaking distance db2 is expressed as db2 =
v2p
2·as , with as the

magnitude of the deceleration ~as needed to put the car to a stop at a distance ds from the squirrel.
We also know that the breaking distance is equal to db2 = dr − ds − (vsq · ttot2), with “vsq · ttot2” the
distance covered by the squirrel during the total time ttot2, which is the time required for Manuela
to stop the car and is equal to ttot2 = tr + tb2. The breaking time tb2 is expressed as:

vf = 0 = vp − as · tb2 ⇔ tb2 =
vp
as

The total time then becomes ttot2 = tr + tb2 = tr + vp
as

. If we insert this expression back into our
second expression for the breaking distance and subsequently putting the two expressions for the
breaking distance equal to each other, we find the magnitude as for the deceleration ~as:

v2p
2 · as

= dr − ds −
(
vsq ·

[
tr +

vp
as

])

⇔ as =
vp · (vp + 2 · vsq)

2 · (dr − ds − vsq · tr)

=
45.8 · (45.8 + 2 · 2.30)

2 · (95.0− 0.10− 2.30 · 1.20)

= 12.5 m/s2

With a total time equal to ttot2 = tr + vp
as

= 1.20 + 45.8
12.5

= 4.85 s, the squirrel ran a distance of
dsq = vsq · ttot2 = 2.30 · 4.85 = 11.2 m, which explains the greater deceleration of the police car
(as = 12.5 m/s2 > a = 11.1 m/s2) since Manuela now has less distance to stop her car with respect
to the situation in part (1).
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Exercise 3

Problem Statement

Figure 3

Kopano is a physics teacher at the Newton International School in
Gaborone, Botswana, and he just bought some new measuring devices for
the physics course he is teaching at the students of Grade 12. Kopano is
trying out his new equipment whereby he places a tennis ball pitching ma-
chine on the ground next to a building and vertically shoots a tennis ball
up in the air. Kopano is standing at the window on the second floor and
has measured that the ball takes tw = 0.25 s to travel from the window sill
to the top edge of the window. (1) If you know that the sill is positioned
at a distance of ds = 6.5 m above the ground and that the height of the
window is equal to h = 1.5 m, with which speed did the tennis ball depart
from the pitching machine? (2) How high will the ball go? (3) Assuming
that the tennis ball is traveling upwards, how many seconds ago was the
ball launched when it is now at eye level with Kopano (suppose that this is
half way the height h of the window)? (4) Finally, after how many seconds,
starting from the point in part (3), will the tennis ball fall to the ground?

Solution

(1) What we will first calculate is the speed vw of the tennis ball at the height of the window sill
while traveling upwards. Given that the ball needs tw = 0.25 s to cover the height of the window,
we find the speed vw as follows:

xf = x0 + v0 · t+
ax
2
· t2 ⇔ h+ ds = ds + vw · tw −

g

2
· t2w

⇔ vw =
h

tw
+
g · tw

2
=

1.5

0.25
+

9.81 · 0.25

2
= 7.2 m/s

In a next step, we determine the initial speed v0 of the tennis ball when it is launched from the
pitching machine:

v2w − v20 = 2 · (−g) · h ⇔ v0 =
√
v2w + 2 · g · h =

√
7.22 + 2 · 9.81 · 6.5 = 13 m/s

(2) The maximum height hmax the tennis ball reaches during its flight is equal to:

v2f − v20 = 2 · (−g) · hmax ⇔ hmax =
v2f − v20
2 · (−g)

=
02 − 13.42

2 · (−9.81)
= 9.2 m

11



Physics Exercises on Kinematics Olivier Loose

(3) To find the amount of time teye it takes the ball to arrive at Kopano’s eye level, i.e., at a height of
deye = ds+ h

2
= 6.5+ 1.5

2
= 7.3 m above the ground, we have to solve the following quadratic equation:

xf = x0 + v0 · t+
ax
2
· t2 ⇔ deye = 0 + v0 · teye −

g

2
· t2eye

⇔ 0 = −7.3 + 13 · teye −
9.81

2
· t2eye

Since we assumed that the tennis ball is traveling upwards, we take the solution of the above quadratic
equation that has the lowest value, i.e., teye = 0.74 s.

(4) Finally, to calculate the remaining time tground the tennis ball needs to fall to the ground, we
must first find the time tmax it takes the ball to reach the maximum height of hmax = 9.2 m:

vf = v0 − g · tmax ⇔ tmax =
vf − v0
−g

=
0− 13

−9.81
= 1.4 s

The remaining time tground is then equal to:

tground = 2 · tmax − teye = 2 · 1.4− 0.74 = 2.0 s

12
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Exercise 4

Problem Statement

On a crisp Sunday afternoon, you are cycling at an average velocity of ~v = 22.0 ·~ix km/h in the
middle of the countryside nearby the town Katvari in Latvia. At a certain moment, another cyclist
passes by you and after treact = 2.00 s you realize it’s Ilja, a friend of yours. You then start to
accelerate (~a = 0.385 ·~ix m/s2) and overtake Ilja after exactly tsprint = 12.3 s. (1) Determine the
average velocity ~vfriend at which your friend is cycling. (2) Instead of overtaking Ilja, you wish to
end up cycling right next to Ilja. Therefore, after t1 = 10.0 s of sprinting, you slow down at a rate of
~as = −a ·~ix. What is the distance ds covered during this period of deceleration? (3) How long does
it now take you to catch up with Ilja under the scenario described in part (2)? (4) How much more
total distance do you now need compared to the situation in part (2)?

Solution

(1) In a first instance, let us calculate the total distance xtot needed to overtake your friend. In order
to find this distance, we must first figure out your final velocity ~vf after your sprint of tsprint = 12.3
s:

~vf = ~v0 + ~a · tsprint = (6.11 + 0.385 · 12.3) ·~ix = 10.8 ·~ix m/s

The total distance cycled is equal to the distance xreact covered before you reacted and started to
accelerate plus the distance xsprint during which you sprinted:

xtot = xreact + xsprint = v0 · treact +

(
v2f − v20

2 · a

)
= 6.11 · 2.00 +

(
10.82 − 6.112

2 · 0.385

)

= 12.2 + 104

= 117 m

The average velocity ~vfriend of your friend Ilja then becomes:

~vfriend =
xtot
ttot
·~ix =

xtot
treact + tsprint

·~ix =
117

2.00 + 12.3
·~ix = 8.15 ·~ix m/s or 29.3 ·~ix km/h

(2) The velocity ~vs you attain during t1 = 10.0 s of sprinting is equal to:

~vs = (v0 + a · t1) ·~ix = (6.11 + 0.385 · 10.0) ·~ix = 9.96 ·~ix m/s

13
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The distance ds traveled during your deceleration is than calculated as follows:

v2friend − v2s = 2 · (−a) · ds ⇔ ds =
v2friend − v2s

2 · (−a)
=

8.152 − 9.962

2 · (−0.385)
= 42.6 m

(3) The total time ttot is equal to ttot = treact + t1 + ts, whereby ts represents the time spent during
your deceleration and is calculated in the following way:

vfriend = vs − a · ts ⇔ ts =
vfriend − vs
−a

=
8.15− 9.96

−0.385
= 4.71 s

The total time ttot it takes you to catch up with Ilja then becomes:

ttot = treact + t1 + ts = 2.00 + 10.0 + 4.71 = 16.7 s

(4) The total distance xtot2 covered when you decide to ride next to Ilja instead of overtaking him is
equal to the sum of the distance cycled during your reaction time, the distance during your acceler-
ation, and the distance when you slowed down:

xtot2 = (v0 · treact) +
(
v0 · t1 +

a

2
· t21
)

+ (ds)

= (6.11 · 2.00) +

(
6.11 · 10.0 +

0.385

2
· 10.02

)
+ (42.6)

= 135 m

The extra distance needed to end up cycling right next to Ilja is equal to dextra = xtot2 − xtot =
135− 117 = 18.0 m.

