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Summary of Exercises

Exercise 1

Leandro opens his curtains on a Sunday morning and notices that it has started snowing for the first
time this year in Trento, Italy. He rushes to wake up his 10-year-old son Aurelio and not much later
both are headed ecstatically towards the nearest hill carrying a sleigh of mS = 5.20 kg. Starting
from rest at the bottom of the hill, Leandro (mL = 76.8 kg) pulls Aurelio (mA = 30.3 kg) up the
hill and when he covered a distance of 12.5 m, he is moving at an instantaneous speed of 2.25 m/s.
If Leandro exerts a force of 450 N on the ground (directed along the slope of the hill) due to his
pulling activity and knowing that the rope attached to the sleigh is making a φ = 10.5◦ angle with
the direction in which Leandro is headed, what is the value of the angle of the slope?

Exercise 2

You’re speeding on a 17.5◦ downhill section of the ring road of Bruges, Belgium, and 80.0 m in
front of you the traffic lights suddenly turn orange (after which they switch to red). You hit the
breaks and 5.20 s later you come to a halt just in time to avoid crossing the red traffic lights. (1)
If the magnitude of the average net force acting on a rear tire of your car during breaking is equal
to Fr = 1, 445 N and knowing that the net force experienced by a front tire is estimated to be 60%
higher, what is the mass of your car? (2) At the next lights, you are speeding again, but this time
you are traveling on a flat road at a velocity of ~v0 = 102 ·~ix km/h and your reaction distance is about
65.0 m. What is the average net force acting on a rear and a front tire?

Exercise 3

Noora is shopping for her nieces in the mall in Doha, Qatar, and carries a bag (mbag = 0.150 kg)
containing three presents, which have masses of m1 = 0.650 kg, m2 = 2.30 kg, and m3 = 6.45 kg,
respectively. She enters the elevator and goes up one floor, whereby the elevator accelerates at a rate
of ay = 2.85 m/s2. (1) If Noora places the bag on the floor next to her left foot, what is the apparent
weight of the bag? (2) If she pulls the bag with an acceleration equal to that of the elevator, how
does the apparent weight change? (3) If we want the bag to become apparently weightless, with

what force ~FP should Noora pull? (4) If she pulls the bag with a force ~FP = 125 ·~iy N, exceeding
the force established in part (3), what is the acceleration of the bag?

Exercise 4

Stina is sitting in the library of the Niels Bohr Institute in Copenhagen, Denmark, studying for her
final exam of the course “Mechanics”. As she likes to put the theory into practice, she makes a pile
of books (mb = 3.75 kg) and applies a force to that stack equal to ~FP = 2.3 ·~ix − 3.9 ·~iy − 1.8 ·~iz
N. If the xz-plane corresponds with the table surface and the y-direction is pointing upwards, and
given that the books are at the origin of the coordinate system at t = 0 s, (1) what distance and in
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what direction did the books travel across the table when applying the force for 2.5 s? (2) What is
the apparent weight of the stack of books?

Exercise 5

Jakub and Havel just bought a statue (ms = 120 kg) of the Slovakian artist L’udov́ıt Fulla at a
local auction in Ružomberok, Slovakia, and are transporting it to their home on a self-made, 1.50
m-wide bamboo raft (mr = 12.5 kg) upstream via the Revúca river. The raft is positioned at the
center of the 10.0 m-wide river and Jakub and Havel are walking alongside the river on the eastern
and western bank, respectively, pulling the raft forward in the southern direction by means of ropes
attached to the raft. The x-axis of our coordinate system points in the southern direction, whereby
Jakub’s rope makes a θx,J = 36.0◦ angle with the x-axis whereas that of Havel forms a θx,H = 48.0◦

angle. As the water level of the river is rather low, their ropes also make an angle of θz,J = 53.0◦

and θz,H = 57.0◦, respectively, with respect to the water surface (the z-axis points upwards).

If Jakub and Havel pull their rope with a force of FJ = 120 N and FH = 95.0 N, respectively, and
given a vriv = 1.65 m/s current at an angle of θriv = 80.0◦ north of east, will the raft hit one of the
banks? If so, which one and when? Assume the raft is at rest at t = 0 s.

Exercise 6

At a construction site in Lorca, Spain, two heavy pallets stacked with metal pipes (m1 = 490 kg)
and plates (m2 = 560 kg) are standing in the scorching sun on top of a 20.0 m tall building and
need to be moved into the shadow about 10.0 m to the right. The pallets are connected by ca-
bles and one cable is attached to a pulley on the edge of the building, whereby a crate filled with
scrap (m3 = 95.0 kg) is hanging at the other end of that cable down the side of the building. The
construction site manager Camila is asked to come to the site with her car, which is equipped with
a towing hook, and attach a rope to the bottom of the crate of scrap to pull the pallets into the shade.

At the moment Camila starts driving and puts tension on the ropes, the rope between the pulley and
the crate of scrap makes an angle of θ = 35.0◦ with the vertical whereas an initial angle of φi = 65.0◦

is formed between the vertical and the rope linking the crate of scrap and Camila’s car. (1) Find a
general formula for the acceleration of the system “pallets plus crate of scrap”. (2) If you know that
the crate of scrap hangs 5.00 m below the pulley, how long does Camila need to pull so that the two
crates on top of the building move 10.0 m to the right? Assume that the angle θ remains constant
(someone standing on the ground is guiding the crate with a rope), but work with an average for the
angle φ since it increases as Camila drives to the right.

Exercise 7

Tony is attending the course “Experimental Physics” at the University of Auckland, New Zealand,
and during one of the lab sessions, he is asked by his supervisor to place a small pulley with a diameter
of 5.50 cm between two larger pulleys with a diameter of 10.0 cm (as demonstrated in Fig. 8) and sub-
sequently calculate the acceleration of each of the three masses. Given that a bucket filled with black
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clay (m1 = 5.65 kg) is hanging from the left pulley, an iron ball (m2 = 2.30 kg) from the middle one,
and a stack of three bricks (m3 = 4.25 kg) from the pulley on the right, what values does Tony obtain?

Exercise 8

Harper recently attached a pulley system to the ceiling of her garage in Utah, the United States, and
her 7-year-old son Ethan (mE = 24.5 kg) asks his mom whether he can sit in the basket (mb = 6.50
kg) that hangs from the pulley. As Harper knows that the system can easily withstand a weight of
500 N, she reckons it is safe to put her son in the basket. Mischievous as he is, Ethan grabs a stick
with a hook on one end and pulls down on the rope that connects the pulley with the metal ring
attached to the ceiling. (1) If the rope makes a θ = 25.0◦ angle with the horizontal on both sides from

the point where the stick touches the rope, with what force ~FP is Ethan pulling the rope? (2) Given
a 2.50 m distance between the pulley and the metal ring, by how much did Ethan manage to pull
himself up? (3) Suppose that Ethan increases his pulling force by 35%, which angle does the rope
now make with the horizontal? (4) By what distance is Ethan now moving upwards towards the ceil-
ing? Assume for each part of the question that Ethan is hanging still and holds his respective position.

Exercise 9

Robert (mR = 66.0 kg) is asked to play a short intermezzo of t = 35.0 s on his professional grand
piano (mp = 317 kg) during a festival of classical music in the Brucknerhaus Linz concert hall in
Linz, Austria, under some unusual circumstances. Robert will start playing on top of an 18.0 m-long
incline, which makes a 23.5◦ angle with the horizontal, and while he is gradually speeding up the
tempo of his musical intermezzo, he is simultaneously being lowered sideways with an ever increasing
velocity towards the bottom of the incline. Behind the stage there is an integrated pulley system
that has to coordinate Robert’s act (see Fig. 12). If the mass of the counterweight B is equal to
mB = 250 kg, what should be the mass of counterweight A, so that Robert arrives at the bottom of
the incline precisely 35.0 s after he started playing his first note?

Exercise 10

You recently bought a mansion in the outskirts of Brno in the Czech Republic, and, as an architect,
you’re planning to design a new water fountain to put in the middle of the round square at the end
of the driveway that leads to your house. Initially, the water in the fountain gradually flows down
via a couple of steps, before falling down vertically. Since your daughter Madlenka just received a
large Lego set for her eighth birthday from your brother Petr, you’re building a miniature fountain
out of Lego bricks, using weights, ropes, and pulleys to model the flow of water. If you would like
the water to fall down from the last step at a pace of a = 6.2 m/s2 (represented by the acceleration
of weight 5 in Fig. 14), under what angle θ should you build the incline at the end of the last step?
Assume the weights have the following masses: m1 = 1.5 kg, m2 = 2.5 kg, m3 = 3.5 kg, m4 = 4.5
kg, m5 = 5.5 kg, and m6 = 6.5 kg.
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Exercise 11

Ashvin (m1 = 62.5 kg) and Opaline (m2 = 55.8 kg) are trying our their brand new wingsuits above
the beaches of Port Louis on the Island of Mauritius in preparation of an upcoming skydiving event.
Both these daredevils board a separate plane, and Opaline jumps out of her airplane first at a higher
altitude than Ashvin. She quickly attains a terminal (i.e., constant) velocity of v0,2 = 27.0 m/s and
descends vertically. At the moment when Opaline reaches the altitude of Ashvin’s airplane, which
is flying horizontally at vplane = 65.2 km/h, Ashvin launches himself from his plane with his arms
held close to his body. After a couple of seconds of free fall, Ashvin bumps into Opaline with a
velocity of ~v0,1 = 18.1 ·~ix+54.0 ·~iy m/s. Right after the collision, Opaline finds herself at the position

~rf,2 = 104 ·~ix + 170 ·~iy m. If the acceleration vector ~a makes a θ = 33.8◦ angle with the vertical,

what is the magnitude of the force of impact on Opaline (~F21)?

Exercise 12

On a casual Wednesday afternoon, Nirmala and Harun are pitching some baseballs on Kemala Beach
in Balikpapan, Indonesia. Nirmala is extending her right arm backwards, so that it is positioned 1.00
m above the ground, and launches the baseball (mb = 0.15 kg) with an average force of Fthrow = 7.20
N under an angle of θ = 55.0◦ with the horizontal over a distance of 1.50 m in tthrow = 0.25 s. At
the same time when Nirmala is about to release the baseball, a wind of 14.2 kts kicks in at an angle
of φ = 22.5◦ below the horizontal and generates a corresponding constant force of Fw = 1.15 N on
the ball. How far backwards should Harun move his left hand—this is the distance d in the same
direction as the incoming baseball—when catching the ball 1.50 m above the ground, so that the
equivalent mass upon impact is equal to mimpact = 2.35 kg?

Exercise 13

Caleb is navigating his Sar 880V Cruiser (with a displacement mass of mdis = 5.50× 103 kg) along
the coast of Mayaro Bay, Trinidad and Tobago, with a speed of v0 = 13.35 kts (1 knot =1.852 km/h)
heading north towards Ortoire where he will attend a Sunday brunch at his mother’s house. One
meter to the left of Caleb, two conches that he collected during previous travels are suspended from
the same rope, which, in turn, is attached to an aluminum bar. The conch hanging higher is called
Lobatus gigas or queen conch (mLG = 2.50 kg) and the one below is the Charonia tritonis or giant
triton (mCT = 3.80 kg). While Caleb is gazing at the Atlantic Ocean through his binoculars, he
suddenly spots a blue whale in the northeastern direction at a distance of about 250 m. As he plans
to change course and accelerate (ai = 0.8226 m/s2) for 17.8 s until he is 85.0 m away from the whale,
Caleb has to take into account an ocean current (southbound) which causes his boat to experience a
constant force of Fcur = 1, 925 N. Right at the moment when he sets off in the appropriate direction,
the two conches no longer hang vertically but each make a certain angle with the vertical, as shown
in Fig. 17. What is the value of these two angles α and β?
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Exercise 14

Zoe has been living in Tresses, France, for the past four years and is now moving to Bordeaux where
she is starting a PhD in theoretical physics at the University of Bordeaux. Zoe is almost done packing
and she just needs to put one final box (mb) into her car. To avoid overburdening her back, Zoe has
placed a ramp in front of her house, so she can slide the moving boxes towards her car. Lying on
top of this last box, there is a shelf (ms = 2.8 kg) on which two piles of books (m1 = 1.8 kg and
m2 = 0.60 kg, respectively) are placed that she bound together with some rope. When Zoe places
the box on the ramp, which makes an angle of φ = 18◦ with the ground, the second stack of books
falls off the edge of the shelf and is dangling from the rope that is connected to the first pile of books.
The rope between the first stack of books and the edge of the shelf now makes an angle of γ = 6.5◦.
Since the first pile is now starting to slide towards the edge, Zoe pushes the box down the ramp with
a force ~FP = 1.3× 102 ·~ix N in order to keep the first pile on a fixed position on the shelf. What is
the mass mb of the moving box? Assume that the shelf remains in place with respect to the moving
box.

