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Summary of Exercises

Exercise 1

Suppose you live at the geographical coordinates 41◦21′ 46.4′′N 15◦18′36.5′′E, whereby your street
makes an angle of γ = 9.50◦ with the horizontal. Today, the outdoor temperature indicates 27.3◦ and
so you planned a lunch outside with the neighbours in front of your house. You have just put a glass
of water (mw = 0.450 kg) on the table but forgot that the tablecloth is a smooth (i.e., frictionless)
surface. As a result, the glass starts sliding towards the edge of the table. (1) What is the effective
acceleration ~aef of the glass if you take into account the fact that you’re living on a rotating planet,
i.e., you are subject to a centrifugal force? (2) How does ~aef compare to the situation whereby
you ignore the Earth’s centripetal acceleration ~acp? Remember that the Earth’s radius is equal to
rE = 6.38 × 106 m and assume that the center of the Earth is stable enough to be the origin of an
inertial coordinate system (x,y).

Exercise 2

In Nagano, Japan, Yuuto’s fourteen-year-old daughter Koharu (mK) is coming home from school
and as usual, before going inside to do her homework, she runs towards the marble incline, which
makes an angle θ with the horizontal, right beside the entry porch and slides down on her feet to see
how far she gets without falling. Today, it has been freezing and while the upper part of the incline
(with a length of d1) is slightly wet, the lower part of the incline is covered with a thin layer of ice
for a distance of d2.

(1) If the coefficient of kinetic friction for rubber on wet marble and ice is represented by µk1 and
µk2, respectively, formulate an expression for the final velocity vf2 of Koharu at the bottom of the
incline in terms of the initial velocity v0, the angle θ, the gravitational constant g, the coefficients of
friction µk1 and µk2, and the distances d1 and d2. (2) Formulate an expression for the length L of the
incline in terms of the velocities v0, vf1, and vf2, the angle θ, and the coefficients for kinetic friction
µk1 and µk2, whereby vf1 is the velocity at the end of distance d1. (3) If d1 = 3.50 m, µk1 = 0.622,
θ = 28.5◦, v0 = 3.50 m/s, vf2 = 6.70 m/s, and the time Koharu spends on the ice t2 = 0.933 s, what
is the value of the coefficient of kinetic friction for rubber on ice µk2? (4) Using the formula derived
in part (2) and the provided data in part (3), what is the length L of the incline?

Exercise 3

Harry just got back home from buying a gift (mb = 4.85 kg) for his husband Leo in the Meadowhall
Shopping Centre in Sheffield, United Kingdom. When Harry is in the midst of gift wrapping his
present on his knees in the living room, Leo unexpectedly arrives home. Harry rushes to hide the gift
between his back and the wall, and he casually gets up on his feet in t = 1.90 s while pushing on the
gift with his back, in the hope that it stays in place so that Leo is not on to him. If the force ~F with
which Harry pushes against his gift makes an angle of θ = 64.1◦ with the xz-plane in the positive
y-direction and φ = 69.4◦ with the xy-plane in the negative z-direction (whereby the y-axis is directed
upwards and the z-axis points out of the wall), (1) what is the distance d that the gift has traveled
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across the wall when Harry is standing upright? (2) What is the magnitude of the force ~F? Assume
that the origin of the coordinate system sits at the centre of the gift (at its initial position on the
wall), that the coefficient of kinetic friction of wrapping paper on the wall equals µk = 0.730, and that

the net acceleration ~a and the gift’s trajectory run parallel with the projection of ~F onto the xy-plane.

Exercise 4

Near an amusement park in the centre of al-Hilla in Iraq, Bibi (mB = 58 kg) is practicing her kick-
flip and 360 spin backside with her brand new Core C2 skateboard (ms = 3.1 kg). Bibi notices a
semi-circle steel rail with a height of h = 0.45 m and a radius of r = 7.5 m and starts building
up speed so that she can grind the rail as far as possible. By the time she jumps onto the rail,
Bibi has reached a speed of v0 = 6.5 m/s. (1) Under what angle with the horizontal should Bibi
hit the rail with her skateboard deck? (2) As Bibi slides along the rail, she manages to keep her
balance until she comes to a halt. At what angle is she now positioning her skateboard to avoid
falling from the rail? (3) How far did Bibi slide (work with average values)? Assume that the coef-
ficient of kinetic and static friction for wood on steel is equal to µk = 0.29 and µs = 0.42, respectively.