14



Physics Exercises on Kinematics Olivier Loose

Exercise 5

Problem Statement

Bart and Tina are training in their hometown Ninove, Belgium, for the ultramarathon “The Bali
Hope Ultra”, which takes place in Bali, one of the islands of the Indonesian archipelago, in Septem-
ber 2022 and whereby the participants are crossing the island overnight from north to south over a
distance of 84.9 km. According to their training schedule, they are running today a distance of 35.0
km. About d = 88.0 m before the end of their run, Bart maintains a velocity of ~vB = 5.04 ·~ix m/s,
while Tina is running at a higher pace of ~vT = 6.22 ·~ix m/s and is a distance of xBT = 24.5 m ahead
of Bart. Tina feels a cramp coming up in the calf muscles of her right leg which slows her down at a
rate of ~aT = −0.270 ·~ix m/s2. (1) If Bart wishes to overtake Tina just df = 5.00 m before the end of
their run, at what rate should Bart then start to accelerate? (2) What is Bart’s velocity right at the
moment when his GPS marks a total distance covered of 35.0 km? (3) Suppose that Bart maintains
his acceleration calculated in part (1), but now after trec = 8.50 s Tina recovers from her cramp and
runs the last bit with a constant velocity. Who sees the 35.0 km mark on their GPS first?

Solution

Figure 4

(1) Let us first calculate the time tT Tina needs to arrive at df = 5.00 m before the finish line:

∆x = v0 · t+
ax
2
· t2 ⇔ (d− xBT − df ) = vT · tT +

(−aT )

2
· t2T

⇔ 0 = −(88.0− 24.5− 5.00) + 6.22 · tT −
0.270

2
· t2T

The solution to the above quadratic equation that gives a physically sensible solution is equal to
tT = 13.2 s (the other solution is equal to tT = 32.9 s, but results later on in a deceleration for Bart
instead of an acceleration).

The magnitude of Bart’s required acceleration ~aB if he wants to overtake Tina df = 5.00 m before
the end of the run is calculated as follows:
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∆x = v0 · t+
ax
2
· t2 ⇔ (d− df ) = vB · tT +

aB
2
· t2T

⇔ aB = [(d− df )− vB · tT ] · 2

t2T

= [(88.0− 5.00)− 5.04 · 13.2] · 2

13.22

= 0.192 m/s2

(2) At the acceleration rate aB during the final stretch of d = 88.0 m, the velocity ~vBf at which Bart
completes his 35.0 km run is equal to:

v2Bf − v2B = 2 · aB · d ⇔ ~vBf =

(√
v2B + 2 · aB · d

)
·~ix

=
(√

5.042 + 2 · 0.192 · 88.0
)
·~ix

= 7.69 ·~ix m/s or 27.7 ·~ix km/h

(3) Tina’s speed vrecf after she recovers from her cramp is the constant speed at which she runs the
last bit of her training and is equal to:

vrecf = vT − aT · trec = 6.22− 0.270 · 8.50 = 3.93 m/s

The corresponding distance drec is found to be:

drec =
v2recf − v2T
2 · (−aT )

=
3.932 − 6.222

2 · (−0.270)
= 43.1 m

The remaining time tremT Tina needs to finish her run is calculated as follows (with drem representing
the remaining distance until the end of the run):

tremT =
drem
vrecf

=
(d− xBT − drec)

vrecf
=

(88.0− 24.5− 43.1)

3.93
= 5.19 s

The total time ttotT Tina needs to finish her run is equal to ttotT = trec + tremT = 8.50 + 5.19 = 13.7
s. The total time ttotB it takes Bart to finish the last bit of the run is equal to ttotB =

vBf−vB
aB

=
7.69−5.04

0.192
= 13.8 s. In other words, Tina sees the 35.0 km mark on her GPS first.
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Exercise 6

Problem Statement

Luca is standing at the edge of the White Cliffs of Dover in the county of Kent, the United Kingdom,
and he wants to show his son Michael how to estimate their height h when you only have the elements
of nature at your disposal. When Luca throws a cobblestone vertically into the air with an initial
velocity of ~v0 = −2.50 ·~ix m/s, they hear the characteristic splash of water about ttot = 5.32 s later.
(1) Given a speed of sound equal to vs = 343 m/s, what is the estimated height h of the White Cliffs
of Dover that Luca and his son have calculated? (2) With what velocity does the cobblestone hit the
water? (3) Michael also throws a cobblestone at an initial speed of vM = 4.35 m/s under an angle of
θ = 61.5◦ with the horizontal. When do they hear the splash?

Solution

(1) The distance that the sound travels from the water all the way to the top of the cliff is the same
as the magnitude of the displacement (which is not the distance!) that the cobblestone undergoes.
This means we have to equate the following two equations, taking also into account the fact that the
total time of ttot = 5.32 s consists of the sum of the duration of the cobblestone’s trajectory (tcob)
and the time it takes the sound to reach Luca’s ears (ts):

Figure 5



h = −v0 · tcob +
g

2
· t2cob

h = vs · ts

whereby ttot = tcob + ts

This results in the following equation:

− v0 · tcob +
g

2
· t2cob = vs · (ttot − tcob)

⇔ g

2
· t2cob + (vs − v0) · tcob − vs · ttot = 0

⇔ 9.81

2
· t2cob + (343− 2.50) · tcob − 343 · 5.32 = 0

For which we find the following physically sensible (t > 0) solution:
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tcob =
1

9.81

[
−(343− 2.50) +

√
(343− 2.50)2 + 2 · 9.81 · 343 · 5.32

]
= 5.00 s

This means that it takes sound ts = ttot − tcob = 5.32 − 5.00 = 0.321 s to travel the height h of the
cliff. In other words, the height of the cliff is equal to h = vs · ts = 343 ·0.321 = 110 m. We can check
this result by inserting tcob into the respective equation of motion for the cobblestone:

h = −v0 · tcob +
g

2
· t2cob = −2.50 · 5.00 +

9.81

2
· 5.002 = 110 m

(2) The velocity ~vw with which the cobblestone touches the water can be calculated as follows:

~vw = ~v0 + ~g · tcob = (−2.50 + 9.81 · 5.00) ·~ix = 46.5 ·~ix m/s

(3) In a first instance, we calculate the time tcobM it takes Michael’s cobblestone to reach the water
by focusing on the equation of motion in the vertical direction only, i.e., the x-direction, whereby the
x-component of ~vM is equal to ~vM,x = − (vM · sin θ) ·~ix:

h = − (vM · sin θ) · tcobM +
g

2
· t2cobM ⇔ 0 = −110− [4.35 · sin(61.5◦)] · tcobM +

9.81

2
· t2cobM

The physically sensible (t > 0) solution to the above quadratic equation is equal to tcobM = 5.14 s.
Luca and Michael will hear the splash of Michael’s cobblestone after a total amount of time equal to
ttotM = tcobM + ts = 5.14 + 0.321 = 5.46 s.
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Exercise 7

Problem Statement

Figure 6

Fig. 6 shows the position-time graph for two swans swimming
in the same direction in the Evros Delta in the north of Greece.
Formulate an answer for the following questions: (1) Do the
swans at some point move at the same velocity? (2) Which
swan has the greatest acceleration? (3) Are the swans over-
taking each other at any particular instant? (4) Which swan
registers the largest instantaneous velocity? (5) Which swan
undergoes the greatest displacement? (6) How do the average
velocities of the swans compare to one another?

Solution

(1) In a position-time graph, the velocity is indicated by the slope of the curve. Swan A’s straight
line exhibits the same slope at every moment in time, which means that it swims at a constant
velocity. Swan A and B move at the same velocity when two conditions are met: the slope of
both curves is equal in magnitude and it has the same sign. This is the case when the tangent
of curve B is parallel to the straight line A.

(2) Swan A travels at a constant velocity, so its acceleration is equal to 0 m/s2. Swan B is slowing
down, as its velocity decreases over time. In other words, swan B’s acceleration is negative.
However, we cannot conclude that swan A’s acceleration is larger than that of swan B, because
a negative acceleration does not mean that its magnitude is smaller than zero. A negative ac-
celeration means that its magnitude is larger than zero and that it is pointing into the negative
direction. At the point where the tangent of swan B’s curve becomes horizontal (the slope is
zero), the instantaneous velocity becomes zero, but the acceleration does not (the acceleration
is negative and constant).

(3) The swans pass by each other when their respective curves intersect. Swan B first overtakes
swan A, given swan B’s greater velocity, and as swan B is gradually slowing down, swan A
eventually catches up with swan B and, in turn, overtakes it.

(4) Before their slopes become equal to each other, swan B’s instantaneous velocity is always greater
than that of swan A. After that, swan A’s instantaneous velocity is larger at every point in time.