Exercise 15

Lixue (mL = 55.5 kg) and Chaun (mC = 57.5 kg) are practicing their trapeze act for the upcoming
Lantern Festival in Tianshui (Gansu province), China. At one particular moment during their act,
they both jump from opposite sides of the stage from a small platform 9.50 m above ground level
onto the aluminum bar of their trapeze (mb = 2.10 kg) and swing towards the middle. As a result,

Lixue and Chaun provide their trapeze with an initial push of ~FL = 172 ·~ix N and ~FC = −188 ·~ix N,
respectively. Both trapezes hang from the same height about xtrap = 5.30 m apart but the cables of
Lixue’s trapeze are 1.00 m longer (sL = 6.00 m). If you know that both artists can extend their arms
for an additional distance of xarm = 1.00 m towards each other while swinging on their trapeze, do
they manage to touch hands when reaching their farthest point in the horizontal direction? Assume
that the origin of the coordinate system is located at the position of the aluminum bar of Lixue’s
trapeze when her trapeze is hanging vertically and still.

Exercise 16

Ana Laura is a professor at the University of Montevideo, Uruguay, where she teaches the course
quantum field theory, and in her spare time Ana Laura loves to build simplified models of planetary
surface landers. Today, she is taking one of her latest models for a test flight and all seems to go
well. As Ana Laura is guiding her lander (mpl) vertically towards the ground, she simultaneously

fires the four boosters a first time with a total force of ~F1 = 1.3× 103 ·~iy N, providing the planetary

lander with a net upwards acceleration ~a1, so that the lander slows down from ~v0,1 = −8.0 ·~iy m/s
to a velocity ~v over a time period t1 = 3.6 s. Immediately afterwards, Ana Laura changes the power
supplied by the boosters (~F2) and after t2 seconds, during which it has been displaced over a distance
of ∆y2 = 1.5 m, the lander has obtained a final velocity of ~vf,2 = 4.4 ·~iy m/s. If the ratio between the
acceleration a1 and a2 is equal to 0.442 and given that, due to some technical constraints, the current
model cannot accelerate faster than 5.0 m/s2, (1) what is the mass mpl of Ana Laura’s planetary

lander, and (2) what is the magnitude of ~F2?
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Exercise 17

Amadou is writing his Bachelor’s thesis at the University of Bamako, Mali, on the mechanics of the
Quest Radical compound bow. In particular, Amadou is investigating whether a linear relationship
exists between the segment d of the draw length L and the distance s the arrow penetrates into a
wooden block after being shot from a certain distance, whereby the mark is positioned at the same
height as the bow. After some experimental testing, Amadou finds a relationship s = β · d with
β = 0.160. He also know from previous research that a relationship exists between the segment d
and the magnitude of the tension force ~T , i.e., d = γ · T with γ = 1

450
. If Amadou shoots an arrow

(ma = 75.8 g), which requires t = 15.0 ms to leave his bow with a velocity of vi = 79.1 m/s, under

an angle of φ = 22.0◦, (1) what is the magnitude of the tension force ~T in the string? (2) What

angle θ does the string make with respect to the arrow? (3) What is the magnitude of the force ~F
exerted by the string upon the arrow? (4) How deep does the arrow get stuck into the wooden block?

Exercise 18

As the first participants of the cross-country skiing event Skarverennet arrive in Ustaoset, Norway,
Kjerstin (mK = 68.3 kg) is enjoying the race from a higher altitude while paragliding above the
scene. If we chose the origin of our coordinate system to coincide with Cafe Presttun with the y-axis
pointing upwards and the x-axis eastwards, then Kjerstin finds herself at this moment at the position
~r0 = 123 ·~ix + 85.0 ·~iy + 12.7 ·~iz m with a velocity of ~v0 = 5.33 ·~ix− 2.20 ·~iy + 0.860 ·~iz m/s. For the
next tw = 5.50 s, Kjerstin experiences a wind gust that subjects her to an acceleration of a = 2.33
m/s2 and points θ1 = 31.1◦ upwards and θ2 = 68.3◦ north of east. (1) If the gear that Kjerstin is

wearing has a mass of mg = 5.80 kg, what is the total force ~F that her seat is exerting upon her
during the wind gust? (2) What distance did Kjerstin travel for the duration of the gust? (3) By how
much is Kjerstin now farther away from or closer to Cafe Presttun with respect to her initial position?

Exercise 19

Maŕıa Elena is a Venezuelan artist and she is invited to participate in an exhibition called “Formas y
Figuras” (“Forms and Shapes”) in the capital Caracas. For this occasion, Maŕıa Elena selected one
of her favourite works, i.e., an intricate piece of art that consists of various blocks made of the wood
supplied by the Araguaney tree and carved in the shape of hexagons, nonagons, and dodecagons.
The entire complex is held together by an interconnected web of ropes and miniature replications
of statues made by other Venezuelan artists, which serve both to render homage to her fellow col-
leagues and to function as counterweights. Maŕıa Elena is taking the elevator to her room in Hotel
Tamanaco to pick up the last dodecagonal-shaped block and notices that she has gained 15% more
weight relative to earlier that morning when she weighed herself in the bathroom—suppose hereby
that a scale is installed in the elevator as an extra service for the guests. When riding the elevator
back down, she releases for a moment the rope at the right-hand side of the block which causes the
miniature statues to slide to the left with an acceleration of aS∗ = 0.450 m/s2 with respect to Maŕıa
Elena. Given a mass of m1 = 4.60 kg, m2 = 3.30 kg, m4 = 2.80 kg, and m5 = 3.40 kg for the other
statues and the fact that the outer angle between two consecutive edges of a dodecagon is equal to
θ = 30.0◦, what is the mass m3 of statue number 3?
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Exercise 20

Lovisa (mL = 58.6 kg) is a seasoned rescue professional in the ski area of Åre, Sweden, and with her
rescue stretcher (ms = 12.2 kg), which is attached to Lovisa’s rescue gear with the help of two metal
rods, she just picked up Seo Joon (mSJ = 85.1 kg), a South Korean tourist who injured his hip, and
is on her way back to the nearest cable car station. Lovisa is standing at the top of a hill and must
now gain sufficient speed to reach the station, which is located on top of the next hill. Because she
gave away her ski poles to another person in need of rescue, Lovisa is hoping that an initial speed
of v0 = 4.30 m/s, gravity, and a constant wind in her back (Fw = 38.5 N) on the way down are able
to get her to the top of the next hill. Assume that the wind only impacts Lovisa, since Seo Joon
is lying close to the ground. (1) If the first slope is L1 = 84.0 m long with an incline of φ = 17.8◦

and given that the second hill is 2.00 m higher with a 10.0 m shorter slope and that the wind has
turned 180◦ from the moment she starts moving up the second hill, will Lovisa make it to the cable
car station? (2) When Lovisa eventually comes to a halt, what is the tension force in the metal rod?
(3) In case that Lovisa does not reach the station, what force should she exert upon her skis in order
to accelerate up the hill at au = 1.25 m/s2?
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Exercise 1

Problem Statement

Leandro opens his curtains on a Sunday morning and notices that it has started snowing for the first
time this year in Trento, Italy. He rushes to wake up his 10-year-old son Aurelio and not much later
both are headed ecstatically towards the nearest hill carrying a sleigh of mS = 5.20 kg. Starting
from rest at the bottom of the hill, Leandro (mL = 76.8 kg) pulls Aurelio (mA = 30.3 kg) up the
hill and when he covered a distance of 12.5 m, he is moving at an instantaneous speed of 2.25 m/s.
If Leandro exerts a force of 450 N on the ground (directed along the slope of the hill) due to his
pulling activity and knowing that the rope attached to the sleigh is making a φ = 10.5◦ angle with
the direction in which Leandro is headed, what is the value of the angle of the slope?

Solution

Figure 1

Let us in a first instance deter-
mine the acceleration of the system
through the following equation of
motion:

v2 − v20 = 2 · ax ·∆x

⇔ 2.252 − 02 = 2 · ax · 12.5

⇔ ax =
2.252

2 · 12.5
= 0.203 m/s2

When Leandro exerts a force of 450
N on the ground, the ground is re-
turning that force to Leandro, allowing him to move forward (~Ffor). When applying Newton’s second

law to Leandro in the x-direction, we obtain an expression for the tension force ~T in the rope, whereby
the gravitational force is represented by the vector ~FG:

mL · ~a = ~Ffor + ~T + ~FG

⇔ mL · ax = Ffor − T · cosφ−mL · g · sin θ

⇔ T =
Ffor −mL · ax −mL · g · sin θ

cosφ
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Considering the forces working on the system “Aurelio plus sleigh” in the x-direction and incorpo-
rating the above expression for T, we can find the angle of the hill:

(mA +mS) · ~a = ~T + ~FG

⇔ (mA +mS) · ax = T · cosφ− (mA +mS) · (g · sin θ)

⇔ (mA +mS) · ax =

[
Ffor −mL · ax −mL · g · sin θ

cosφ

]
· cosφ− (mA +mS) · (g · sin θ)

⇔ sin θ =
Ffor − (mL +mA +mS) · ax

(mL +mA +mS) · g

⇔ sin θ =
450− (76.8 + 30.3 + 5.20) · 0.203

(76.8 + 30.3 + 5.20) · 9.81
= 0.388

⇔ θ = 22.8◦

As a check, let us verify that the forward force ~Ffor must indeed be larger than the sum of ~T and
~FG working on Leandro to ensure that he is able to accelerate in the forward direction:

Ffor > T · cosφ+mL · g · sin θ

⇔ Ffor >

[
Ffor −mL · ax −mL · g · sin θ

cosφ

]
· cosφ+mL · g · sin θ

⇔ 450 >

[
450− 76.8 · 0.203− 76.8 · 9.81 · sin(22.8◦)

cos(10.5◦)

]
· cos(10.5◦) + 76.8 · 9.81 · sin(22.8◦)

⇔ 450 > 145 · cos(10.5◦) + 76.8 · 9.81 · sin(22.8◦)

⇔ 450 > 142 + 292

⇔ 450 > 434

The difference between ~Ffor and (~T+ ~FG) is equal to the net force ~Fnet = ~Ffor−(~T+ ~FG) = (450−434)·
~ix N = 15.6·~ix N providing Leandro with an acceleration. We can verify thatmL = Fnet

ax
= 15.6

0.203
= 76.8

kg.
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Exercise 2

Problem Statement

You’re speeding on a 17.5◦ downhill section of the ring road of Bruges, Belgium, and 80.0 m in
front of you the traffic lights suddenly turn orange (after which they switch to red). You hit the
breaks and 5.20 s later you come to a halt just in time to avoid crossing the red traffic lights. (1)
If the magnitude of the average net force acting on a rear tire of your car during breaking is equal
to Fr = 1, 445 N and knowing that the net force experienced by a front tire is estimated to be 60%
higher, what is the mass of your car? (2) At the next lights, you are speeding again, but this time
you are traveling on a flat road at a velocity of ~v0 = 102 ·~ix km/h and your reaction distance is about
65.0 m. What is the average net force acting on a rear and a front tire?

Solution

Figure 2

(1) We calculate the magnitude of the de-
celeration ~ax of your car by first finding an
expression for the initial speed v0 and incor-
porating that into a second equation of mo-
tion (whereby the final speed v of your car
is equal to v = 0 m/s):



v = v0 + ax · t

⇔ v0 = v − ax · t

∆x = v0 · t+
ax
2
· t2

⇔ ∆x = (v − ax · t) · t+
ax
2
· t2 = v · t− ax · t2

2

⇔ ax = (v · t−∆x) · 2

t2
= (0 · 5.20− 80.0) · 2

5.202
= −5.92 m/s2

The mass of your car is determined by recurring to Newton’s second law. In a first instance, let
us determine the total average net force ~Fb acting on your car while breaking (note that this force
points into the negative x-direction):

~Fb = 2 · ~Fr + 2 ·
(

1.6 · ~Fr
)

= −2 · 1, 445 ·~ix − 2 ·
(

1.6 · 1, 445 ·~ix
)

= −7, 520 ·~ix N
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Applying Newton’s second law to your car in the x-direction, we obtain the following mass mcar:

~Fb + ~FG = mcar · ~ax ⇔ −Fb ·~ix +mcar · g · sin θ ·~ix = −mcar · ax ·~ix

⇔ mcar =
Fb

ax + g · sin θ

=
7, 520

5.92 + 9.81 · sin(17.5◦)

= 847 kg

(2) First, we calculate the magnitude of the deceleration ~a of your car:

v2 − v20 = 2 · a ·∆x ⇔ a =
v2 − v20
2 ·∆x

=
02 − 28.32

2 · 65.0
= −6.18 m/s2

The net force ~Fnet acting upon your car as a whole while breaking is equal to:

~Fnet = mcar · ~a = −847 · 6.18 = −5, 230 ·~ix N

Since the magnitude of the average net force ~Ff experienced by a front tire is 1.6 times that of a rear

tire, we find the magnitude of the average net force ~Fr acting upon a rear tire as follows:

Fnet = 2 · Fr + 2 · Ff = 2 · Fr + 2 · (1.6 · Fr) = 5.2 · Fr ⇔ Fr =
Fnet
5.2

=
5, 230

5.2
= 1, 000 N

The magnitude of the average net force ~Ff acting on a front tire is then equal to Ff = 1.6 · Fr =
1.6 · 1, 000 = 1, 600 N.
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Exercise 3

Problem Statement

Figure 3

Noora is shopping for her nieces in the mall in Doha, Qatar, and
carries a bag (mbag = 0.150 kg) containing three presents, which
have masses of m1 = 0.650 kg, m2 = 2.30 kg, and m3 = 6.45
kg, respectively. She enters the elevator and goes up one floor,
whereby the elevator accelerates at a rate of ay = 2.85 m/s2.
(1) If Noora places the bag on the floor next to her left foot,
what is the apparent weight of the bag? (2) If she pulls the bag
with an acceleration equal to that of the elevator, how does the
apparent weight change? (3) If we want the bag to become ap-

parently weightless, with what force ~FP should Noora pull? (4)

If she pulls the bag with a force ~FP = 125 ·~iy N, exceeding the
force established in part (3), what is the acceleration of the bag?