Exercise 5

A rock with a mass of mr = 20.0 ton is hurtling through space in the vertical direction and when it
is r = 1, 250 km away from the surface of the Earth at an angle of θ = 59.5◦ with the vertical, the
rock possesses a speed of v0 = 2, 500 m/s and is accelerating at a0 = 275 m/s2. Will it hit the Earth?
As an approximate criterion for the condition of “hitting the Earth”, consider the critical distance
xc. Given that the gravitational force ~FG dynamically changes as the rock approaches Earth, use the
average between ~FG’s magnitude at the rock’s current position and that at the surface of the Earth.
Assume furthermore that the Earth and the rock are moving in the xy-plane. Finally, remember
that the radius of the Earth is equal to rE = 6.38× 106 m, the Earth’s mass to M = 5.98× 1024 kg,
and the universal gravitational constant to G = 6.67× 10−11 m3/(kg· s2).

Exercise 6

Emilio (mE = 72.9 kg) just drove an hour from his home in Viseu, Portugal, to go water skiing
in the Atlantic Ocean along the coast of Aveiro. His friend Isabela agreed to take him onto the
water with her boat. At one point, Isabela takes a turn with a radius of r = 125 m at a constant
speed. Meanwhile, Emilio is firmly holding the tow rope, which makes an angle of θ = 13.7◦ with the
horizontal, and in the curve, he is following a path (without skidding) that lies radially d = 5.10 m
more outwards compared to Isabela’s position, producing an angle φ between the tow rope and his
velocity vector ~v = 18.4 ·~iy m/s. The water that Emilio pushes away sideways in the curve exerts a

force of ~Fw = 150 ·~ix N upon him, and he is also experiencing a kinetic friction force ~Fk opposite to
his direction of motion—assume a kinetic friction coefficient of skis on water of µk = 0.175. What is
the value of the angle φ?
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Exercise 7

Feeling re-energized after a weekend of hiking close to the Bavarian Sea, Grgur is analyzing astro-
nomical data with a pair of fresh eyes on Monday morning in the ESO’s headquarters in Garching,
Germany. Apparently, the mental and physical recharging over the weekend have payed off as Grgur
identifies a pattern between two newly discovered objects after one hour of work. The first object,
which he named MS-X52R, is orbiting the planet Mars (in a circular orbit), while the second object,
called SN-Y22T, circles the planet Saturn. By the time SN-Y22T has completed 1 revolution around
Saturn, MS-X52R has already orbited Mars 7.43 times. Moreover, Grgur also found that the orbital
height of SN-Y22T above the planet’s surface relative to that of MS-X52R is ten times their respec-
tive relative velocity. Grgur is interested in calculating these orbital heights. What values does he
find? Remember that the radius and mass of Mars and Saturn are equal to rM = 3.39× 106 m and
rS = 60.3× 106 m and MM = 6.42× 1023 kg and MS = 5.69× 1026 kg, respectively.

Exercise 8

At this time of the year, the volcano Maat Mons on the planet Venus (MV = 4.87×1024 kg) is highly
active. Within the atmospheric region close to the planet’s surface, where the 8 km-high volcano
resides, the air density is immense at a value of approximately ρ = 67.0 kg/m3. At a certain point,
a large basaltic rock (mr = 1, 250 kg) is being ejected from Maat Mons. When it reaches the highest
point in its trajectory it collides with another rock, thereby effectively eliminating any horizontal
motion, so that the rock now starts falling vertically. If you know that the drag force ~FD has the
form of ~FD = −b · v2 ·~iy N (with b = 1

2
· cD · ρ ·π · r2, whereby the drag coefficient equals cD = 0.635),

that the radius of Venus measures rV = 6.05 × 106 m, and that the basaltic rock has a diameter of
about d = 92.6 cm, (1) what is the magnitude of the terminal velocity ~vT ? (2) Write an expression
for the magnitude of the rock’s velocity in terms of the time variable t. Assume that t = 0 s when
the rock is at the highest point of its trajectory.