(5) Swan A starts out a little farther than swan B and also ends up ahead of it (considering the
end of both curves). Comparing the initial and final positions of both swans, the graph seems
to indicate that the respective vertical distance remains the same, so that their displacement
is also equal.

(6) Given an equal time window as well as the same displacement for both swan A and B, it follows
that the average velocity of each swan is also the same.
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Exercise 8

Problem Statement

Marwah is traveling at ~vM = 115 ·~ix km/h on a two-lane expressway east of Imilchil, Morocco,
and approaching a L = 45.0 m-long double-trailer truck, which is going at ~vt = 90.0 ·~ix km/h. To
overtake the truck, Marwah needs dL = 12.0 m of leeway at each end of the truck. However, there is
an oncoming minivan traveling at a speed of ~vm = −85.0 ·~ix km/h approximately d = 500 m away.
(1) Can Marwah safely overtake the truck without accelerating? (2) If not, by how much should
Marwah accelerate if she wants the minivan to pass by her at least tmargin = 2.00 s after she has
overtaken the truck, and what would be her velocity after this manoeuvre? (3) How much distance
has Marwah traveled during this manoeuvre?

Solution

(1) In order to make a decision, we need to switch from a coordinate system fixed to the ground
to a reference frame co-moving with the truck and compare the time it takes Marwah to overtake
the double-trailer truck to the time required by the minivan to arrive at the front of the truck (at
opposite lanes, of course).

Figure 7

Let us first consider Marwah’s car. Bearing in mind the dL = 12.0 m clear room at the rear and the
front of the truck, Marwah must cover a distance of xtruck = 2·dL+L = 2·12.0+45.0 = 69.0 m to over-
take the truck, whereby her speed relative to the truck is equal to vMr = vM−vt = 31.9−25.0 = 6.94
m/s. For this manoeuvre, Marwah needs the following amount of time:

tpass =
xtruck
vMr

=
69.0

6.94
= 9.94 s
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Next, let us determine when the oncoming minivan reaches the front of the truck, thereby respecting
the dL = 12.0 m leeway Marwah needs to pass the truck. The minivan’s distance to the front of the
truck is equal to xm = d − xtruck = 500 − 69.0 = 431 m, and the minivan is traveling at a relative
speed of vmr = vm+vt = 23.6+25.0 = 48.6 m/s in the negative x-direction. The time tm the minivan
requires to arrive at the front of the truck equals:

tm =
xm
vmr

=
431

48.6
= 8.87 s

As Marwah will not be able to overtake the truck without hitting the minivan—it takes her tpass =
9.94 s to perform that manoeuvre whereas the minivan reaches the truck in tm = 8.87 s—she must
accelerate to avoid any accidents.

(2) The time margin of tmargin = 2.00 s implies that Marwah must have completed her manoeuvre
of overtaking the truck two seconds prior to the moment when the minivan passes by her. In other
words, her manoeuvre can at the most last for a time period of tsafe = 8.87− 2.00 = 6.87 s.

The magnitude of Marwah’s required acceleration ~a is then calculated as follows:

xtruck = vMr · tsafe +
a

2
· t2safe ⇔ a =

(xtruck − vMr · tsafe) · 2
t2safe

=
(69.0− 6.94 · 6.87) · 2

6.872

= 0.904 m/s2

After safely passing the truck, Marwah’s velocity with respect to the ground is equal to:

~vMf = ~vM + ~a · tsafe = (31.9 + 0.904 · 6.87) ·~ix = 38.2 ·~ix m/s or 137 ·~ix km/h

(3) The total amount of distance covered by Marwah during this manoeuvre is calculated as follows:

dovertake =
v2Mf − v2M

2 · a
=

38.22 − 31.92

2 · 0.904
= 241 m

This distance should be equal to the sum of the distance driven by the truck and the distance xtruck,
which Marwah needed to overtake the truck:

vt · tsafe + xtruck = 25.0 · 6.87 + 69.0 = 241 m = dovertake
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Exercise 9

Problem Statement

Figure 8

Yusef and Hasan are sitting at the back of the
classroom in the Jordan National School in Irbid,
Jordan, and are interested in anything but the cur-
rent geography class. They started to make lit-
tle wads of paper which they subsequently flick
away with the tip of their finger from the edge
of their desk, giving them a horizontal velocity of
~v0x = 3.50 ·~ix m/s. (1) At which angle and with
what velocity does one little ball of paper hit the
ground, measured at h = 1.50 m below the edge
of the desk? (2) How far (horizontally speaking)
from the edge of the desk does the paper land? (3)
If Yusef drops a wad of paper vertically from the edge of the desk at the same time that Hasan flicks
another, identical wad of paper away from the desk, which one touches the floor first? (4) If a wad
of paper is flung away at a greater horizontal velocity of ~v0x2 = 4.15 ·~ix m/s, how does this change
the answer to part (3)?

Solution

(1) Given that there is no horizontal acceleration (ax = 0.00 m/s2), the x-component vx of the final
velocity vector ~vf is equal to the magnitude of the initial velocity ~v0x = 3.50 ·~ix m/s. Let us now
calculate the y-component vy of the final velocity vector:

v2y − v20y = 2 · ay · h ⇔ vy =
√
v20y + 2 · ay · h

=
√

0 + 2 · 9.81 · 1.50

= 5.42 m/s

The magnitude of the final velocity ~vf and the angle θ can then be found as follows:



vf =
√
v2x + v2y

=
√

3.502 + 5.422

= 6.46 m/s

tan θ =
vy
vx

=
5.42

3.50
⇔ θ = 57.2◦
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(2) To find the horizontal distance d between the edge of the table and the final position of the
wad of paper, we first must establish how long the paper traveled through the air. Considering the
y-component of the final velocity, we calculate the time tair as follows:

vy = v0y + ay · tair ⇔ tair =
vy − v0y
ay

=
5.42− 0

9.81
= 0.553 s

As a result, the distance d is equal to:

d = vx · tair = 3.50 · 0.553 = 1.94 m

(3) In order to figure out whether Hasan’s wad of paper (flung horizontally) or Yusef’s paper (dropped
vertically) hits the ground first, we calculate the amount of time twadY Yusef’s ball of paper spends
in the air:

y = y0 + v0y · twadY +
ay
2
· t2wadY ⇔ 1.50 = 0 + 0 · twadY +

9.81

2
· t2wadY

⇔ twadY =

√
1.50 · 2

9.81
= 0.553 s

Since twadY = tair, it follows that both wads of paper hit the ground simultaneously. This is not
surprising, given that both pieces of paper are identical in shape which makes them experience the
same air resistance.

(4) A greater horizontal velocity does not change the answer to part (3) because the wad of paper
is still being flicked away from the same height. In other words, it is the vertical component of the
velocity vector that determines the time the paper dwells in the air (which in turn is determined by
the amount of air resistance). The only difference now is that the paper lands farther away from the
edge of the desk:

d = vox2 · tair = 4.15 · 0.553 = 2.29 m
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Exercise 10

Problem Statement

You feel like throwing a pineapple from your bedroom window into the rectangular pond you had
recently installed in the garden. You launch the pineapple at an initial speed of v0 = 8.80 m/s under
an angle θ and it hits the water dwe = 1.10 m from the edge of the pond closest to the back of your
house. (1) If your bedroom is located h = 9.50 m above ground level and the distance between the
house and the closest edge measures dhe = 7.00 m, under what angle are you throwing the pineapple?
(2) If the pond is half a meter deep and the water slows the pineapple down with an acceleration
whose magnitude is equal to aw = 65.0 m/s2, will the pineapple hit the bottom of the pond?