Solution

(1) When considering the system “bag with three presents” as a whole, let us define the total mass
of the system mtot in the following way:

mtot = mbag +m1 +m2 +m3 = 0.150 + 0.650 + 2.30 + 6.45 = 9.55 kg

We can find the apparent weight, which is represented by the normal force ~FN , as follows:

~Fnet = ~FN + ~FG

⇔ mtot · ay = FN −mtot · g

⇔ FN = mtot · (g + ay)

= 9.55 · (9.81 + 2.85)

= 121 N

(2) Pulling up the bag with an acceleration equal to that of the elevator means that the force ~FP is

equal to the net force ~Fnet. In this case, the apparent weight of the bag becomes:

~Fnet = ~FN + ~FG + ~FP

12
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⇔ mtot · ay = FN −mtot · g +mtot · ay

⇔ FN = mtot · g

= 9.55 · 9.81

= 93.7 N

(3) To render the bag apparently weightless, Noora should apply the condition ~FN = 0 N. We can
then write:

~Fnet = ~FN + ~FG + ~FP ⇔ mtot · ay = FN −mtot · g + FP

⇔ FP = mtot · (g + ay)− FN

= 9.55 · (9.81 + 2.85)− 0.00

= 121 N

This is the same answer as part (1), which makes sense since the pulling force is now performing, in
some way, the job of the normal force in (1).

(4) Pulling the bag with a force greater than FP = 121 N means that Noora will now be effectively
lifting the bag up. As a result, the bag is no longer experiencing a normal force by the elevator since
the physical contact disappears. If Noora pulls the bag with a force equal to ~FP = 125~iy N, the
acceleration of the bag is found as follows:

~Fnet = ~FG + ~FP

⇔ mtot · a = −mtot · g + FP

⇔ a = −g +
FP
mtot

= −9.81 +
125

9.55

= 3.28 m/s2

Keep in mind that this acceleration is viewed by someone positioned in a stationary framework.
From the perspective of Noora inside the elevator, the acceleration becomes a = 3.28− 2.85 = 0.429
m/s2 or a = Fnet

mtot
= 125−121

9.55
= 0.429 m/s2 (remember to use not rounded figures during intermediate

calculations).

13
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Exercise 4

Problem Statement

Stina is sitting in the library of the Niels Bohr Institute in Copenhagen, Denmark, studying for her
final exam of the course “Mechanics”. As she likes to put the theory into practice, she makes a pile
of books (mb = 3.75 kg) and applies a force to that stack equal to ~FP = 2.3 ·~ix − 3.9 ·~iy − 1.8 ·~iz
N. If the xz-plane corresponds with the table surface and the y-direction is pointing upwards, and
given that the books are at the origin of the coordinate system at t = 0 s, (1) what distance and in
what direction did the books travel across the table when applying the force for 2.5 s? (2) What is
the apparent weight of the stack of books?

Solution

Figure 4

(1) The acceleration in the x- and z-direction as well as the x- and z-components of the position
vector of the pile of books are calculated as follows:


Fx = mb · ax x =

ax
2
· t2

⇔ ax =
Fx
mb

=
2.3

3.75
= 0.613 m/s2 =

0.613

2
· 2.52 = 1.92 m


Fz = mb · az z =

az
2
· t2

⇔ az =
Fz
mb

=
−1.8

3.75
= −0.480 m/s2 =

(−0.48)

2
· 2.52 = −1.50 m
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The distance Stina slid the books across the table becomes:

d =
√
x2 + z2 =

√
1.922 + (−1.50)2 = 2.4 m

The pile of books moved in the xz-plane under the following angle with respect to the x-axis:

θ = tan−1
(z
x

)
= tan−1

(
1.50

1.92

)
= 38◦

(2) To find the apparent weight of the stack of books, we need to focus on the y-direction:

~Fnet = ~FN + ~FG + ~FP

⇔ 0 = FN −mb · g − Fy

⇔ FN = mb · g + Fy

= 3.75 · 9.81 + 3.9

= 41 N

This is greater compared to the actual weight of the books FG = mb · g = 3.75 · 9.81 = 37 N due to
the applied force in the negative y-direction.
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Exercise 5

Problem Statement

Jakub and Havel just bought a statue (ms = 120 kg) of the Slovakian artist L’udov́ıt Fulla at a
local auction in Ružomberok, Slovakia, and are transporting it to their home on a self-made, 1.50
m-wide bamboo raft (mr = 12.5 kg) upstream via the Revúca river. The raft is positioned at the
center of the 10.0 m-wide river and Jakub and Havel are walking alongside the river on the eastern
and western bank, respectively, pulling the raft forward in the southern direction by means of ropes
attached to the raft. The x-axis of our coordinate system points in the southern direction, whereby
Jakub’s rope makes a θx,J = 36.0◦ angle with the x-axis whereas that of Havel forms a θx,H = 48.0◦

angle. As the water level of the river is rather low, their ropes also make an angle of θz,J = 53.0◦

and θz,H = 57.0◦, respectively, with respect to the water surface (the z-axis points upwards).

If Jakub and Havel pull their rope with a force of FJ = 120 N and FH = 95.0 N, respectively, and
given a vriv = 1.65 m/s current at an angle of θriv = 80.0◦ north of east, will the raft hit one of the
banks? If so, which one and when? Assume the raft is at rest at t = 0 s.

Solution

Figure 5

As the raft moves in the xy-plane of our coordinate system, let us start with calculating the magni-
tude of the x- and y-components of the resultant force vector ~FR, i.e., Fx and Fy, respectively:
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Fx = (FJ · cos θz,J) · cos θx,J + (FH · cos θz,H) · cos θx,H

= [120 · cos(53.0◦)] · cos(36.0◦) + [95.0 · cos(57.0◦)] · cos(48.0◦)

= 93.0 N

Fy = (FJ · cos θz,J) · sin θx,J + (FH · cos θz,H) · sin θx,H

= [120 · cos(53.0◦)] · sin(36.0◦)− [95.0 · cos(57.0◦)] · sin(48.0◦)

= 4.00 N

Given a positive net force component in the y-direction, we know that the raft is being accelerated
in the positive y-direction, i.e., towards the east bank where Jakub is walking. The corresponding
magnitude of the acceleration ~ay is equal to:

ay =
Fy

ms +mr

=
4.00

120 + 12.5
= 3.02× 10−2 m/s2

In other words, if both Jakub and Havel maintain their current pulling force, the raft will even-
tually hit the east bank. Since the 1.50 m-wide raft started out in the middle of the 10.0 m-wide
river, the east side of the raft was initially 4.25 m away from the east bank. In order to calculate
when it is going to hit the east bank we need to solve the following equation of motion, taking into
account the current of vriv = 1.65 m/s at an angle of 80.0◦ north of east:

y(t) = y0 + vriv,y · t+
ay
2
· t2

⇔ y(t) = y0 + [vriv · cos θriv] · t+
ay
2
· t2

⇔ 5.00 = 0.75 + [1.65 · cos(80.0◦)] · t+
0.0302

2
· t2

⇔ 0 = −4.25 + [1.65 · cos(80.0◦)] · t+
0.0302

2
· t2

The physically sensible solution (whereby t ≥ 0 s) that we obtain by solving the above quadratic
equation is equal to t = 9.79 s. To avoid hitting the east bank within the first 9.79 s of transporting
the Fulla statue on their bamboo raft, Jakub could, for instance, pull with a lesser force or Havel
could increase his pulling force.
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Exercise 6

Problem Statement

At a construction site in Lorca, Spain, two heavy pallets stacked with metal pipes (m1 = 490 kg)
and plates (m2 = 560 kg) are standing in the scorching sun on top of a 20.0 m tall building and
need to be moved into the shadow about 10.0 m to the right. The pallets are connected by ca-
bles and one cable is attached to a pulley on the edge of the building, whereby a crate filled with
scrap (m3 = 95.0 kg) is hanging at the other end of that cable down the side of the building. The
construction site manager Camila is asked to come to the site with her car, which is equipped with
a towing hook, and attach a rope to the bottom of the crate of scrap to pull the pallets into the shade.

At the moment Camila starts driving and puts tension on the ropes, the rope between the pulley and
the crate of scrap makes an angle of θ = 35.0◦ with the vertical whereas an initial angle of φi = 65.0◦

is formed between the vertical and the rope linking the crate of scrap and Camila’s car. (1) Find a
general formula for the acceleration of the system “pallets plus crate of scrap”. (2) If you know that
the crate of scrap hangs 5.00 m below the pulley, how long does Camila need to pull so that the two
crates on top of the building move 10.0 m to the right? Assume that the angle θ remains constant
(someone standing on the ground is guiding the crate with a rope), but work with an average for the
angle φ since it increases as Camila drives to the right.

Solution

Figure 6

(1) Applying Newton’s second law to the three masses gives the following three equations for the
x-direction:

~Fnet,1 = ~T2 ~Fnet,2 = ~T1 + ~T2 ~Fnet,3 = ~T1 + ~FG + ~FP

⇔ m1 · a = T2 ⇔ m2 · a = T1 − T2 ⇔ m3 · a = − T1 +m3 · g · cos θ+

FP · cos(φav − θ)
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Applying Newton’s second law to the crate of scrap in the y-direction gives an expression for the
magnitude of the pulling force ~FP :

~Fnet,3 = ~FP + ~FG = ~0 ⇔ FP · sin(φav − θ)−m3 · g · sin θ = 0 ⇔ FP = m3 · g ·
sin θ

sin(φav − θ)

Replacing T2 in the equation of the second mass by the expression for T2 obtained from the equa-
tion of the first mass, allows us to write T1 as T1 = (m1 + m2) · a. If we insert the expres-
sions for T1 and FP into the equation of the third mass (with respect to the x-direction), we
find the general equation for the acceleration (whereby we make use of the angle addition theo-
rem “sin(A+B) = sinA cosB + cosA sinB”):

m3 · a = −T1 +m3 · g · cos θ + FP · cos(φav − θ)

⇔ m3 · a = −[(m1 +m2) · a] +m3 · g · cos θ +

[
m3 · g ·

sin θ

sin(φav − θ)

]
· cos(φav − θ)

⇔ (m1 +m2 +m3) · a =
m3 · g

sin(φav − θ)
· [sin(φav − θ) · cos θ + sin θ · cos(φav − θ)]

⇔ a =
m3 · g

m1 +m2 +m3

· sinφav
sin(φav − θ)

Figure 7

(2) Since the vertical distance between the pul-
ley and the crate of scrap measures h = 5.00
m and the rope between the pulley and the crate
of scrap makes a θ = 35.0◦ angle with the
vertical, we can determine the length s of that
part of the rope as well as the horizontal dis-
tance x between the building and the crate of
scrap:



s =
h

cos θ
x = h · tan θ

=
5.00

cos(35.0◦)
= 5.00 · tan(35.0◦)

= 6.10 m = 3.50 m

When Camila drives her car forwards, it is the rope that needs to be displaced by 10.0 m. That is,
the length s must increase by 10.0 m from s = 6.10 m to s′ = 16.1 m. Therefore, the new horizontal

19



Physics Exercises on Newton’s Laws Olivier Loose

distance x′ between the building and the crate becomes x′ = s′ ·sin θ = 16.1·sin(35.0◦) = 9.24 m. This
means that the crate moves to the right over a distance dx1 equal to dx1 = x′−x = 9.24−3.50 = 5.74m.