Exercise 9

Willow is visiting her grandmother Evie, who lives in Launceston, Tasmania, to spend some quality
time with her. During some afternoon tea with traditional Anzac biscuits, Evie tells Willow to go
and get an old painting from the attic that she made during her childhood. Once up there, Willow
spots the painting on top of a large storage cupboard. While standing on the tips of her toes, she
grabs the painting and tilts it away from her by an angle of φ = 21.3◦ with the vertical. At that
moment, an old golden medallion (mm = 0.350 kg), which was hanging just over the left side of the
painting and attached to a chain, which is fixed to the middle of the top edge of the painting, slides
from the left side in an arc-like motion towards the middle—initially, the chain, which has a length
of L = 34.4 cm, was making an angle of θ = 63.6◦ with the left side. If the average blink of an eye
lasts tb = 0.120 s, how many times can Willow blink before the medallion reaches the middle of the
painting? Assume that the kinetic friction coefficient between the metal of the medallion and the
canvas is equal to µk = 0.784.
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Exercise 10

In the western Pacific Ocean, close to the coast of Tobi Island, Palau, two blacktail damselfish are
feeling playful. The heavier of the two (m1) is swimming right behind the other one (m2 = 3.92
kg), who is moving at a constant speed of ~v0 = 1.51 ·~ix m/s under an angle of θ = 34.8◦ with the
horizontal. At a certain moment, the heavier damselfish is pushing his friend in the same direction
of her motion with a constant force of ~F21 = 24.4 ·~ix N. The drag force ~FD in a viscous medium
for lower velocities has the general form of ~FD = −(K · η) · ~v, with η the viscosity coefficient with a
value of η = 1.787× 10−3 kg/(m·s) for water at 0◦C. The parameter K depends on the shape of the
object, and if we approximate the fish by a sphere, we obtain K = 6 · π · r (in m), with r = 12.0 cm.
If we ignore the buoyancy force in our problem, how fast is the first blacktail damselfish going after
being pushed for t = 6.25 s?

Exercise 11

The thirteen-year-old Bahadur is visiting the new science fair with his dad Husani in the Plane-
tarium Science Center in Alexandria, Egypt. In one of the activities, Bahadur has to pull a large
block (M = 8.50 kg), which is moving on a frictionless rail. On top of the large block, a small block
(m = 4.50 kg) is positioned precisely 12.0 cm to the right of a marked area. Bahadur is asked to pull
the lower block for just the right amount of time t∗, so that the upper block moves to the left and
comes to rest precisely within the marked area. Since the top surface of the large block is slightly
roughened, the small block needs a minimum amount of force ~Fs before it can start moving (the
static friction coefficient is equal to µs = 0.115). Once the small block is set in motion, it experiences
a slightly lower amount of (kinetic) friction, i.e., µk = 0.102. If Bahadur pulls the large block M with

a force of ~Fpull = 15.0 ·~ix N, for how long (t∗) should he sustain this force? Assume that the time ts
corresponds to the time needed for block m to overcome the static friction—during this time, block
m is not yet moving—and is equal to ts = t∗

10
s.

Exercise 12

Lagrange points are relatively stable orbits of objects of little mass in the presence of two heavier
masses (with one mass (M1) larger than the other (M2) for a minimum ratio of M1

M2
= 24.96), which

are all orbiting around a common center of mass, i.e., the barycenter. In our Solar System, examples
of such massive bodies include the Sun-Jupiter and the Sun-Earth duo as well as the Earth-Moon
system. The gravitational interplay within these systems allows for the existence of five Lagrange
points, i.e., L1 up to L5. From the perspective of a rotating reference frame, the relatively stable
circular orbit of the object of little mass (say, m1) is the result of the combined gravitational impact
on m1, due to the large masses M1 and M2, being balanced by a pseudo-force, i.e., the centrifugal
force, experienced by m1 from the center of mass. The final effect is such that the period T of the
object m1 is equal to that of both mass M1 and M2—the period T is the amount of time during
which an object completes one revolution around another object.

With regard to point L3 of the Earth-Moon system, the orbit of mass m1 lies a little bit farther from
the barycenter with respect to the Moon (M2) and there is a small distance d between the position
of m1 and M2, if both objects would be located at the same side of mass M1 (with m1 being closer
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to M1). If you know that the mass of the Earth and the Moon are equal to M1 = 5.972 × 1024 kg
and M2 = 7.342×1022 kg, respectively, and that the Earth-Moon distance measures R = 3.844×105

km, how far lies the Lagrange point L3 from the center of the Earth?