Solution

(1) Measured from the back of the house, the pineapple reaches the water at a horizontal distance
of x = dhe + dwe = 7.00 + 1.10 = 8.10 m. We can now write the two following equations of motion:



x = x0 + v0x · t

⇔ 8.10 = 0 + (8.80 · cos θ) · t

y = y0 + v0y · t+
ay
2
· t2

⇔ 0 = 9.50 + (8.80 · sin θ) · t+
(−9.81)

2
· t2

Figure 9
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Let us now replace the variable t in the second equation (the vertical dimension) with the expression

for t based on the first equation
(
t = 8.10

(8.80·cos θ)

)
. This gives the following equation for the y-direction:

0 = 9.50 + (8.80 · sin θ) ·
[

8.10

(8.80 · cos θ)

]
+

(−9.81)

2
·
[

8.10

(8.80 · cos θ)

]2

⇔ 0 = 9.50 + 8.10 · tan θ +

[
(−9.81)

2
·
(

8.10

8.80

)2
]
·
[

1

cos θ

]2

Dividing the trigonometric identity “cos2 θ + sin2 θ = 1” by “cos2 θ”, we can express “ 1
cos2 θ

” as
“1 + tan2 θ”. In addition, if we introduce the substitution tan θ = s, we can rewrite the above equa-
tion as follows:

0 = 9.50 + 8.10 · s+

[
(−9.81)

2
·
(

8.10

8.80

)2
]
·
(
1 + s2

)

⇔ 0 =

[
9.50− 9.81

2
·
(

8.10

8.80

)2
]

+ 8.10 · s−

[
9.81

2
·
(

8.10

8.80

)2
]
· s2

⇔ 0 = 5.34 + 8.10 · s− 4.16 · s2

Solving for s and putting the solution into our previous substitution of tan θ = s, we obtain the
following two angles under which the pineapple is allowed to leave your bedroom window:


s− =

−8.10−
√

8.102 − 4 · (−4.16) · 5.34

2 · (−4.16)
= 2.47 ⇔ θ− = 68.0◦

s+ =
−8.10 +

√
8.102 − 4 · (−4.16) · 5.34

2 · (−4.16)
= −0.521 ⇔ θ+ = −27.5◦

In the rest of this exercise, we will work out the first case only (θ− = 68.0◦) and leave the sec-
ond case as an exercise for the reader (the solutions are: ~vy = −14.2 ·~iy m/s, ~vx = 7.81 ·~ix m/s,
φ = 61.3◦, and ∆y = −2.15 m).

(2) To answer the question whether the pineapple touches the bottom of the pond, we first need to
find the y-component of the final velocity (vy) together with the angle φ under which the pineapple
lands in the water. Given that the pineapples spends t = x

vx
= 8.10

8.80·cos(68.0◦) = 2.45 s in the air, we

can calculate ~vy and φ as follows:
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~vy = ~v0y + ~ay · t
= [8.80 · sin(68.0◦) + (−9.81) · 2.45] ·~iy
= − 15.9 ·~iy m/s

tanφ =
vy
vx

=
15.9

8.80 · cos(68.0◦)
= 4.83 ⇔ φ = 78.3◦

If the water slows down the sinking pineapple with an acceleration of aw = 65.0 m/s2, we find
the vertical depth at which the pineapple comes to a halt through the following calculation:

v2yf − v2y = 2 · aw ·∆y

⇔ 0− 15.92 = 2 · [−9.81 + 65.0 · sin(78.3◦)] ·∆y

⇔ ∆y =
−15.92

2 · [−9.81 + 65.0 · sin(78.3◦)]
= −2.35 m

Given the pond’s depth of 0.500 m, we can conclude that the pineapple does not have enough distance
to naturally come to a halt and will therefore hit the bottom.
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Exercise 11

Problem Statement

Ning is a professional archer and she is currently training for the Paris 2024 Olympic Games. During
her next training, she aims to hit a target on the ground while leaning out of a helicopter, which is
flying horizontally at ~vh = 139 ·~ix km/h at an altitude of h = 40.0 m near the Dongqian Lake in
Ningbo, China. On the day of her training, there is a forecasted headwind of ~vw = −54.0 ·~ix km/h
and Ning has brought a compound bow that is able to shoot arrows at a speed of va = 80.0 m/s. (1)
How far will Ning’s arrows travel under these conditions? (2) If Ning lowers her bow, making an angle
of θ = 20.0◦ with the direction of flight, at what horizontal distance must the helicopter be away
from the target if she wants to hit the mark? (3) Suppose that in part (1) the headwind is making an
angle α < 90◦ with the vertical, so that the y-component of the arrow’s velocity right before hitting
the mark is equal to ~vy = −29.9 ·~iy m/s. At what distance from the mark did Ning release her arrow?

Solution

Figure 10

(1) First, we have to calculate how long
the arrows travel through the air by con-
sidering the vertical dimension of mo-
tion:

y = h+ v0y · t+
ay
2
· t2

⇔ 0 = 40.0 + 0 · t+
(−9.81)

2
· t2

⇔ t =

√
80.0

9.81
= 2.86 s

With this information, we can find the horizontal distance that the arrows spend in the air under
the given weather conditions as follows:

d = vx · t = (vh + va − vw) · t = (38.6 + 80.0− 15.0) · 2.86 = 296 m

(2) If Ning lowers her bow by θ = 20.0◦, the time tlow the arrow whizzes through the air is equal to:

y = y0 + v0y · tlow +
ay
2
· t2low ⇔ 0 = 40.0− 80.0 · sin(20.0◦) · tlow +

(−9.81)

2
· t2low
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⇔ tlow =

(
80.0 · sin(20.0◦)−

√
[80.0 · sin(20.0◦)]2 − 4 · (−9.81)

2
· 40.0

)
−9.81

= 1.20 s

By lowering her bow, the horizontal distance that the arrow travels reduces from 296 m to:

dlow = vx · tlow = (vh + va · cos θ − vw) · tlow = (38.6 + 80.0 · cos(20.0◦)− 15.0) · 1.20 = 119 m

(3) Given the y-component ~vy = −29.9 ·~iy m/s of the arrow’s final velocity and the y-component

~v0y = −vw · cosα ·~iy m/s of its initial velocity, we first calculate the angle α as follows:

v2y − (vw · cosα)2 = 2 · (−g) · (−h) ⇔ α = cos−1


√(

v2y − 2 · g · h
)

vw



= cos−1

(√
(29.92 − 2 · 9.81 · 40.0)

15.0

)

= 45.8◦

Next, we calculate the time tair the arrow spends in the air:

−vy = −vw · cosα− g · tair ⇔ tair =
vy − vw · cosα

g
=

29.9− 15.0 · cos(45.8◦)

9.81
= 1.98 s

In a final step, we determine the horizontal distance ∆x between the mark and the helicopter at the
moment when Ning shot her arrow:

∆x = (vh + va − vw · sinα) · tair = [38.6 + 80.0− 15.0 · sin(45.8◦)] · 1.98 = 214 m
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Exercise 12

Problem Statement

Due to the lower gravity on the planet Mars, its atmosphere is thinner and more volatile relative
to Earth. One of the consequences is that dust is easily swept up and lingers throughout the at-
mosphere. Some of the chemical compounds and elements that constitute Martian dust include
phosphorus pentoxide (P4O10), titanium dioxide (TiO2), zinc (Zn), and manganese(II) oxide (MnO).
Suppose now that a TiO2 compound finds itself above the Gusev Crater and that, at t = 0 s, at the
position ~r(t) = 1.0 ·~ix+1.0 ·~iy +2.0 ·~iz m, it has a velocity of ~v0(t) = 6.5 ·~iy +2.0 ·~iz m/s. If the TiO2

compound is being accelerated by an upcoming dust storm at a rate of ~a(t) = 2.3 ·~ix−3.1 ·~iy +0.5 ·~iz
m/s2, what is the compound’s position and velocity when the y coordinate reaches its maximum?