Similarly, the new distance h′ between the pulley and the crate becomes h′ = s′ · cos θ = 16.1 ·
cos(35.0◦) = 13.2 m.

Let us now calculate the final angle φf and the average angle φav. Given that the length L of the
rope between the crate and the car is equal to L = 20.0−h

cosφi
= 20.0−5.00

cos(65.0◦)
= 35.5 m, the final angle φf

then becomes φf = cos−1
(
20.0−h′

L

)
= cos−1

(
20.0−13.2

35.5

)
= 78.9◦. Therefore, the value of the average

angle φav is equal to φav = 1
2
· (φi + φf ) = 1

2
· (65.0◦ + 78.9◦) = 72.0◦.

As the angle φ grows larger, the horizontal distance dx2 between the crate and the car also slightly
increases and can be calculated as follows:

dx2 = L · sinφf − L · sinφi = 35.5 · sin(78.9◦)− 35.5 · sin(65.0◦) = 34.8− 32.2 = 2.67 m

The total displacement ∆x of Camila’s car is then equal to ∆x = dx1 + dx2 = 5.74 + 2.67 = 8.40 m.
Since we worked with an average angle φav, we can assume that the magnitude of the acceleration
~ax with which Camila is able to move to the right is equal to the x-component of the acceleration of
the system “pallets plus crate of scrap”. In other words:

ax = a · sin θ =

[
m3 · g

m1 +m2 +m3

· sinφav
sin(φav − θ)

]
· sin θ

=

[
95.0 · 9.81

490 + 560 + 95.0
· sin(72.0◦)

sin(72.0◦ − 35.0◦)

]
· sin(35.0◦)

= 0.738 m/s2

We can now write the equation of motion for Camila’s car in the x-direction and calculate the time
needed for Camila to slide the two pallets on top of the building 10.0 m to the right into the shade:

∆x(t) = v0x · t+
ax
2
· t2 ⇔ ∆x = 0 · t+

ax
2
· t2

⇔ 8.40 =
0.738

2
· t2

⇔ t = 4.77 s

Note that in this exercise we ignored any friction between the pallets and the surface of the rooftop—
for exercises that include friction see the exercise package “Applications of Newton’s Laws”—which
means that merely due to the gravitational downward pull of the crate of scrap the two pallets start
moving right away. In a sense, this makes the presence of Camila’s car redundant. However, the role
of Camila’s car here is to make the crate of scrap move downwards under an angle θ.
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Exercise 7

Problem Statement

Figure 8

Tony is attending the course “Experimental Physics” at the Univer-
sity of Auckland, New Zealand, and during one of the lab sessions,
he is asked by his supervisor to place a small pulley with a diam-
eter of 5.50 cm between two larger pulleys with a diameter of 10.0
cm (as demonstrated in Fig. 8) and subsequently calculate the accel-
eration of each of the three masses. Given that a bucket filled with
black clay (m1 = 5.65 kg) is hanging from the left pulley, an iron
ball (m2 = 2.30 kg) from the middle one, and a stack of three bricks
(m3 = 4.25 kg) from the pulley on the right, what values does Tony ob-
tain?

Solution

Figure 9

Before writing the equation of motion for the three masses, we have to
determine the tension force in the cable connecting the iron ball and the
pile of bricks to their respective pulley. In the case of the iron ball (the
reasoning applies equally to the stack of bricks), Fig. 9 shows that this

tension force is twice the value of the tension force ~T running through the
rope at both sides of the pulley—the reason why the tension force in the
rope at both sides of the pulley is identical is because we are implicitly
accepting an ideal pulley system, i.e., we make abstraction of any rota-
tional friction present and assume that the mass of both the pulley and
the rope is negligible. As the forces within the pulley itself must balance
each other out, the two tension forces ~T pointing upwards must equal the
force pointing downwards (2~T ).

We can now write the equation of motion for the bucket, the iron ball, and the pile of bricks, respec-
tively:



Bucket: T − m1 · g = m1 · a1

Iron ball: 2 · T − m2 · g = m2 · a2

Bricks: 2 · T − m3 · g = m3 · a3

In the above three equations, we have four unknown variables, which means that we need another
constraint in order to determine the value of these variables. Looking closely at Fig. 10, we can see
that the length L of the rope remains constant, regardless of the motion of the three masses. In
other words, although the vertical distances y1, y2, and y3 may vary, the rope’s length does not.
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Figure 10

Translating this constraint into mathematical language gives us the follow-
ing equation:

y1 + 2 · y2 + y3 + (y3 − 0.100) = L

Taking the second derivative of the distance with respect to time
gives an expression for the acceleration so that taking the sec-
ond derivative of the above equation results in a fourth con-
straint:

a1 + 2 · a2 + 2 · a3 = 0

We can now calculate the acceleration of the three masses. Replacing “2 · T” in the third equa-
tion of motion by the expression for “2 · T” obtained from the second equation of motion, we can
write the third equation of motion as follows:

(m2 · a2 +m2 · g)−m3 · g = m3 · a3

Replacing T in the second equation of motion by the expression for T obtained from the first equa-
tion of motion and simultaneously replacing a1 by the expression for a1 obtained from the fourth
constraint, we can write the second equation of motion in the following way:

2 · (m1 · g +m1 · [−2 · a2 − 2 · a3])−m2 · g = m2 · a2

⇔ (2 ·m1 −m2) · g = (4 ·m1 +m2) · a2 + 4 ·m1 · a3

Combining the previous two equations provides us with an expression for the acceleration a2 of
the iron ball by replacing a3 in the last equation by the expression for a3 obtained from the first of
the last two equations:

(2 ·m1 −m2) · g = (4 ·m1 +m2) · a2 + 4 ·m1 ·
[

(m2 · a2 +m2 · g)

m3

− g
]

⇔ (2 ·m1 −m2) · g −
4 ·m1

m3

· (m2 −m3) · g =

[
(4 ·m1 +m2) +

4 ·m1 ·m2

m3

]
· a2
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⇔ a2 =

[
(2 ·m1 −m2) · g − 4·m1

m3
· (m2 −m3) · g

]
(4 ·m1 +m2) + 4·m1·m2

m3

=

[
(2 · 5.65− 2.30) · 9.81− 4·5.65

4.25
· (2.30− 4.25) · 9.81

]
(4 · 5.65 + 2.30) + 4·5.65·2.30

4.25

= 5.12 m/s2

The acceleration a3 for the pile of bricks is found as follows:

(m2 · a2 +m2 · g)−m3 · g = m3 · a3

⇔ a3 =
(m2 · a2 +m2 · g)

m3

− g

=
(2.30 · 5.12 + 2.30 · 9.81)

4.25
− 9.81

= −1.73 m/s2

Finally, the acceleration a1 for the bucket filled with black clay is calculated by using the fourth
constraint:

a1 = −2 · (a2 + a3)

= −2 · (5.12− 1.73)

= −6.77 m/s2

For the given masses, this means that the bucket of clay accelerates downwards rather quickly,
whereas the iron ball shoots upwards. Similar to the bucket, the stack of bricks is being lowered, but
at a much lower rate than the bucket. If Tony wishes to establish a more stable system, he could,
for instance, attach a heavier iron ball to the second pulley. For example, a combined pulley system
with an iron ball having the same mass as the bucket of clay (m2 = m1 = 5.65 kg) accelerates as
follows: a1 = −5.06 m/s2 (bucket of clay), a2 = −0.302 m/s2 (iron ball), and a3 = 2.83 m/s2 (pile of
bricks).
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Exercise 8

Problem Statement

Figure 11

Harper recently attached a pulley system to the ceil-
ing of her garage in Utah, the United States, and her
7-year-old son Ethan (mE = 24.5 kg) asks his mom
whether he can sit in the basket (mb = 6.50 kg) that
hangs from the pulley. As Harper knows that the
system can easily withstand a weight of 500 N, she
reckons it is safe to put her son in the basket. Mis-
chievous as he is, Ethan grabs a stick with a hook
on one end and pulls down on the rope that connects
the pulley with the metal ring attached to the ceiling.
(1) If the rope makes a θ = 25.0◦ angle with the hor-
izontal on both sides from the point where the stick
touches the rope, with what force ~FP is Ethan pulling
the rope? (2) Given a 2.50 m distance between the
pulley and the metal ring, by how much did Ethan
manage to pull himself up? (3) Suppose that Ethan increases his pulling force by 35%, which angle
does the rope now make with the horizontal? (4) By what distance is Ethan now moving upwards
towards the ceiling? Assume for each part of the question that Ethan is hanging still and holds his
respective position.

Solution

(1) Let us first determine the tension in the various segments of the rope. Since the magnitude of the
tension in the cable between the basket and the pulley is equal to T, the two rope segments between
the two pulleys each experience a tension of T

2
. This means that the tension in the rope between the

pulley and the metal ring also measures T
2
.

To find the force ~FP , we need to know the value of T, which we can calculate by identifying the forces
acting on the system “basket plus Ethan”. As per Newton’s third law, the hook to which the basket
is attached is exerting an upward force on “basket plus Ethan” due to their gravitational weight. In
addition, the rope which Ethan is pulling downwards is also exhibiting an upward force on “basket
plus Ethan” as a reaction to the downwards force ~FP exerted on the rope. In fact, as there are two
rope segments—one to the left of the point where the hook touches the rope and one to the right of
that point—this upward force actually consists of two forces. With the knowledge that the net force
is equal to zero, we can write Newton’s second law as follows:

~Fnet = ~T +
~T

2
+
~T

2
+ ~FG = ~0

⇔ T +
T

2
· sin θ +

T

2
· sin θ − (mb +mE) · g = 0
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⇔ T · [1 + sin θ] = (mb +mE) · g

⇔ T =
(mb +mE) · g

1 + sin θ

=
(6.50 + 24.5) · 9.81

1 + sin(25.0◦)

= 214 N

Because Ethan is holding his position, there is no vertical movement, which implies that at the
point where the hook touches the rope the two forces pointing upwards equal the force with which
Ethan is pulling the rope:

~Fnet =
~T

2
+
~T

2
+ ~FP = ~0

⇔ T

2
· sin θ +

T

2
· sin θ − FP = 0

⇔ FP = T · sin θ

= 214 · sin(25.0◦)

= 90.3 N

(2) When the rope makes an angle of 25.0◦ with the horizontal at both sides of the point of contact,
the total length L of the rope between the pulley and the metal ring becomes (whereby the horizontal
distance between the metal ring and the pulley is equal to d = 2.50 m):

L = 2 ·

[
d
2

cos θ

]
= 2 ·

[
1.25

cos(25.0◦)

]
= 2.76 m

In other words, the rope has gotten s = L− d = 2.76− 2.50 = 0.258 m or 25.8 cm longer. Since the
rope in the vertical direction consists of two segments running parallel to each other, the distance
with which Ethan gains height is equal to the total displacement (not the distance!) in the vertical
direction:

∆y =
s

2
=

25.8

2
= 12.9 cm
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(3) If Ethan increase his pulling strength by 35%, the magnitude of the force becomes F ′P = FP ·1.35 =
90.3 · 1.35 = 122 N. From part (1), we know that:


FP = T · sin θ

T + FP = (mb +mE) · g

When replacing T in the second equation by the expression for T obtained from the first equa-
tion, we find an expression for the angle θ:

FP
sin θ

+ FP = (mb +mE) · g

⇔ sin θ =
FP

(mb +mE) · g − FP

⇔ θ = sin−1
[

FP
(mb +mE) · g − FP

]

Inserting the new value F ′P = 122 N, we find the new angle θ′ that the rope makes with the horizontal:

θ′ = sin−1
[

F ′P
(mb +mE) · g − F ′P

]
= sin−1

[
122

(6.50 + 24.5) · 9.81− 122

]
= 42.0◦

(4) The length of the rope between the metal ring and the pulley now increases from d = 2.50 m to:

L′ = 2 ·

[
d
2

cos θ′

]
=

2.50

cos(42.0◦)
= 3.37 m

This time, the rope segment between the metal ring and the pulley grows longer by a distance
of s′ = L′ − d = 3.37− 2.50 = 0.866 m or 86.6 cm. The vertical displacement of Ethan towards the
ceiling then becomes:

∆y′ =
s′

2
=

86.6

2
= 43.3 cm
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Exercise 9

Problem Statement

Figure 12

Robert (mR = 66.0 kg) is asked to play a
short intermezzo of t = 35.0 s on his pro-
fessional grand piano (mp = 317 kg) during
a festival of classical music in the Bruckner-
haus Linz concert hall in Linz, Austria, un-
der some unusual circumstances. Robert will
start playing on top of an 18.0 m-long incline,
which makes a 23.5◦ angle with the horizon-
tal, and while he is gradually speeding up
the tempo of his musical intermezzo, he is si-
multaneously being lowered sideways with an
ever increasing velocity towards the bottom
of the incline. Behind the stage there is an
integrated pulley system that has to coordi-
nate Robert’s act (see Fig. 12). If the mass of the counterweight B is equal to mB = 250 kg, what
should be the mass of counterweight A, so that Robert arrives at the bottom of the incline precisely
35.0 s after he started playing his first note?