Exercise 13

On a 5.00 m-wide gravel road outside of Balkanabat, Turkmenistan, Melek is going ~v0 = 47.2 ·~iy
m/s, when she suddenly notices that a 90◦ left curve is ahead. Melek hits the breaks over a distance
of ∆x0 = 156 m and t0 = 4.30 s later she enters the curve, which has a radius of r = 85.0 m, at a
velocity ~vin at 1.00 m from the left guardrail. (1) Will Melek skid in the curve? (2) If yes, will she
hit the guardrail on the right-hand side? (3) If so, when? If not, at what distance from the right
rail does Melek exit the curve? Given that Melek may change her distance from the left rail while
going through the curve, apply average values over the width of the road between her point of entry
and the right rail when dealing with circular motion. Assume furthermore that Melek maintains her
speed vin throughout the curve and that the kinetic friction coefficient between gravel and rubber
tires is equal to µk = 0.718.

Exercise 14

Halima is doing research at the Copperbelt University in Zambia on superclusters, which are ag-
gregate systems of various galaxy groups and smaller clusters, whereby one of them, the Ophiuchus
Supercluster, which is located at a distance of roughly 370 million light-years away from us (1 light-
year is equal to 9.46 × 1015 m), particularly interests her. Halima suspects to have found a black
hole at the edge of the Ophiuchus Supercluster around which three other objects are orbiting in a
circular fashion. So far, Halima has managed to retrieve the following information from the orbiting
objects: object 1 has a period of T1 = 163 Earth days, the distance from object 2 to the center of
the black hole is equal to r2 = 5.93 × 107 km, the distance from object 1 to the black hole is twice
as large relative to that of object 3, and the distance from object 3 to the black hole is 1.26 times
greater with respect to object 2. (1) Halima wants to calculate the mass of the black hole in terms
of the mass of our Sun, which is equal to Ms = 1.99× 1030 kg. What value does she find? (2) What
is the period (in Earth days) for object 2 and 3? (3) What are the orbital velocities of the three
objects? Remember that the universal gravitational constant G is equal to G = 6.67×10−11 m3/(kg·
s2) and assume that, due to the overwhelmingly strong gravitational influence of the black hole, the
gravitational interactions between the three objects are minimal and can therefore be ignored, and
that the mass MBH of the black hole remains constant.

Exercise 15

On 23 January 1960, Jacques Piccard and Don Walsh descended in their 18 m-long small submarine,
called a bathyscaphe, to a depth of d = 10, 911 m in the Mariana Trench in the Pacific Ocean.
During the descent, both men spent nearly five hours in a 2.16 m-wide pressure sphere. Suppose
that at one moment, Jacques was holding a magazine of length L = 25.00 cm horizontally with both
hands, and on top of it, a set of keys (msk = 0.3850 kg) was resting. The keys were connected to
one end of an elastic rubber spring, while the other end was attached to a metal ring through which
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Jacques had put his index finger of his right hand. Due to a sudden disturbance in the bathyscaphe’s
balance, Jacques removed his left hand from the magazine to hold on to the side of the pressure
sphere. As a result, Jacques tilted the magazine by an angle of θ = 46.80◦ with the vertical and the
set of keys slid downwards (from the top side of the magazine cover), stretching thereby the rubber
spring (the metal ring was still around Jacques’ index finger of his right hand). If the restoring

force in a spring has the general form of ~Fr = −k · x ·~ix, with k the spring constant, which for this
particular rubber spring is equal to k = 9.450 N/m, (1) did the set of keys slide off of the bottom
of the magazine? (2) If they did, at what distance did the keys dangle from the bottom of the
magazine? (3) If Jacques would have held the magazine in the same way when sitting in his living
room at home, what would the results have been then? Remember that the universal gravitational
constant G is equal to G = 6.673× 10−11 m3/(kg· s2), and the mass and the radius of the Earth to
ME = 5.9722× 1024 kg and rE = 6.3781× 106 m, respectively.