Solution

First, we would like to know when the y-coordinate reaches its maximum so that we find an expres-
sion for the time variable tmax. Therefore, we calculate the derivative of the equation of motion of
the y coordinate with respect to the time variable t and equate it to zero:


y(t) = y0 + v0y · t+

ay
2
· t2

dy(t)

dt
= 0 ⇔ v0y + ay · t = 0 ⇔ tmax =

(−v0y)
ay

We now write for all three spatial directions the most general form of the equation of motion that
reflects the position ~r(t) of the compound:

~r(t) =
[
x0 + v0x · t+

ax
2
· t2
]
·~ix +

[
y0 + v0y · t+

ay
2
· t2
]
·~iy +

[
z0 + v0z · t+

az
2
· t2
]
·~iz

Replacing t by the expression found for tmax, the position vector ~r(t) of the dust particle becomes
the following:

~r(tmax) =

[
x0 + v0x ·

(−v0y)
ay

+
ax
2
· (−v0y)2

a2y

]
·~ix +

[
y0 + v0y ·

(−v0y)
ay

+
ay
2
· (−v0y)2

a2y

]
·~iy +

[
z0 + v0z ·

(−v0y)
ay

+
az
2
· (−v0y)2

a2y

]
·~iz
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=

[
x0 −

v0x · v0y
ay

+
ax · v20y
2 · a2y

]
·~ix +

[
y0 −

v20y
2 · ay

]
·~iy +

[
z0 −

v0y · v0z
ay

+
az · v20y
2 · a2y

]
·~iz

=

[
1.0− 0 · 6.5

−3.1
+

2.3 · 6.52

2 · (−3.1)2

]
·~ix +

[
1.0− 6.52

2 · (−3.1)

]
·~iy +

[
2.0− 6.5 · 2.0

−3.1
+

0.5 · 6.52

2 · (−3.1)2

]
·~iz

= 6.1 ·~ix + 7.8 ·~iy + 7.3 ·~iz m

With respect to the velocity vector ~v(t), it has the following general form:

~v(t) = [v0x + ax · t] ·~ix + [v0y + ay · t] ·~iy + [v0z + az · t] ·~iz

At tmax, the TiO2 compound has the following velocity:

~v(tmax) =

[
v0x + ax ·

(−v0y)
ay

]
·~ix +

[
v0y + ay ·

(−v0y)
ay

]
·~iy +

[
v0z + az ·

(−v0y)
ay

]
·~iz

=

[
v0x −

v0y · ax
ay

]
·~ix + 0 ·~iy +

[
v0z −

v0y · az
ay

]
·~iz

=

[
0− 6.5 · 2.3

−3.1

]
·~ix +

[
2.0− 6.5 · 0.5

−3.1

]
·~iz

= 4.8 ·~ix + 3.0 ·~iz m/s
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Exercise 13

Problem Statement

Figure 11

Juan is a locally famous stuntman
in the region around the city of
Bayamo, Cuba, and he is about to
try out a new stunt in his home in
the outskirts of Bayamo. Juan takes
place in his self-made ejector seat,
which is installed upon a rotatable
and tiltable platform, so that he sits
s = 1.55 m above ground level. Fac-
ing north, he directs his seat in a
straight line with the ridge of the
barn that is right in front of him,
and tilts it in the forward direction
until it makes a θ = 65.0◦ angle with
the ground. When Juan gets ejected
from his seat, he manages to travel a horizontal distance of dx = 10.5 m and ends up on the w = 4.00
m wide balcony that is attached perfectly symmetrical to the front of the barn. (1) If you know that
the balcony hangs h = 8.65 m above the ground, what is the launching speed v0 of his home-made
ejector seat? (2) After a couple of runs, one of the bolts in the platform is partially unscrewed, so
that by the time of the next ejection round Juan’s seat has effectively rotated φ = 5.00◦ east of
north. Will Juan still make it to the balcony?

Solution

(1) We start with writing the two equations of motion for the x- and y-direction, respectively:

x(t) = x0 + v0x · t y(t) = y0 + v0y · t+
ay
2
· t2

⇔ dx = 0 + v0 · cos θ · t ⇔ h = s+ v0 · sin θ · t+
(−g)

2
· t2

⇔ 10.5 = v0 · cos(65.0◦) · t ⇔ 8.65 = 1.55 + v0 · sin(65.0◦) · t− 9.81

2
· t2

If we replace t in the y-equation with the expression for t obtained from the x-equation
(
t = 10.5

v0·cos(65.0◦)

)
,

we can calculate the initial velocity with which Juan is being ejected from his seat:

8.65 = 1.55 + v0 · sin(65.0◦) ·
[

10.5

v0 · cos(65.0◦)

]
− 9.81

2
·
[

10.5

v0 · cos(65.0◦)

]2
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⇔ 0 = −7.10 + 10.5 · tan(65.0◦)− 9.81 · 10.52

2 · v20 · cos2(65.0◦)

⇔ v0 =

√
9.81 · 10.52

2 · cos2(65.0◦) · (10.5 · tan(65.0◦)− 7.10)
= 14.0 m/s

(2) For the second part of the problem, we have to deal with motion in three dimensions, as the loose
bolt has caused the platform to rotate by φ = 5.00◦ east of north.

Figure 12

The equations of motion for the x-, y-, and z-direction, respectively, are the following:



x(t) = (v0 · cos θ) · cosφ · t

= [14.0 · cos(65.0◦)] · cos(5.00◦) · t

y(t) = s+ (v0 · sin θ) · t−
g

2
· t2

= 1.55 + [14.0 · sin(65.0◦)] · t− 9.81

2
· t2

z(t) = (v0 · cos θ) · sinφ · t

= [14.0 · cos(65.0◦)] · sin(5.00◦) · t

If we wish to find out whether Juan is able to reach the balcony given his altered trajectory, we
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solve the second equation (y-dimension) for the time variable, so that we subsequently can deter-
mine what his x- and z-coordinates are when he finds himself at an altitude of y(t) = h = 8.65 m,
i.e., the height of the balcony. We write:

8.65 = 1.55 + [14.0 · sin(65.0◦)] · t− 9.81

2
· t2

⇔ 0 = −7.10 + [14.0 · sin(65.0◦)] · t− 9.81

2
· t2

For which we find the following two solutions:



t+ =

(
−14.0 · sin(65.0◦) +

√
(14.0 · sin(65.0◦))2 − 4 · (−9.81)

2
· (−7.10)

)
(−9.81)

= 0.816 s

t− =

(
−14.0 · sin(65.0◦)−

√
(14.0 · sin(65.0◦))2 − 4 · (−9.81)

2
· (−7.10)

)
(−9.81)

= 1.77 s

Filling out these two values in the above equations of motion, we then obtain two position vec-
tors for the two moments during which when Juan finds himself at h = 8.65 m above the ground
(one for when he is ascending in the air (t+) and one for on his way down (t−)):


~r(t+) = (4.82, 8.65, 0.421) m

~r(t−) = (10.5, 8.65, 0.915) m

The x-coordinate of the position vector ~r(t−) seems to indicate that Juan indeed makes it to the bal-
cony, despite some technical malfunctioning. However, the value x(t−) = 10.5 m is the result of round-
ing off the number 10.46004434, which we obtained from the equation x(t−) = (v0 · cos θ) ·cosφ · t− =
[14.01380483 · cos(65.0◦)] · cos(5.00◦) · 1.772903 = 10.46004434. So, it would be more accurate to say
that Juan almost makes it to the balcony, just short of 4.00 cm in the x-direction. In order to avoid
an unfortunate fall to the ground, he might get hold of the balustrade z(t−) = 0.915 m to the right
of the center of the balcony (remember that the balcony is w = 4.00 m wide) by stretching his arms.
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Exercise 14

Problem Statement

Giulia, an extreme sports fanatic, stands on the edge of the 754 m high sea cliff Cape Enniberg at
the Faroe Islands and is looking over the Norwegian Sea ready to take her next parachute jump. She
takes a run-up in the northeastern (NE) direction and dives from the cliff head first with a speed of
3.50 m/s under a 25.0◦ angle with the horizontal. After a free fall of tfree = 8.50 s, she opens her
parachute and about topen = 2.50 s later Giulia is descending at a constant velocity with her horizon-
tal speed reduced to 1.00 m/s. At the very moment that her downward velocity becomes constant, a
southeastern (SE) wind kicks in with an initial speed of 2.00 m/s and gradually picks up speed with
a rate of 0.112 m/s2. After the onset of the SE wind, Giulia touches the water tdescend = 38.9 s later.

(1) At what height does Giulia’s downward velocity become constant and what is the value of this
velocity? (2) What is the total acceleration during the opening of the parachute? (3) What are the
coordinates of Giulia’s landing spot? (4) With what velocity and under which angle does Giulia land
into the water?