Solution

From the constraint that Robert must cover the distance of 18.0 m in a time window of 35.0 s at an
increasing velocity we can calculate the acceleration of the system “piano plus Robert”:

x(t) = x0 + v0x · t+
a

2
· t2

⇔ 18.0 = 0 + 0 · t+
a

2
· 35.02

⇔ a =
2 · 18.0

35.02

= 0.0294 m/s2

Using Newton’s second law, we can write the appropriate equations for the counterweight A, the
counterweight B, and the system “piano plus Robert” (in the x-direction), respectively:

T −mA · g = mA · a1

2 · T −mB · g = mB · a2

− T + (mp +mR) · g · sin θ = (mp +mR) · a
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From the last equation we can calculate the magnitude of the tension ~T :

T = (mp +mR) · (g · sin θ − a) = (317 + 66.0) · [9.81 · sin(23.5◦)− 0.0294] = 1, 487 N

Based on the second equation, we find a value for the acceleration of the counterweight B:

a2 =
2 · T
mB

− g =

(
2 · 1, 487

250

)
− 9.81 = 2.09 m/s2

Figure 13

At this point, we need another constraint
to calculate the acceleration of the coun-
terweight A. Since the length of the rope
remains constant, we can build a con-
straint by considering the vertical compo-
nent of our coordinate system, i.e., the y-
direction. Fig. 13 then shows that the fol-
lowing sum is always equal to some constant
k:

y1 + 2 · y2 + y3 · sin θ = k

Taking the second derivative of the above equation with respect to time gives us a constraint in
terms of the various accelerations, whereby a3 = −a because we want the piano to move downwards:

a1 + 2 · a2 − a · sin θ = 0

The acceleration for the counterweight A then becomes:

a1 = −2 · a2 + a · sin θ = −2 · 2.09 + 0.0294 · sin(23.5◦) = −4.16 m/s2

Finally, based on the equation of Newton’s second law, the mass of the counterweight A can be
determined as follows:

mA =
T

g + a1
=

1, 487

9.81− 4.16
= 263 kg
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Exercise 10

Problem Statement

Figure 14

You recently bought a mansion
in the outskirts of Brno in the
Czech Republic, and, as an ar-
chitect, you’re planning to de-
sign a new water fountain to
put in the middle of the round
square at the end of the drive-
way that leads to your house. Ini-
tially, the water in the fountain
gradually flows down via a cou-
ple of steps, before falling down
vertically. Since your daughter
Madlenka just received a large
Lego set for her eighth birthday
from your brother Petr, you’re
building a miniature fountain out of Lego bricks, using weights, ropes, and pulleys to model the
flow of water. If you would like the water to fall down from the last step at a pace of a = 6.2 m/s2

(represented by the acceleration of weight 5 in Fig. 14), under what angle θ should you build the
incline at the end of the last step? Assume the weights have the following masses: m1 = 1.5 kg,
m2 = 2.5 kg, m3 = 3.5 kg, m4 = 4.5 kg, m5 = 5.5 kg, and m6 = 6.5 kg.

Solution

We can write the equation of Newton’s second law for each of the six masses in the following way:



m1 · a1 = T1 m4 · a4 = T3 − T4 −m4 · g sin θ

m2 · a2 = −T1 + T2 m5 · a5 = T4 − T5 −m5 · g

m3 · a3 = −T3 + T2 m6 · a6 = T5 −m6 · g

As all of the weights are connected by ropes, the magnitude of the acceleration of all the weights is
identical. However, the direction is not. As you would like the water to flow from the right to the
left down the steps, the acceleration of weight 3, 4, 5, and 6 is negative. Under this scenario, the
acceleration of the weights 1 and 2 must be positive. We can write these constraints as follows:


a1 = a2

a3 = −a1
a3 = a4 = a5 = a6
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If we write the equations of Newton’s second law in terms of the acceleration of weight 1 (a1), we
obtain the following:



m1 · a1 = T1 m4 · a1 = −T3 + T4 +m4 · g sin θ

m2 · a1 = −T1 + T2 m5 · a1 = −T4 + T5 +m5 · g

m3 · a1 = T3 − T2 m6 · a1 = −T5 +m6 · g

By replacing T1 in the equation of weight 2 by the expression for T1 obtained from the equation
of weight 1, we get an expression for T2, which we can in turn use to replace T2 in the equation of
weight 3, and so on. If we apply this substitution exercise for all the weights, we eventually get the
following equation:

m6 · a1 = −m1 · a1 −m2 · a1 −m3 · a1 −m4 · a1 +m4 · g sin θ −m5 · a1 +m5 · g +m6 · g

We can now write an expression for the angle θ. To calculate the value of θ, we use a1 = a = 6.2
m/s2, since the magnitude of all the accelerations is the same:

sin θ =
[(m1 +m2 +m3 +m4 +m5 +m6) · a1 − (m5 +m6) · g]

m4 · g

⇔ θ = sin−1
(

[(m1 +m2 +m3 +m4 +m5 +m6) · a1 − (m5 +m6) · g]

m4 · g

)

= sin−1
(

[(1.5 + 2.5 + 3.5 + 4.5 + 5.5 + 6.5) · 6.2− (5.5 + 6.5) · 9.81]

4.5 · 9.81

)

= 45◦
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Exercise 11

Problem Statement

Figure 15

Ashvin (m1 = 62.5 kg) and Opaline (m2 = 55.8 kg)
are trying our their brand new wingsuits above the
beaches of Port Louis on the Island of Mauritius in
preparation of an upcoming skydiving event. Both
these daredevils board a separate plane, and Opaline
jumps out of her airplane first at a higher altitude
than Ashvin. She quickly attains a terminal (i.e.,
constant) velocity of v0,2 = 27.0 m/s and descends
vertically. At the moment when Opaline reaches the
altitude of Ashvin’s airplane, which is flying horizon-
tally at vplane = 65.2 km/h, Ashvin launches himself
from his plane with his arms held close to his body.
After a couple of seconds of free fall, Ashvin bumps
into Opaline with a velocity of ~v0,1 = 18.1 ·~ix+54.0 ·~iy
m/s. Right after the collision, Opaline finds herself at
the position ~rf,2 = 104 ·~ix + 170 ·~iy m. If the acceleration vector ~a makes a θ = 33.8◦ angle with the

vertical, what is the magnitude of the force of impact on Opaline (~F21)?

Solution

What we first have to do is to find the position of the collision, for which we need to identify the
time tjump it takes Ashvin to reach Opaline:

v0,1y = v0 + g · tjump

⇔ tjump =
v0,1y − v0

g
=

54.0− 0

9.81
= 5.50 s

The x- and y-component of the position vector ~r0 right before the moment when the skydivers
hit each other are calculated as follows:



x0 = v0,1x · tjump y0 =
g

2
· t2jump

= 18.1 · 5.50 =
9.81

2
· 5.502

= 99.6 m = 149 m
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Bearing in mind that the acceleration vector ~a makes a 33.8◦ angle with the vertical, we can now
construct the following two equations of motion for Opaline during the time tcol of the collision:



xf,2 = x0 + v0,2x · tcol +
ax
2
· t2col

⇔ 104 = 99.6 + 0 · tcol +
a · sin(33.8◦)

2
· t2col

yf,2 = y0 + v0,2y · tcol +
ay
2
· t2col

⇔ 170 = 149 + 27.0 · tcol +
a · cos(33.8◦)

2
· t2col

Replacing t2col in the second equation (y-direction) by the expression for t2col obtained from the first
equation (x-direction), we find the value of tcol (remember to use the not rounded intermediate results
during calculations):

170 = 149 + 27.0 · tcol +
a · cos(33.8◦)

2
·
[

2 · (104− 99.6)

a · sin(33.8◦)

]

⇔ tcol =
21.4− 4.31 · cotan(33.8◦)

27.0
= 0.553 s

By considering, for instance, the equation of motion in the x-direction, the magnitude of the ac-
celeration ~a with which Opaline is being thrusted forward in the direction of 33.8◦ with the vertical
becomes:

a =
2 · (104− 99.6)

t2col · sin(33.8◦)
=

2 · 4.31

0.5532 · sin(33.8◦)
= 50.5 m/s2

The magnitude of the force ~F21 that acts on Opaline is found as follows:

F21 = m2 · a = 55.8 · 50.5 = 2.82× 103 N

This force of impact is equivalent to Opaline being hit by a mass of mimpact = F21

g
= 2.82×103

9.81
= 287

kg, which is not a very safe situation. Due to Newton’s third law, Opaline will also exert a force F12

on Ashvin with equal magnitude but opposite in direction. In other words, the acceleration vector
of Ashvin will point in the negative x- and y-direction with a magnitude of a = F12

m1
= 2.82×103

62.5
= 45.1

m/s2.
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Exercise 12

Problem Statement

Figure 16

On a casual Wednesday afternoon,
Nirmala and Harun are pitching
some baseballs on Kemala Beach in
Balikpapan, Indonesia. Nirmala is
extending her right arm backwards,
so that it is positioned 1.00 m above
the ground, and launches the base-
ball (mb = 0.15 kg) with an average
force of Fthrow = 7.20 N under an
angle of θ = 55.0◦ with the horizon-
tal over a distance of 1.50 m in tthrow = 0.25 s. At the same time when Nirmala is about to release
the baseball, a wind of 14.2 kts kicks in at an angle of φ = 22.5◦ below the horizontal and generates a
corresponding constant force of Fw = 1.15 N on the ball. How far backwards should Harun move his
left hand—this is the distance d in the same direction as the incoming baseball—when catching the
ball 1.50 m above the ground, so that the equivalent mass upon impact is equal to mimpact = 2.35 kg?

Solution

In a first instance, let us determine the initial velocity with which Nirmala is flinging the baseball
across the beach. Given that the magnitude of the acceleration ~a during the throw is equal to
athrow = Fthrow

mb
= 7.20

0.15
= 48.0 m/s2, the baseball’s initial speed is calculated to be:

v0,throw = v0 + athrow · tthrow = 0 + 48.0 · 0.25 = 12.0 m/s

Now, we want to find the airtime tair of the baseball right before Harun catches it, by solving
the below equation of motion in the y-direction of the ball. Keep in mind that the magnitude of the
acceleration ~aw of the wind is equal to awind = Fw

mb
= 1.15

0.15
= 7.67 m/s2 and that the initial height y0

is equal to y0 = yarm + ythrow = 1.00 + 1.50 · sin(55.0◦) = 2.23 m . We can then write:

y(tair) = y0 + v0,y · tair +
ay
2
· t2air

⇔ y(tair) = y0 + (v0,throw · sin θ) · tair −
[
g + awind · sinφ

2

]
· t2air

⇔ 1.50 = 2.23 + [12.0 · sin(55.0◦)] · tair −
[

9.81 + 7.67 · sin(22.5◦)

2

]
· t2air
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The physically meaningful (t ≥ 0) solution for the above quadratic equation is tair = 1.61 s. The x-
and y-components of the velocity at which the baseball arrives in Harun’s glove are equal to:



vx = (v0,throw · cos θ) + (awind · cosφ) · tair

= [12.0 · cos(55.0◦)] + [7.67 · cos(22.5◦)] · 1.61

= 18.3 m/s

vy = (v0,throw · sin θ)− (g + awind · sinφ) · tair

= [12.0 · sin(55.0◦)]− [9.81 + 7.67 · sin(22.5◦)] · 1.61

= − 10.7 m/s

This gives a resultant velocity vector ~vcatch with a magnitude of:

vcatch =
√
v2x + v2y =

√
18.32 + (−10.7)2 = 21.2 m/s

Finally, we can calculate the distance d by which Harun should extend his arm backwards upon catch-
ing the baseball. Bearing in mind that an equivalent mass of impact of mimpact = 2.35 kg corresponds
to a stopping force of Fstop = mimpact ·g = 2.35 ·9.81 = 23.1 N and that this force in turn corresponds

to a deceleration ~astop of the baseball, whose magnitude is equal to astop = Fstop

mb
= 23.1

0.15
= 154 m/s2,

we find the distance d as follows:

v2stop − v2catch = 2 · astop · d

⇔ d =
v2stop − v2catch

2 · astop
=

02 − 21.22

2 · (−154)
= 1.47 m
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Exercise 13

Problem Statement

Figure 17

Caleb is navigating his Sar 880V
Cruiser (with a displacement
mass of mdis = 5.50 × 103 kg)
along the coast of Mayaro Bay,
Trinidad and Tobago, with a
speed of v0 = 13.35 kts (1 knot
=1.852 km/h) heading north to-
wards Ortoire where he will at-
tend a Sunday brunch at his
mother’s house. One meter to the
left of Caleb, two conches that
he collected during previous trav-
els are suspended from the same
rope, which, in turn, is attached
to an aluminum bar. The conch
hanging higher is called Lobatus gigas or queen conch (mLG = 2.50 kg) and the one below is the
Charonia tritonis or giant triton (mCT = 3.80 kg). While Caleb is gazing at the Atlantic Ocean
through his binoculars, he suddenly spots a blue whale in the northeastern direction at a distance of
about 250 m. As he plans to change course and accelerate (ai = 0.8226 m/s2) for 17.8 s until he is
85.0 m away from the whale, Caleb has to take into account an ocean current (southbound) which
causes his boat to experience a constant force of Fcur = 1, 925 N. Right at the moment when he sets
off in the appropriate direction, the two conches no longer hang vertically but each make a certain
angle with the vertical, as shown in Fig. 17. What is the value of these two angles α and β?

Solution

The magnitude of the initial velocity v0 expressed in m/s is equal to v0 = 13.35∗1.852
3.6

= 6.87 m/s and

that of the acceleration caused by the southern current is acur = Fcur

mdis
= 1,925

5,500
= 0.350 m/s2. Also

remember that the direction northeast corresponds to an angle of φ = 45.0◦ with the horizontal.
Keep furthermore in mind that the acceleration ai = 0.8226 m/s2 is the acceleration with respect
to still water, not the actual acceleration ~aef of the boat. In a first step, we write the equation of
motion in the x-and y-direction of the boat in order to identify the direction θ in which Caleb needs
to be headed if he wishes to end up at d = 250− 85.0 = 165 m from the blue whale:



∆x = v0,x · t+
ax
2
· t2

⇔ d · cosφ = x [v0 · cos θ] · t+

[
ai · cos θ

2

]
· t2

⇔ 165 · cos(45.0◦) = [6.87 · cos θ] · 17.8 +

[
0.8226 · cos θ

2

]
· 17.82
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∆y = v0,y · t+
ay
2
· t2

⇔ d · sinφ =

[
v0 · cos θ

cosφ

]
· sinφ · t+

[
ai · sin θ − acur

2

]
· t2

⇔ 165 · sin(45.0◦) =

[
6.87 · cos θ

cos(45.0◦)

]
· sin(45.0◦) · 17.8 +

[
0.8226 · sin θ − 0.350

2

]
· 17.82

Given that the above equations of motion are written in terms of the actual path (~aef ) that Caleb’s
boat will take (from the perspective of someone standing ashore, i.e., an stationary reference frame),
the initial velocity ~v0 must equally be rescaled accordingly (note hereby that although the velocity
vectors are not drawn in Fig. 17, they run parallel to the acceleration vectors ~ai and ~aef , respectively),
which explains the expression v0·cos θ

cosφ
in the equation of the y-direction. If we take, for instance, the

equation of the x-direction, we can calculate the angle θ as follows:

165 · cos(45.0◦) = (6.87 · cos θ) · 17.8 +

[
0.8226 · cos θ

2

]
· 17.82

⇔ cos θ =
165 · cos(45.0◦)

(6.87 · 17.8) +
(
0.8226

2
· 17.82

)
⇔ θ = 62.5◦

As an alternative, the angle θ could have also been found with the assistance of the law of sines
(“ ai

sin(135◦)
= acur

sin(θ−φ) =
aef

sin(90◦−θ)”), or simply by applying vector addition to the different acceleration
vectors, instead of writing the equations of motion.

In view of the fact that the x-component of both ~ai and ~aef is the same, the magnitude of the effective

acceleration ~aef then becomes aef = ai·cos θ
cosφ

= 0.8226·cos(62.5◦)
cos(45.0◦)

= 0.537 m/s2.

Now that we know the value of the effective acceleration of Caleb’s boat, we can shift our focus
to the suspended conches. Applying Newton’s second law to the x-and y-direction for the queen
conch and the giant triton, respectively, we get the following equations:

Queen conch (upper) Giant triton (lower)

x : T1 · sinα + T2 · sin β −mLG · aef = 0 x : − T2 · sin β −mCT · aef = 0

y : T1 · cosα− T2 · cos β −mLG · g = 0 y : T2 · cos β −mCT · g = 0

Note that although the boat accelerates (~aef ) to the right, the force experienced by the conches
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(~F = mconch ·~aef ) points to the left (not drawn in Fig. 17), which explains the minus sign in front of

(mLG · aef ) and (mCT · aef ), respectively. The force ~F , which is felt by an observer, i.e., the conches,
within an accelerating (non-inertial) framework, i.e., the boat, is a so-called pseudo-force and is the
result of the relative motion of this non-inertial framework with respect to an inertial framework,
i.e., the ground. Newton’s laws do not hold in non-inertial frameworks, but with the introduction of
pseudo-forces they can nevertheless be applied.

Replacing T2 in the giant triton’s x-equation by the expression for T2 obtained from its y-equation,
we find the value for the angle β:

−
[
mCT · g

cos β

]
· sin β −mCT · aef = 0

⇔ tan β = −aef
g

⇔ β = tan−1
(
−aef

g

)
= tan−1

(
−0.537

9.81

)
= −3.13◦

The value for T2 then becomes T2 = mCT ·g
cosβ

= 3.80·9.81
cos(−3.13◦) = 37.3 N. Plugging these values into the queen

conch’s y-direction and subsequently replacing T1 in its x-direction by the expression for T1 obtained
from the y-direction, we can calculate the angle α by writing the queen conch’s x-direction as follows:

[
T2 · cos β +mLG · g

cosα

]
· sinα + T2 · sin β −mLG · aef = 0

⇔ tanα =
mLG · aef − T2 · sin β
T2 · cos β +mLG · g

⇔ α = tan−1
(
mLG · aef − T2 · sin β
T2 · cos β +mLG · g

)

= tan−1
(

2.50 · 0.537− 37.3 · sin(−3.13◦)

37.3 · cos(−3.13◦) + 2.50 · 9.81

)

= 3.13◦

At the very first instance of acceleration towards the blue whale, the conches make the same an-
gle with an opposite sign. Even though the giant triton (the lower conch) has a greater mass
(mCT = 3.80 kg > mLG = 2.50 kg) and thus experiences a larger pseudo-force F, it initially lags a
little bit behind in terms of horizontal motion due to inertia. In a next moment, the giant triton will
move to the left, triggering a further dynamical interplay of forces between the two conches.
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Exercise 14

Problem Statement

Figure 18

Zoe has been living in Tresses, France,
for the past four years and is now mov-
ing to Bordeaux where she is starting
a PhD in theoretical physics at the
University of Bordeaux. Zoe is almost
done packing and she just needs to put
one final box (mb) into her car. To
avoid overburdening her back, Zoe has
placed a ramp in front of her house,
so she can slide the moving boxes to-
wards her car. Lying on top of this last
box, there is a shelf (ms = 2.8 kg) on
which two piles of books (m1 = 1.8 kg
and m2 = 0.60 kg, respectively) are
placed that she bound together with
some rope. When Zoe places the box on the ramp, which makes an angle of φ = 18◦ with the
ground, the second stack of books falls off the edge of the shelf and is dangling from the rope that
is connected to the first pile of books. The rope between the first stack of books and the edge of the
shelf now makes an angle of γ = 6.5◦. Since the first pile is now starting to slide towards the edge,
Zoe pushes the box down the ramp with a force ~FP = 1.3× 102 ·~ix N in order to keep the first pile
on a fixed position on the shelf. What is the mass mb of the moving box? Assume that the shelf
remains in place with respect to the moving box.

Solution

In order for the first stack of books to remain steady on its position on the shelf, its acceleration
in the x-direction must be equal to the net acceleration due to the force exerted by Zoe on the
moving box plus any part that gravity plays. Let us in a first instance concentrate on the two piles
of books. Based on Newton’s second law, we write the following equations (we ignore the equation
in the y-direction of the first stack, as it is irrelevant to our problem):

First pile Second pile

x : T · cos γ +m1 · g · sinφ = m1 · ax x : T · sin θ +m2 · g · sinφ = m2 · ax

y : T · cos θ −m2 · g · cosφ = 0

We now want to use the above equations to write an expression in terms of only one unknown
variable, i.e., ax, and therefore getting rid of the angle θ and the tension force ~T . Relying on the
trigonometric identity “cos2 θ+ sin2 θ = 1”, we can transform the second pile’s y-equation as follows:
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T · (
√

1− sin2 θ)−m2 · g · cosφ = 0

⇔ sin θ =

√
1−

(
m2 · g · cosφ

T

)2

Plugging the above expression for sin θ into the second pile’s x-equation, we find an equation without
the unknown variable θ:

T ·

√
1−

(
m2 · g · cosφ

T

)2

+m2 · g · sinφ = m2 · ax

⇔ T 2 = m2
2 · a2x − 2 ·m2

2 · g · sinφ · ax +m2
2 · g2

From the first pile’s x-equation, we can write the following expression for T 2:

T 2 =
m2

1

cos2 γ
·
[
a2x − 2 · g · sinφ · ax + g2 · sin2 φ

]

By combining the two previous equations we eliminate the variable T and, after some rearrang-
ing of the various terms, we end up with a quadratic equation that only depends on ax:

[
m2

1

cos2 γ
−m2

2

]
· a2x +

[
2 · g · sinφ ·

(
m2

2 −
m2

1

cos2 γ

)]
· ax +

[
g2 ·

(
m2

1 ·
sin2 φ

cos2 γ
−m2

2

)]
= 0

⇔
[

1.82

cos2(6.5◦)
− 0.602

]
· a2x +

[
2 · 9.81 · sin(18◦) ·

(
0.602 − 1.82

cos2(6.5◦)

)]
· ax+

[
9.812 ·

(
1.82 · sin2(18◦)

cos2(6.5◦)
− 0.602

)]
= 0

The physically relevant (ax > 0 m/s2 since the pile slides to the right) solution of the above quadratic
equation is ax = 6.3 m/s2. Finally, applying Newton’s second law to the system “moving box plus
shelf plus the two piles of books” in the x-direction generates another equation, which in turn allows
us to calculate the mass mb of the moving box:

FP + (mb +ms +m1 +m2) · g · sinφ = (mb +ms +m1 +m2) · ax

⇔ mb =
FP

ax − g · sinφ
− (ms +m1 +m2) =

1.3× 102

6.3− 9.81 · sin(18◦)
− (2.8 + 1.8 + 0.60) = 34 kg
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Exercise 15

Problem Statement

Figure 19

Lixue (mL = 55.5 kg) and Chaun
(mC = 57.5 kg) are practicing their
trapeze act for the upcoming Lantern
Festival in Tianshui (Gansu province),
China. At one particular moment dur-
ing their act, they both jump from op-
posite sides of the stage from a small
platform 9.50 m above ground level
onto the aluminum bar of their trapeze
(mb = 2.10 kg) and swing towards
the middle. As a result, Lixue and
Chaun provide their trapeze with an
initial push of ~FL = 172 · ~ix N and
~FC = −188 ·~ix N, respectively. Both trapezes hang from the same height about xtrap = 5.30 m
apart but the cables of Lixue’s trapeze are 1.00 m longer (sL = 6.00 m). If you know that both
artists can extend their arms for an additional distance of xarm = 1.00 m towards each other while
swinging on their trapeze, do they manage to touch hands when reaching their farthest point in the
horizontal direction? Assume that the origin of the coordinate system is located at the position of
the aluminum bar of Lixue’s trapeze when her trapeze is hanging vertically and still.