Solution

Figure 13

(1) First, we determine the height at which Giulia opens her parachute as well as her velocity right
before that moment:
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yopen = y0 + v0y · tfree +
ay
2
· t2free

= 754− 3.50 · sin(25.0◦) · 8.50− 9.81

2
· 8.502

= 387 m

vy,open = v0y + ay · tfree
= − 3.50 · sin(25.0◦)− 9.81 · 8.50

= − 84.9 m/s

At this point, we have three unknown variables, i.e., the height at which Giulia’s downward veloc-
ity becomes constant (yconst), the constant downward velocity after the parachute is fully deployed
(vy,const), and the upwards acceleration during the opening of the parachute (ay). We now write the
following three equations of motion:



vy,const = vy,open + ay · topen

= −84.9 + ay · 2.50

v2y,const − v2y,open = 2 · ay · (yconst − yopen)

⇔ v2y,const − 84.92 = 2 · ay · (yconst − 387)

yfinal = yconst + vy,const · tdescend

⇔ 0 = yconst + vy,const · 38.9

If we replace ay in the second equation with the expression for ay obtained from the first equation
(ay = vy,const+84.9

2.50
) and yconst with the one obtained from the third equation (yconst = −vy,const · 38.9),

we can write the second equation in the following way:

v2y,const − 84.92 = 2 ·
(
vy,const + 84.9

2.50

)
· (−vy,const · 38.9− 387)

⇔ (2.50 + 2 · 38.9) · v2y,const + 2 · (387 + 84.9 · 38.9) · vy,const + 84.9 · (2 · 387− 2.5 · 84.9) = 0

The physically relevant solution for this quadratic equation is vy,const = −7.00 m/s. As a result,
the height at which Giulia starts descending with this constant velocity is equal to:

yconst = −vy,const · 38.9 = −(−7.00) · 38.9 = 272 m

(2) The x- and y-component of the total acceleration ~a that Giulia undergoes during the opening of
her parachute are calculated as follows:
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vx = v0x + ax · topen
⇔ 1.00 = 3.50 · cos(25.0◦) + ax · 2.50

⇔ ax =
1.00− 3.50 · cos(25.0◦)

2.50
= −0.869 m/s2

vy,const = vy,open + ay · topen
⇔ − 7.00 = − 84.9 + ay · 2.50

⇔ ay =
84.9− 7.00

2.50
= 31.1 m/s2

Therefore, the magnitude of the total acceleration ~a and the corresponding angle (with respect to
the y-axis) become: 

a =
√
a2x + a2y =

√
(−0.869)2 + 31.12 = 31.2 m/s2

θacc = tan−1
(
ax
ay

)
= tan−1

(
0.869

31.1

)
= 1.60◦

(3) The coordinates of Giulia’s final position vector can be found in the following way:



xfinal = [v0x · tfree] +

[
(v2x − v20x)

2 · ax

]
+ [vx · tdescend]

= [3.50 · cos(25.0◦) · 8.50] +

[
1.002 − [3.50 · cos(25.0◦)]2

2 · (−0.869)

]
+ [1.00 · 38.9]

= 71.1 m

yfinal =
[
y0 + v0y · tfree +

ay
2
· t2free

]
+ [yconst − yopen] + [vy,const · tdescend]

=

[
754− 3.50 · sin(25.0◦) · 8.50 +

(−9.81)

2
· 8.502

]
+ [272− 387] + [(−7.00) · 38.9]

= 0.00 m

zfinal = v0z · tdescend +
az
2
· t2descend

= − 2.00 · 38.9 +
(−0.112)

2
· 38.92

= − 163 m
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(4) Finally, the velocity and the angle (with respect to the water surface) with which Giulia lands in
the water are equal to (with vz,final = v0z + az · tdescend):



vfinal =
√
v2x + v2y,const + (v0z + az · tdescend)2

=

√
1.002 + (−7.00)2 + [−2.00 + (−0.112) · 38.9]2

= 9.51 m/s

θfinal = sin−1
(
vy,const
vfinal

)
= sin−1

(
7.00

9.51

)
= 47.4◦
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Exercise 15

Problem Statement

Figure 14

You’re practicing your snowboard skills in the indoor
ski resort Sayama Indoor Skiing Ground in Toko-
rozawa, Japan, and when you come to a halt at the
bottom of the last slope, you take some time to rest.
While you’re tossing around a snowball, your mind
wanders off to that last slope and suddenly it dawns
on you how to solve that particular physics problem
you’ve been thinking about for the past two weeks:
If I know the angle φ of a slope, under which angle θ
with the horizontal should I throw a snowball with a
given initial velocity v0, so that it ends up the farthest
as possible on the slope (point d)? Write down the
solution you have in your mind.

Solution

In a first step, we need to write an equation for when the parabolic trajectory of the snowball inter-
sects with the straight incline, which has the general form of y(t) = tanφ · x(t). The equations of
motion for the x- and y-direction take the following form:


x(t) = v0 · cos θ · t

y(t) = v0 · sin θ · t−
g

2
· t2

Replacing t in the second equation with the expression for t obtained from the first equation(
t = x(t)

v0·cos θ

)
and equating y(t) to the general form of a straight slope (y(t) = tanφ · x(t)), we

can write the second equation as follows:

tanφ · x(t) = v0 · sin θ ·
(

x(t)

v0 · cos θ

)
− g

2
·
(

x(t)

v0 · cos θ

)2

⇔ x(t) =
2 · v20
g
· (tan θ − tanφ) · cos2 θ

What we want is to find an expression for the distance d in terms of the angle θ. From Fig. 14 it is
clear that we can write x(t) as x(t) = d · cosφ, so that the above equation becomes:
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d =
2 · v20
g · cosφ

· (tan θ − tanφ) · cos2 θ

Let us now rewrite that equation:

d =
2 · v20
g · cosφ

·
[

sin θ

cos θ
− sinφ

cosφ

]
· cos2 θ

=
2 · v20
g · cosφ

·
[

sin θ · cos θ

cos θ
− sinφ · cos θ

cosφ

]
· cos θ

=
2 · v20
g · cosφ

·
[
sin θ − sinφ · cos θ

cosφ

]
· cos θ

=
2 · v20

g · cos2 φ
· (sin θ · cosφ− sinφ · cos θ) · cos θ

Given the angle subtraction theorem “sin(A − B) = sinA cosB − cosA sinB”, the above last line
can be reformulated in the following way:

d =
2 · v20

g · cos2 φ
· sin(θ − φ) · cos θ

To find the condition for the maximum distance, we first take the derivative of the above expression
for d with respect to the angle θ:

d

dθ

[
2 · v20

g · cos2 φ
· sin(θ − φ) · cos θ

]
=

2 · v20
g · cos2 φ

· (cos(θ − φ) · cos θ − sin(θ − φ) · sin θ)

With the assistance of the angle addition identity “cos(A + B) = cosA cosB − sinA sinB”, the
right-hand side of the above equation can be written as follows:

d

dθ
· d =

2 · v20
g · cos2 φ

· cos(2θ − φ)

Finally, the angle θ that gives the farthest possible distance d on the slope where my snowball will
land is found when equating the above derivative to zero. In other words:
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d

dθ
· d = 0 ⇔ 2 · v20

g · cos2 φ
· cos(2θ − φ) = 0

⇔ cos(2θ − φ) = 0

⇔ (2θ − φ) =
π

2

⇔ θ =
π

4
+
φ

2
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Exercise 16

Problem Statement

Sarki is participating in the Kenyan national competition of acrobatic aircraft racing and during the
semifinals, he is required to steer his Zirko Edge 540 plane with a wingspan of 7.42 m right between
two buildings that stand 10.0 m apart from each other. The opening through which the aircraft has
to pass lies in the south-southwest (SSW) direction and the Zirko Edge 540 has an average air speed
of vplane = 275 km/h. If Sarki has to deal with a sturdy west wind of vw = 65.0 km/h on the day
of his competition, at what angle (west of south) should he better steer his airplane so that it safely
whizzes through the opening between the two buildings? What is the magnitude of the resultant
(effective) velocity vR at which Sarki pulls off this manoeuvre?