Solution

First off, let us write down the equations of Newton’s second law for each of the trapeze artists:

Lixue (left) Chaun (right)

x : − T1 · sin θ = Fnet,L x : T2 · sinφ = Fnet,C

y : T1 · cos θ − (mL +mb) · g = 0 y : T2 · cosφ− (mC +mb) · g = 0

Replacing the tension force in the x-equation by the expression for the tension obtained from the
y-equation, we find an expression for the angle for both Lixue and Chaun:

Lixue (left) Chaun (right)

x : −
[

(mL +mb) · g
cos θ

]
· sin θ = Fnet,L x :

[
(mC +mb) · g

cosφ

]
· sinφ = Fnet,C

⇔ θ = tan−1
[
− Fnet,L

(mL +mb) · g

]
⇔ φ = tan−1

[
Fnet,C

(mC +mb) · g

]
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As per Newton’s third law, since Lixue (Chaun) initially exerted a force ~FL (~FC) on the trapeze,
the trapeze (through the x-component of the tension force) is acting on Lixue (Chaun) with equal

magnitude but opposite direction. In other words, ~Fnet,L = −FL ·~ix (~Fnet,C = FC ·~ix). Therefore, we
obtain the following value for the angle θ (φ):

Lixue (left) Chaun (right)

θ = tan−1
[
− −FL

(mL +mb) · g

]
φ = tan−1

[
FC

(mC +mb) · g

]

= tan−1
[
− −172

(55.5 + 2.10) · 9.81

]
= tan−1

[
188

(57.5 + 2.10) · 9.81

]

= 16.9◦ = 17.8◦

We can now determine the position coordinates of both artists (bear in mind that the cables of
Chaun’s trapeze are 1.00 m shorter, so her initial position in the y-direction is equal to 1.00 m):

Lixue (left) Chaun (right)

xL = sL · sin θ xC = xtrap − (sC · sinφ)

= 6.00 · sin(16.9◦) = 5.30− [5.00 · (17.8◦)]

= 1.75 m = 3.77 m

yL = sL − sL · cos θ yC = 1.00 + sC − sC · cosφ

= 6.00− 6.00 · cos(16.9◦) = 1.00 + 5.00− 5.00 · cos(17.8◦)

= 0.260 m = 1.24 m

Given that Lixue and Chaun are not on the same altitude, we use the Pythagorean theorem to
calculate the distance d between their hands:

d =
√

(xC − xL)2 + (yC − yL)2 − 2 · xarm

=
√

(3.77− 1.75)2 + (1.24− 0.260)2 − 2 · 1.00

= 0.247 m or 24.7 cm

It seems that the trapeze artists need more practice before featuring their act on the Lantern Festival.
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Exercise 16

Problem Statement

Figure 20

Ana Laura is a professor at the University of Mon-
tevideo, Uruguay, where she teaches the course
quantum field theory, and in her spare time Ana
Laura loves to build simplified models of plane-
tary surface landers. Today, she is taking one of
her latest models for a test flight and all seems to
go well. As Ana Laura is guiding her lander (mpl)
vertically towards the ground, she simultaneously
fires the four boosters a first time with a total
force of ~F1 = 1.3× 103 ·~iy N, providing the plan-
etary lander with a net upwards acceleration ~a1,
so that the lander slows down from ~v0,1 = −8.0 ·~iy
m/s to a velocity ~v over a time period t1 = 3.6 s.
Immediately afterwards, Ana Laura changes the
power supplied by the boosters (~F2) and after t2
seconds, during which it has been displaced over a distance of ∆y2 = 1.5 m, the lander has obtained
a final velocity of ~vf,2 = 4.4 ·~iy m/s. If the ratio between the acceleration a1 and a2 is equal to 0.442
and given that, due to some technical constraints, the current model cannot accelerate faster than 5.0
m/s2, (1) what is the mass mpl of Ana Laura’s planetary lander, and (2) what is the magnitude of ~F2?

Solution

(1) With the provided data, we can write the following two equations of motion in the y-direction,
one for each boost phase (note hereby that the final velocity ~v of boost phase 1 is the same as the
initial velocity of boost phase 2):

Boost Phase 1 Boost Phase 2

v = v0,1 + a1 · t1 vf,2 = v + a2 · t2

⇔ v = −8.0 + a1 · 3.6 ⇔ 4.4 = v + a2 · t2

Replacing v in the equation of boost phase 1 by the expression for v obtained from the equation of
boost phase 2, we find the following expression for t2:

t2 =
12.4− 3.6 · a1

a2
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Relying on another equation of motion for boost phase 2 and taking into account the above expres-
sion for t2 as well as the fact that a1 = 0.442 · a2, we find the following quadratic equation in terms
of a1:

∆y2 = v0,2 · t2 +
a2
2
· t22

⇔ 1.5 = v ·
[

12.4− 3.6 · a1
a2

]
+
a2
2
·
[

12.4− 3.6 · a1
a2

]2

⇔ 1.5 = (−8.0 + a1 · 3.6) ·
[

12.4− 3.6 · a1
a2

]
+
a2
2
·
[

12.4− 3.6 · a1
a2

]2

⇔ 3.0 · a2 = 2 · (−8.0 + a1 · 3.6) · (12.4− 3.6 · a1) + (12.4− 3.6 · a1)2

⇔ 3.0

0.442
· a1 = 2 · (−8.0 + a1 · 3.6) · (12.4− 3.6 · a1) + (12.4− 3.6 · a1)2

⇔ (3.62 − 7.2 · 3.6) · a21 +

(
24.8 · 3.6 + 8 · 7.2− 7.2 · 12.4− 3.0

0.442

)
· a1 − 8 · 24.8 + 12.42 = 0

This equation has two solutions, i.e., a(1,−) = 2.6 m/s2 and a(1,+) = 1.3 m/s2, but since the
acceleration a2 =

a(1,−)

0.442
= 2.6

0.442
= 5.9 m/s2 that corresponds with a(1,−) exceeds the technical

constraint of a ≤ 5.0 m/s2, we can exclude this solution. In the case of a(1,+), the acceleration
a2 =

a(1,+)

0.442
= 1.3

0.442
= 3.0 m/s2 indeed respects this constraint.

Finally, applying Newton’s second law to Ana Laura’s planetary lander during boost phase 1 allows
us to identify its mass mpl:

F1 −mpl · g = mpl · a(1,+)

⇔ mpl =
F1

g + a(1,+)

=
1.3× 103

9.81 + 1.3
= 1.2× 102 kg

(2) The magnitude of the force ~F2 of the second boost phase can be determined through New-
ton’s second law:

F2 −mpl · g = mpl · a2

⇔ F2 = mpl · (g + a2) = 1.2× 102 · (9.81 + 3.0) = 1.5× 103 N

43



Physics Exercises on Newton’s Laws Olivier Loose

Exercise 17

Problem Statement

Figure 21

Amadou is writing his Bach-
elor’s thesis at the University
of Bamako, Mali, on the me-
chanics of the Quest Radical
compound bow. In particu-
lar, Amadou is investigating
whether a linear relationship
exists between the segment d
of the draw length L and the
distance s the arrow pene-
trates into a wooden block af-
ter being shot from a certain
distance, whereby the mark is
positioned at the same height
as the bow. After some exper-
imental testing, Amadou finds a relationship s = β · d with β = 0.160. He also know from previous
research that a relationship exists between the segment d and the magnitude of the tension force ~T ,
i.e., d = γ · T with γ = 1

450
. If Amadou shoots an arrow (ma = 75.8 g), which requires t = 15.0

ms to leave his bow with a velocity of vi = 79.1 m/s, under an angle of φ = 22.0◦, (1) what is the

magnitude of the tension force ~T in the string? (2) What angle θ does the string make with respect

to the arrow? (3) What is the magnitude of the force ~F exerted by the string upon the arrow? (4)
How deep does the arrow get stuck into the wooden block?

Solution

(1) At the moment when the arrow is being released and still subject to the force of the string, the
following equation of motion provides us with the acceleration ai of the arrow:

vi = v0 + ai · t

⇔ ai =
vi − v0
t

=
79.1− 0

0.015
= 5.27× 103 m/s2

The segment d of the bow is equal to the distance over which the arrow is being accelerated. This
means that we can use the below equation of motion to calculate the length of d:

v2i − v20 = 2 · ai · d

⇔ d =
v2i − v20
2 · ai

=
79.12 − 02

2 · 5.27× 103
= 59.3 cm
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The magnitude of the tension force ~T can now be calculated as follows:

d = γ · T

⇔ T =
d

γ
= 0.593 · 450 = 267 N

This tension force corresponds with a “draw weight” of w = T
g

= 267
9.81

= 27.2 kg or 59.9 pounds.

(2) To determine the angle θ that the string makes with the arrow, we start from the equation
of Newton’s second law for the arrow (in the x-direction) when it is being shot under an angle of
φ = 22.0◦:

2 · T · cos θ −ma · g · sinφ = ma · ai

⇔ cos θ =
ma

2 · T
· (ai + g · sinφ)

⇔ θ = cos−1
[ ma

2 · T
· (ai + g · sinφ)

]

= cos−1
[

0.0758

2 · 267
· (5.27× 103 + 9.81 · sin(22.0◦))

]

= 41.5◦

(3) The magnitude of the force ~F that the string exerts upon the arrow is calculated as follows:

F = 2 · T · cos θ = 2 · 267 · cos(41.5◦) = 400 N

(4) Based on Amadou’s newly discovered linear relationship between the segment d and the depth s,
which represents the distance that the arrow penetrates the wooden block after being released, we
find the following value for s:

s = β · d = 0.160 · 59.3 = 9.49 cm

The next step that Amadou is going to take to fine-tune his linear relationship between the vari-
ables d and s, consists of setting up new experiments—and hopefully identifying a new constant—to
account for the hardness of the wood being used, which, according to his new hypothesis, inversely
impacts the penetration depth s.
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Exercise 18

Problem Statement

Figure 22

As the first participants of
the cross-country skiing event
Skarverennet arrive in Us-
taoset, Norway, Kjerstin (mK =
68.3 kg) is enjoying the race
from a higher altitude while
paragliding above the scene. If
we chose the origin of our coor-
dinate system to coincide with
Cafe Presttun with the y-axis
pointing upwards and the x-
axis eastwards, then Kjerstin
finds herself at this moment at
the position ~r0 = 123 ·~ix+85.0 ·
~iy + 12.7 ·~iz m with a velocity

of ~v0 = 5.33 ·~ix− 2.20 ·~iy + 0.860 ·~iz m/s. For the next tw = 5.50 s, Kjerstin experiences a wind gust
that subjects her to an acceleration of a = 2.33 m/s2 and points θ1 = 31.1◦ upwards and θ2 = 68.3◦

north of east. (1) If the gear that Kjerstin is wearing has a mass of mg = 5.80 kg, what is the total

force ~F that her seat is exerting upon her during the wind gust? (2) What distance did Kjerstin
travel for the duration of the gust? (3) By how much is Kjerstin now farther away from or closer to
Cafe Presttun with respect to her initial position?

Solution

(1) We first write the magnitude of the three components of the acceleration vector ~a:

x-component y-component z-component

ax = a · cos θ1 · cos θ2 ay = a · sin θ1 az = a · cos θ1 · sin θ2

= 2.33 · cos(31.1◦) · cos(68.3◦) = 2.33 · sin(31.1◦) = 2.33 · cos(31.1◦) · sin(68.3◦)

= 0.737 m/s2 = 1.20 m/s2 = 1.85 m/s2

Note hereby that the orientation of ~az is towards the negative z-direction, i.e., ~az = −1.85 · ~iz
m/s2. An acceleration of the paraglider in the positive x-direction means that Kjerstin experiences a
pseudo-force (which exists due to a non-inertial framework, i.e., the paraglider, that is accelerating
with respect to an inertial frame of reference, i.e., the ground) pushing her against her seat into the
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negative x-direction which, in turn, according to Newton’s third law, pushes back on her in the op-
posite direction, i.e., the positive x-direction. Along the same reasoning, Kjerstin’s seat pushes back
on her with a component in the negative z-direction and the positive y-direction. The magnitude of
the three components of the force vector ~F is calculated as follows:

x-component y-component z-component

Fx = (mK +mg) · ax Fy = (mK +mg) · (ay + g) Fz = (mK +mg) · az

= (68.3 + 5.80) · 0.737 = (68.3 + 5.80) · (1.20 + 9.81) = (68.3 + 5.80) · (1.85)

= 54.6 N = 816 N = 137 N

Also the z-component ~Fz points in the negative z-direction. The magnitude of the total force ~F
can be calculated as follows:

F =
√
F 2
x + F 2

y + F 2
z =
√

54.62 + 8162 + 1372 = 829 N

The vector ~F points north of east under an angle of θ2F = tan−1
(
Fz

Fx

)
= tan−1

(
137
54.6

)
= 68.3◦ and

upwards with an angle equal to θ1F = tan−1
(
Fy

Fxz

)
= tan−1

(
816
148

)
= 79.7◦, with Fxz =

√
F 2
x + F 2

z =
√

54.62 + 1372 = 148 N.

(2) The total distance traveled by Kjerstin during the wind gust is in this case equal to the magnitude
of the total displacement vector ~s. Let us in a first instance determine the magnitude of the three
components of ~s:

x-component y-component z-component

∆x = v0x · tw +
ax
2
· t2w ∆y = −v0y · tw +

ay
2
· t2w ∆z = v0z · tw −

az
2
· t2w

= 5.33 · 5.50 +
(
0.737
2

)
· 5.502 = −2.20 · 5.50 +

(
1.20
2

)
· 5.502 = 0.860 · 5.50−

(
1.85
2

)
· 5.502

= 40.5 m = 6.10 m = −23.3 m

Note that, with regard to the y-component, the acceleration ~g due to the gravitational force is
not taken into account since it is already integrated into the paraglider’s current motion. That is, its
initial velocity in the y-direction (~v0y = −2.20 ·~iy m/s) is already the result of the interplay between
the gravitational downwards force and the upwards lift force due to air currents. The acceleration
due to the gust of wind is an additional acceleration that alters Kjerstin’s initial velocity and her
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course of motion. The magnitude of the displacement vector ~s is then found as follows:

s =
√

∆x2 + ∆y2 + ∆z2 =
√

40.52 + 6.052 + (−23.3)2 = 47.1 m

(3) The initial distance that Kjerstin is away from Cafe Presttun is equal to the magnitude of the
position vector ~r0, i.e., r0 =

√
1232 + 85.02 + 12.72 = 150 m. The magnitude of Kjerstin’s position vector

~r after the wind gust has passed is equal to:

r =
√

(r0x + ∆x)2 + (r0y + ∆y)2 + (r0z + ∆z)2

=
√

(123 + 40.5)2 + (85.0 + 6.05)2 + (12.7− 23.3)2

= 187.4 m

This means that Kjerstin is now 187.4− 150 = 37.4 m farther away from Cafe Presttun.
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Exercise 19

Problem Statement

Figure 23

Maŕıa Elena is a Venezuelan
artist and she is invited to par-
ticipate in an exhibition called
“Formas y Figuras” (“Forms
and Shapes”) in the capital
Caracas. For this occasion,
Maŕıa Elena selected one of her
favourite works, i.e., an intricate
piece of art that consists of var-
ious blocks made of the wood
supplied by the Araguaney tree
and carved in the shape of
hexagons, nonagons, and do-
decagons. The entire complex
is held together by an intercon-
nected web of ropes and miniature replications of statues made by other Venezuelan artists, which
serve both to render homage to her fellow colleagues and to function as counterweights. Maŕıa Elena
is taking the elevator to her room in Hotel Tamanaco to pick up the last dodecagonal-shaped block
and notices that she has gained 15% more weight relative to earlier that morning when she weighed
herself in the bathroom—suppose hereby that a scale is installed in the elevator as an extra service
for the guests. When riding the elevator back down, she releases for a moment the rope at the right-
hand side of the block which causes the miniature statues to slide to the left with an acceleration
of aS∗ = 0.450 m/s2 with respect to Maŕıa Elena. Given a mass of m1 = 4.60 kg, m2 = 3.30 kg,
m4 = 2.80 kg, and m5 = 3.40 kg for the other statues and the fact that the outer angle between two
consecutive edges of a dodecagon is equal to θ = 30.0◦, what is the mass m3 of statue number 3?

Solution

Figure 24

In a first step, we wish to determine the mag-
nitude of the elevator’s acceleration ~aE. Based
on Newton’s second law, we can write the fol-
lowing equation, whereby mM and FN represent
Maŕıa Elena’s mass and apparent weight, respec-
tively:

~Fnet = ~FN + ~FG

⇔ mM · aE = FN −mM · g

⇔ FN = mM · aE +mM · g
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Since the scale in the elevator indicates a 15% increase of Maŕıa Elena’s weight, we find the magni-
tude of the elevator’s acceleration ~aE as follows (whereby the magnitude of the normal force when
Maŕıa Elena stands in her bathroom is equal to her weight):

FN = mM · aE +mM · g

⇔ 1.15 · (mM · g) = mM · aE +mM · g

⇔ aE = (1.15− 1) · g = 1.47 m/s2

Given that Maŕıa Elena observes the statues moving downwards with an acceleration ~aS∗ from the
perspective of an accelerating reference frame, i.e., the elevator, we find the acceleration ~aS of the stat-
ues with respect to someone standing on the ground (i.e., an inertial framework) in the following way:

~aS = ~aS∗ + ~aE

⇔ ~aS = (−0.450− 1.47) ·~ix = −1.92 ·~ix m/s2

Note hereby that the vectors ~aS∗ and ~aE in Fig. 23 point towards the negative direction of the
x-axis of the coordinate system corresponding to mass m1 which explains the two minus signs.

Let us for a moment place the dodecagonal-shaped block in an inertial framework, so that we can
determine the value of the mass m3 of statue number 3. Since the statues are accelerating at a rate
~aS, applying Newton’s second law to the five statues provides the following equations (note that we
have kept the minus sign of the acceleration ~aS still within the variable aS until the last step of our
calculations):



m1 · aS = T1 −m1 · g m4 · aS = −T3 + T4 +m4 · g · sin θ

m2 · aS = −T1 + T2 −m2 · g · sin(2θ) m5 · aS = −T4 +m5 · g · sin(2θ)

m3 · aS = −T2 + T3

Based on the equation of statue 1 and 2 and of statue 4 and 5, we can write the following ex-
pression for T2 and T3, respectively:


T2 = (m1 +m2) · aS + [m1 +m2 · sin(2θ)] · g

T3 = −(m4 +m5) · aS + [m4 · sin θ +m5 · sin(2θ)] · g
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Plugging the above two expressions into the equation of statue 3 allows us to calculate the mass m3

of statue number 3:

m3 · aS = −T2 + T3

⇔ m3 · aS = − [(m1 +m2) · aS + [m1 +m2 · sin(2θ)] · g] + [−(m4 +m5) · aS + [m4 · sin θ +m5 · sin(2θ)] · g]

⇔ m3 =
[−(m1 +m2 +m4 +m5) · aS + [−m1 −m2 · sin(2θ) +m4 · sin θ +m5 · sin(2θ)] · g]

aS

=
[−(4.60+3.30+2.80+3.40)·(−1.92)+[−4.60−3.30·sin(60.0◦)+2.80·sin(30.0◦)+3.40·sin(60.0◦)]·9.81]

−1.92

= 1.80 kg

With a mass of m3 = 1.80 kg for statue number 3, Maŕıa Elena will see the statues shift to the
left with an acceleration of ~aS∗ = ~aS −~aE = −1.92 ·~ix − (−1.47 ·~ix) = −0.450 ·~ix m/s2 with respect
to her moving framework.
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Exercise 20

Problem Statement

Figure 25

Lovisa (mL = 58.6 kg) is a
seasoned rescue professional in
the ski area of Åre, Sweden,
and with her rescue stretcher
(ms = 12.2 kg), which is at-
tached to Lovisa’s rescue gear
with the help of two metal
rods, she just picked up Seo
Joon (mSJ = 85.1 kg), a
South Korean tourist who in-
jured his hip, and is on her
way back to the nearest cable
car station. Lovisa is stand-
ing at the top of a hill and
must now gain sufficient speed
to reach the station, which is located on top of the next hill. Because she gave away her ski poles to
another person in need of rescue, Lovisa is hoping that an initial speed of v0 = 4.30 m/s, gravity, and
a constant wind in her back (Fw = 38.5 N) on the way down are able to get her to the top of the next
hill. Assume that the wind only impacts Lovisa, since Seo Joon is lying close to the ground. (1) If
the first slope is L1 = 84.0 m long with an incline of φ = 17.8◦ and given that the second hill is 2.00
m higher with a 10.0 m shorter slope and that the wind has turned 180◦ from the moment she starts
moving up the second hill, will Lovisa make it to the cable car station? (2) When Lovisa eventually
comes to a halt, what is the tension force in the metal rod? (3) In case that Lovisa does not reach the
station, what force should she exert upon her skis in order to accelerate up the hill at au = 1.25 m/s2?

Solution

(1) In order to determine the average acceleration a1 with which Lovisa coasts down the hill, we apply
Newton’s second law to Lovisa and the subsystem “Seo Joon plus stretcher”. Keep in mind that the
connection system between Seo Joon and Lovisa is not a rope but two metal rods, which means that,
since the subsystem “Seo Joon plus stretcher” has a greater mass than Lovisa and therefore exhibits
a greater inertia, the rods are pulling on the subsystem to the right when Lovisa is going downhill.

Lovisa (downhill) Seo Joon plus stretcher (downhill)

mL · a1 = −T + Fw +mL · g · sinφ (mSJ +ms) · a1 = T + (mSJ +ms) · g · sinφ

The value of the acceleration a1 is found when replacing the tension force T in Lovisa’s equation
by the expression for T obtained from the equation corresponding to the subsystem “Seo Joon plus
stretcher”:
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mL · a1 = [−(mSJ +ms) · a1 + (mSJ +ms) · g · sinφ] + Fw +mL · g · sinφ

⇔ a1 =
Fw + (mL +mSJ +ms) · g · sinφ

mL +mSJ +ms

=
38.5 + (58.6 + 85.1 + 12.2) · 9.81 · sin(17.8◦)

58.6 + 85.1 + 12.2

= 3.25 m/s2

The velocity vb at which Lovisa reaches the bottom of the valley is then found as follows:

v2b − v20 = 2 · a1 · L1

⇔ vb =
√
v20 + 2 · a1 · L1

=
√

4.302 + 2 · 3.25 · 84.0

= 23.7 m/s

Since the height h1 of the first hill is measured as h1 = L1 · sinφ = 84.0 · sin(17.8◦) = 25.7 m

and the angle θ of the second incline is equal to θ = sin−1
(
h1+2.00
L1−10.0

)
= sin−1

(
27.7
74.0

)
= 22.0◦, we

can now write Newton’s second law for Lovisa and the subsystem “Seo Joon plus stretcher” going
up the second hill. Bear in mind that due to the greater inertia of the subsystem “Seo Joon plus
stretcher”, it takes more time to slow down with respect to Lovisa, which translates into the fact
that the subsystem is pushing on the rods, which, in turn, are pushing back on the subsystem (as
per Newton’s third law). This explains why the tension forces in the uphill situation are pointing in
the opposite direction compared to the downhill situation.

Lovisa (uphill) Seo Joon plus stretcher (uphill)

mL · a2 = T − Fw −mL · g · sin θ (mSJ +ms) · a2 = −T − (mSJ +ms) · g · sin θ

The acceleration a2 is calculated by replacing T in Lovisa’s equation by the expression for T ob-
tained from the equation of the subsystem “Seo Joon plus stretcher”:

mL · a2 = −[(mSJ +ms) · a2 + (mSJ +ms) · g · sin θ]− Fw −mL · g · sin θ

⇔ a2 =
−[Fw + (mL +mSJ +ms) · g · sin θ]

mL +mSJ +ms
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=
−[38.5 + (58.6 + 85.1 + 12.2) · 9.81 · sin(22.0◦)]

58.6 + 85.1 + 12.2

= −3.92 m/s2

Under these conditions, Lovisa is able to travel the following distance d on the second incline (whereby
she comes to a halt when vf = 0 m/s):

v2f − v2b = 2 · a2 · d

⇔ d =
v2f − v2b
2 · a2

=
02 − 23.72

2 · (−3.92)
= 72.0 m

In other words, Lovisa is L2 − d = 74.0− 72.0 = 2.02 m short of reaching the cable car station.

(2) At the moment when Lovisa comes to a halt, although vf = 0 m/s, the net force mL · a2 in
Lovisa’s above equation related to Newton’s second law is not zero, so that the magnitude of the
tension force ~T is calculated as follows:

mL · a2 = T − Fw −mL · g · sin θ

⇔ T = Fw +mL · (a2 + g · sin θ)

= 38.5 + 58.6 · (−3.92 + 9.81 · sin(22.0◦))

= 24.0 N

Given that two metal rods connect the stretcher with Lovisa, the magnitude of the tension force
~Tr in each rod then becomes Tr = T

2
= 24.0

2
= 12.0 N.

(3) If Lovisa exerts a force −~Fs on her skis, then her skis are exerting a force ~Fs upon Lovisa, so that
we can write the following equations when applying Newton’s second law in the x-direction (keep in

mind that the tension force ~T has switched direction in this situation, as it takes more effort for the
subsystem “Seo Joon plus stretcher” to start moving due to its greater inertia, so that the rods end
up pulling on both the subsystem and Lovisa):

Lovisa Seo Joon plus stretcher

mL · au = Fs − T − Fw −mL · g · sin θ (mSJ +ms) · au = T − (mSJ +ms) · g · sin θ
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Based on the equation for the subsystem “Seo Joon plus stretcher”, the magnitude of the tension
force ~T is equal to:

T = (mSJ +ms) · (au + g · sin θ) = (85.1 + 12.2) · [1.25 + 9.81 · sin(22.0◦)] = 479 N

Based on the equation for Lovisa, we find the magnitude of the force ~Fs as follows:

mL · au = Fs − T − Fw −mL · g · sin θ

⇔ Fs = T + Fw +mL · (au + g · sin θ)

= 479 + 38.5 + 58.6 · [1.25 + 9.81 · sin(22.0◦)]

= 805 N

The force that Lovisa exerts upon her skis is then equal to ~Fs = −805 ·~ix N.
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