Solution

Based on the Pythagorean theorem and given that the SSW direction entails an angle of 22.5◦ west
of south, Fig. 15 lets us write the following four equations:


275 · sinα = 65.0 + a

275 · cosα = b

d · sin(22.5◦) = a

d · cos(22.5◦) = b

Figure 15

Combining the second and the fourth equa-
tion, we find the following expression for
d:

d =
275 · cosα

cos(22.5◦)

If we plug this expression into the third equa-
tion and insert it subsequently into the first
equation (to replace the variable a), we can
reformulate the first equation in the following
way:

275 · sinα = 65.0 + 275 · tan(22.5◦) · cosα

Given the goniometric identity “cos2 α+ sin2 α = 1”, we replace sinα with
√

1− cos2 α in the above
equation:
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275 ·
√

1− cos2 α = 65.0 + 275 · tan(22.5◦) · cosα

⇔ 2752 · (1− cos2 α) = 65.02 + 2752 · tan2(22.5◦) · cos2 α + 2 · 65.0 · 275 · tan(22.5◦) cosα

⇔ 2752 · (1 + · tan2(22.5◦)) · cos2 α + 2 · 65.0 · 275 · tan(22.5◦) cosα + (65.02 − 2752) = 0

If we introduce the new variable s whereby s = cosα, the equation becomes:

2752 · (1 + · tan2(22.5◦)) · s2 + 2 · 65.0 · 275 · tan(22.5◦) · s+ (65.02 − 2752) = 0

For this quadratic equation, we find the following two solutions:

{
s+ = 0.818 ⇔ α+ = 35.1◦

s− = −0.985 ⇔ α− = 170◦

As we are considering the angle west of south, the physically relevant solution is α+ = 35.1◦. The
resultant velocity vector ~vR in the SSW direction has therefore a magnitude of:

d =
275 · cosα

cos(22.5◦)
=

275 · cos(35.1◦)

cos(22.5◦)
= 243 km/h

Perhaps a more efficient and shorter method to find the angle α is to work with the sine rule. If we
consider the triangle formed by the vectors ~vplane, ~vw, and ~vR, we can write:

sin(90.0◦ + 22.5◦)

vplane
=

sin(90.0◦ − α)

vR
=

sin(α− 22.5◦)

vw

Equalling the first and the last term, we can calculate the angle α:

sin(90.0◦ + 22.5◦)

vplane
=

sin(α− 22.5◦)

vw
⇔ α− 22.5◦ = sin−1

(
vw
vplane

· sin(90.0◦ + 22.5◦)

)
= 12.6◦

⇔ α = 35.1◦

The magnitude of the resultant velocity ~vR is then found as follows:

sin(90.0◦ + 22.5◦)

vplane
=

sin(90.0◦ − α)

vR
⇔ vR = vplane ·

sin(90.0◦ − α)

sin(90.0◦ + 22.5◦)
= 275 · sin(90.0◦ − 35.1◦)

sin(90.0◦ + 22.5◦)

= 243 km/h
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Exercise 17

Problem Statement

Nastya and Keril are taking part in a local sports competition in Nizhny Novgorod, Russia, that
involves four main parts: long-distance running, archery, mountain biking, and swimming. They are
in the lead and reached the last activity, i.e., swimming. The Volga river is the final leg of the race
that stands between them and the finish line, which lies right across the other side of the Volga.
Since there is a current of ~vriver = −1.05 ·~ix m/s, they might end up some distance away from the
finish line, in which case they have to sprint the last couple of meters.

(1) Given the magnitudes of their swimming and running velocity vswim and vrun, respectively, deter-
mine a general formula for the fastest route across the Volga. (2) While Nastya is a faster swimmer
than Keril (vswim,N = 1.95 m/s versus vswim,K = 1.85 m/s), she runs at a lower pace (vrun,N = 4.15
m/s versus vrun,K = 5.20 m/s). If Keril has an advantage of 19.5 s with respect to Nastya, who wins
the competition if both follow their optimal routes? Where do the athletes come ashore? Suppose
that the Volga is d = 850 m wide at the point where they enter the water.

Solution

Figure 16

(1) The total time (ttot) consists of the time
it takes to cross the river (tcross) plus the
time needed to run to the finish line (trun)
in case they end up at some distance greater
than zero from the finish line. To establish a
general formula, we will assume that the ath-
letes start swimming upstream, i.e., an angle
θ east of north. The time to swim across
the Volga (y-direction) is then found as fol-
lows:

tcross =
d

vswim · cos θ

In order to calculate the time trun, we first establish the point of arrival on the opposite bank of the
Volga. The velocity in the x-direction is equal to:

vswim · sin θ − vriver

If we multiply that with the time the athletes needed to cross the Volga, we know the displacement
along the other shore:
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(vswim · sin θ − vriver) · tcross = (vswim · sin θ − vriver) ·
d

vswim · cos θ

Now we want to determine the time it takes to run to the finish line, which is equal to the above
expression for the displacement divided by their running speed:

trun =
(vswim · sin θ − vriver)

vrun
· d

vswim · cos θ

I invite you to reflect for a moment on the equation we’ve found for trun. Regardless of whether
Nastya and Keril arrive to the right or to the left of the finish line, we need the time to be a pos-
itive number. However, bearing in mind our coordinate system, if they arrive to the right of the
finish line, the displacement in the x-direction will be positive but the direction of vrun will be neg-
ative, as they must run to the left towards the finish. This would give a negative amount of time.
Similarly, for a point of arrival to the left of the finish, time, again, becomes negative, since the
displacement will be negative but with a positive vrun (they must move to the right to get to the
finish). In order to obtain a positive amount of time, we introduce a minus sign in the above equation:

trun =
(vriver − vswim · sin θ)

vrun
· d

vswim · cos θ

The total amount of time then becomes:

ttot = tcross + trun

=
d

vswim · cos θ
+

(vriver − vswim · sin θ)
vrun

· d

vswim · cos θ

=
d

vswim · cos θ
·
(
vrun + vriver − vswim · sin θ

vrun

)

=
d

vswim · vrun
·
(
vrun + vriver − vswim · sin θ

cos θ

)

To find the fastest time, we take the derivative of ttot with respect to the angle θ:

d(ttot)

dθ
=

d

vswim · vrun
·
[
−vswim · cos2 θ + (vrun + vriver − vswim · sin θ) · sin θ

cos2 θ

]
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=
d

vswim · vrun
·
[
−vswim · (cos2 θ + sin2 θ) + (vrun + vriver) · sin θ

cos2 θ

]

=
d

vswim · vrun
·
[
−vswim + (vrun + vriver) · sin θ

cos2 θ

]

The find the angle θ under which ttot becomes minimal, we equate the above derivative to zero:

d(ttot)

dθ
= 0 ⇔ d

vswim · vrun
·
[
−vswim + (vrun + vriver) · sin θ

cos2 θ

]
= 0

⇔ −vswim + (vrun + vriver) · sin θ
cos2 θ

= 0

⇔ − vswim + (vrun + vriver) · sin θ = 0

⇔ sin θ =
vswim

vrun + vriver

⇔ θ = sin−1
(

vswim
vrun + vriver

)

(2) The optimal angle for Nastya (θN) and Keril (θK), respectively, is equal to:
θN = sin−1

(
1.95

4.15 + 1.05

)
= 22.0◦

θK = sin−1
(

1.85

5.20 + 1.05

)
= 17.2◦

The best choice for the athletes is thus to start swimming upstream. The total time it takes Nastya
(ttot,N) and Keril (ttot,K), respectively, to arrive at the finish line becomes:

ttot,N =
850

1.95 · 4.15
·
[

4.15 + 1.05− 1.95 · sin(22.0◦)

cos(22.0◦)

]

= 506 s or 8 min 26.3 sec

ttot,K =
850

1.85 · 5.20
·
[

5.20 + 1.05− 1.85 · sin(17.2◦)

cos(17.2◦)

]

= 527 s or 8 min 47.5 sec
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Since Nastya lags 19.5 s behind Keril, we add this amount to her total time, so that she finishes in
8 min 45.8 s and wins the competition by a margin of 1.66 s.

To determine at what exact location the two athletes come ashore, we work out the following equa-
tions of motion in the x-direction:



xN(tcross) = [vswim,N · sin(θN)− vriver] · tcross

= [vswim,N · sin(θN)− vriver] ·
d

vswim,N · cos(θN)

= [1.95 · sin(22.0◦)− 1.05] · 850

1.95 · cos(22.0◦)

= − 150 m

xK(tcross) = [vswim,K · sin(θK)− vriver] · tcross

= [vswim,K · sin(θK)− vriver] ·
d

vswim,K · cos(θK)

= [1.85 · sin(17.2◦)− 1.05] · 850

1.85 · cos(17.2◦)

= − 242 m

46



Physics Exercises on Kinematics Olivier Loose

Exercise 18

Problem Statement

Sophia is casually riding her brand-new snowboard on a 32◦-blue square slope of the Whistler Moun-
tain in Canada. Being all warmed up after an hour of doing slaloms, Sophia heads towards a first
jump, which makes a 13◦ angle with the horizontal, and pulls off a Chicken Salad grab. She suc-
cessfully lands her trick 28 m down the hill. (1) What was Sophia’s initial velocity? (2) What is her
landing velocity? (3) What is the airtime of her jump?

Solution

Figure 17

(1) The angle of the jump of θjump =
13◦ with respect to the horizontal is
equal to θtot = θjump + θslope = 13◦ +
32◦ = 45◦ from the perspective of
someone standing on the ski slope.
With that in mind, starting from the
equation of motion in the y-direction
we can obtain an expression for the
airtime of Sophia’s jump in terms of
the initial velocity:

y(tair) = y0 + v0y · tair +
ay
2
· t2air ⇔ y(tair) = y0 + v0 · sin(θtot) · tair −

g · cos(θslope)

2
· t2air

⇔ 0.0 = 0.0 + v0 · sin(45◦) · tair −
9.81 · cos(32◦)

2
· t2air

⇔ tair =
2 · v0 · sin(45◦)

9.81 · cos(32◦)

If we replace the above expression for tair in the equation of motion in the x-direction, we find the
initial velocity (whereby we make use of the angle subtraction theorem “cos(A−B) = cosA cosB +
sinA sinB”):
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x(tair) = x0 + v0x · tair +
ax
2
· t2air

⇔ x(tair) = x0 + v0 · cos(θtot) · tair +
g · sin(θslope)

2
· t2air

⇔ 28 = 0.0 + v0 · cos(45◦) ·
[

2 · v0 · sin(45◦)

9.81 · cos(32◦)

]
+

9.81 · sin(32◦)

2
·
[

2 · v0 · sin(45◦)

9.81 · cos(32◦)

]2

⇔ 28 =
2 · v20
9.81

· sin(45◦) ·
[

cos(45◦)

cos(32◦)
+

sin(32◦) · sin(45◦)

cos2(32◦)

]

⇔ 28 =
2 · v20
9.81

· sin(45◦)

cos2(32◦)
· [cos(45◦) · cos(32◦) + sin(32◦) · sin(45◦)]

⇔ 28 =
2 · v20
9.81

· sin(45◦)

cos2(32◦)
· cos(45◦ − 32◦)

⇔ v0 =

√
28 · 9.81 · cos2(32◦)

2 · sin(45◦) · cos(13◦)

= 12 m/s

(2) We can retrieve the landing velocity vx from the following equation of motion in the x-direction:

v2x − v20x = 2 · ax ·∆x

⇔ vx =
√
v20x + 2 · ax ·∆x

=

√
[v0 · cos(θtot)]

2 + 2 · [g · sin(θslope)] ·∆x

=

√
[12 · cos(45◦)]2 + 2 · [9.81 · sin(32◦)] · 28 = 19 m/s

(3) The airtime tair can now be calculated with the help of the expression found in part (1):

tair =
2 · v0 · sin(45◦)

9.81 · cos(32◦)
=

2 · 12 · sin(45◦)

9.81 · cos(32◦)
= 2.0 s
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Exercise 19

Problem Statement

Tommaso is cruising at sunset at vCessna = 232 km/h in his Cessna 172 Skyhawk above the hilly
landscape of Val d’Orcia, Italy. As he is headed north-west towards the town of Siena, he is en-
joying the endless vineyards and the picturesque villages, such as Pienza, Monticchiello, and Bagno
Vignoni. Due to this mesmerizing scenery, Tommaso forgot to check his instruments during the past
50.0 minutes, and it appears that he already covered 210 km since he last checked and that he is
actually flying in the direction of 27.5◦ west of north. What is the magnitude and direction of the
wind velocity ~vwind that is responsible for the shift in his trajectory?

Solution

In a first instance, let us determine the speed at which his Cessna 172 is actually traveling.

Figure 18

Given that the plane cov-
ered 210 km in 50.0 min,
the speed is equal to vtot =
210 · 60.0

50.0
= 252 km/h,

rather than the assumed
232 km/h.

Since north-west corre-
sponds with the direction
of 45.0◦ west of north,
the angle by which the
actual trajectory deviates
from the north-west di-
rection is measured as
θdev = 45.0◦ − 27.5◦ =
17.5◦.

With the assistance of the Pythagorean theorem, we find the following values for the parameters b,
c, and a, respectively:



b = vCessna · cos(θdev) c = vCessna · sin(θdev) a = vtot − b

= 232 · cos(17.5◦) = 232 · sin(17.5◦) = 252− 221

= 221 km/h = 69.8 km/h = 30.7 km/h
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The magnitude of the wind vector ~vwind is then calculated as follows:

vwind =
√
a2 + c2 =

√
30.72 + 69.82 = 76.2 km/h

In order to identify the direction of the wind within our given coordinate system, we first need to
find the angle φ:

φ = tan−1
( c
a

)
= tan−1

(
69.8

30.7

)
= 66.2◦

Put another way, if a vector identical to ~vtot is rotated clockwise for a number of 66.2 degrees, it
would be parallel to the vector ~vwind. Given that the angle between ~vtot and north measures 27.5◦,
the direction of the wind vector ~vwind is equal to 66.2◦ − 27.5◦ = 38.7◦ east of north.
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Exercise 20

Problem Statement

After spending a day on turbulent waters in the Gulf of Siam, Rangsei is steering her shrimp boat
θi = 30.0◦ north of east towards her docking station at the port of Sihanoukville, Cambodia. When
she is 1.50 km away from the port, Rangsei receives a radio call from the local command centre
with the message that she must dock 300 m north-west from her usual docking station due to some
hindrance caused by local festivities. Given a north-west current of vcur = 1.20 m/s, determine the
angle θ under which Rangsei must redirect her shrimp boat to safely reach her new docking station,
if you know that the boat maintains a velocity of vboat = 6.52 kts (1 knot is equal to 1.852 km/h)
with respect to still water.

Solution

In order to write the equations of motion in the x- and y-direction, we first identify the required
displacement in both directions:



∆x = b− a ∆y = c+ e

= d · cos θi − f · cos θNW = d · sin θi + f · sin θNW

= 1500 · cos(30.0◦)− 300 · cos(45.0◦) = 1500 · sin(30.0◦) + 300 · sin(45.0◦)

= 1087 m = 962 m

Figure 19
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Keeping in mind that the speed of the boat is equal to vboat = 6.52·1.852
3.6

= 3.35 m/s and that ~vcur
makes an angle of θNW = 45.0◦ north of west, the two equations of motion are the following:

∆x = (vboat · cos θ − vcur · cos θNW ) · t

⇔ 1087 = (3.35 · cos θ − 1.20 · cos(45.0◦)) · t

∆y = (vboat · sin θ + vcur · sin θNW ) · t

⇔ 962 = (3.35 · sin θ + 1.20 · sin(45.0◦)) · t

If we replace the variable t in the second equation by the expression for t obtained from the first
equation, the second equation then becomes:

962 = (3.35 · sin θ + 1.20 · sin(45.0◦)) ·
[

1087

(3.35 · cos θ − 1.20 · cos(45.0◦))

]

⇔ 3.35 · (962 · cos θ − 1087 · sin θ) = 1.20 · [1087 · sin(45.0◦) + 962 · cos(45.0◦)]

⇔ 3.35 · (962 · cos θ − 1087 · sin θ) = 1.20 ·
√

2

2
· (1087 + 962)

It is useful to know that the linear combination of a cosine and a sine function, i.e., “a·cos θ+b·sin θ”,
can be replaced by a single cosine function “c · cos(θ + φ)”, whereby c = sgn(a)

√
a2 + b2 and

φ = tan−1(− b
a
).

Therefore, in the case of our above equation, we can rewrite the linear combination “962·cos θ−1087·
sin θ” as “1452·cos(θ+48.5◦)”, whereby c = +

√
9622 + (−1087)2 = 1452 and φ = tan−1

[
− (−1087)

962

]
=

48.5◦. If we implement this new expression, we can calculate the value of the angle θ:

3.35 · [1452 · cos(θ + 48.5◦)] = 1.20 ·
√

2

2
· (1087 + 962)

⇔ cos(θ + 48.5◦) =
1.20 ·

√
2
2
· 2049

3.35 · 1452

⇔ θ + 48.5◦ = cos−1

(
1.20 ·

√
2
2
· 2049

3.35 · 1452

)
= 69.1◦

⇔ θ = 20.6◦

So, if Rangsei readjusts her direction to 20.6◦ north of east, she will safely arrive at her new docking
station, as requested.
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