Exercise 16

The four largest moons—called the Galilean moons—orbiting (anti-clockwise) around the planet
Jupiter (Mj = 1.898× 1027 kg) are among the largest within our Solar System. Of this quartet, the
two innermost moons orbiting Jupiter are Io (Mio = 8.93× 1022 kg) and Europa (Meur = 4.80× 1022

kg), whereby Io travels at a height of hio = 350, 500 km above Jupiter’s surface. Suppose that about
6.5 years ago the China National Space Administration (CNSA) launched a space probe (msp = 2, 850
kg), which just now successfully settled into Europa’s orbit at a distance of roughly s = 526, 800 km
behind the moon with an orbital speed of vsp = 13, 739 m/s. (1) What is the net gravitational force
~FG experienced by the probe when at the moment of arrival Io is located right above Jupiter whereas
Europa makes an angle of θ = 45.0◦ with the horizontal? (2) Suppose that, after being in orbit for
21.3 hours, the CNSA decides to bring the probe into Io’s orbit. It takes the probe 22.4 hours to
reach Io’s orbit at an angle of φ = 25.0◦ south of west. When the probe arrives at its new location,
what angle does Io’s position make with the vertical and at what distance is the probe ahead of or
behind the moon Io? (3) At that moment, where is Europa located in its orbit with respect to both
the vertical and the probe’s position? Remember that the universal gravitational constant G is equal
to G = 6.67 × 10−11 m3/(kg· s2) and that Jupiter’s radius measures about rj = 7.15 × 107 m, and
assume furthermore circular orbits.

Exercise 17

On a sunny Sunday afternoon, Micaela is practicing one of her favourite sport activities, i.e., clay
target shooting, at the Club de Cazadores in Tucumán, Argentina. If the target (mt = 105 g) leaves
the shooting station, which is installed at d = 45.5 cm above the ground, with an initial speed
of v0 = 23.6 m/s under an angle of θ = 35.2◦ with the horizontal, while undergoing a drag force
~FD = −b · ~v (with a drag coefficient of b = 0.0068 kg/s), at what distance h from the ground does
the target find itself when it’s at its highest point?

Exercise 18

Trans-Neptunian Objects (TNOs) are dwarf planets (or minor planets) in the outer Solar System
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whereby their average orbiting distance to the Sun (Ms = 1.99 × 1030 kg) is larger than that of
Neptune, i.e., the outermost planet within our Solar System. Eris and Sedna are two TNOs fol-
lowing elliptical trajectories around the Sun, whereby the orbit of the dwarf planet Eris, which has
an elliptical eccentricity equal to eE = 0.436 and a semi-minor axis of length bE = 9.14 × 1012 m,
is the consequence of historically significant gravitational interactions with Neptune—it is therefore
assigned to the sub-classification of “scattered-disk objects”. In contrast, due to the much larger
orbit of the dwarf planet Sedna, which is most likely the result of a collision with some planet-sized
object or star, Sedna is only marginally experiencing Neptune’s gravitational influence and therefore
belongs, arguably, to the sub-classification of “detached objects”. (1) If the eccentricity of Sedna’s
orbit is 1.95 times greater with respect to Eris and if the distance between one of the foci and the
center of Sedna’s orbit is 14.54 times larger compared to Eris, how do the orbital velocities of these
two dwarf planets compare at their perihelion, i.e., the point on their elliptical orbit closest to the
massive body around which they orbit? Use the vis-viva equation, i.e., v2 = G ·Ms ·

(
2
r
− 1

a

)
, with G

the universal gravitational constant (G = 6.67× 10−11 m3/(kg· s2)) and a the semi-major axis of the
ellipse, to calculate the velocities. (2) What are the periods of the dwarf planets Eris and Sedna?
For this problem, put the origin of the respective coordinate system in the focus point to the right
of the center of the ellipse and use polar coordinates.

Exercise 19

During this cold and snowy month of December in Erzurum, Turkey, Mehmet (mM = 72.5 kg) has
dressed up as Noel Baba to bring his little brother Omer some long-desired gifts. Mehmet wants
to do it in style, so he takes his sled (ms = 5.50 kg) and slides down the incline—which makes an
angle of θ = 16.4◦ with the horizontal—behind their house while holding three gifts (m1 = 3.50
kg, m2 = 2.50 kg, and m3 = 1.50 kg), all stacked on top of each other. (1) If the kinetic friction
coefficient for the sled on snow is equal to µk,s = 0.0455 and the static friction coefficient for paper
on paper to µs = 0.545, how will gift 2 and 3 behave relative to gift 1? (2) What is the minimum
value that µs should have if the gifts have to remain steady? (3) Suppose that µs has a value of 95%
of the minimum value established in part (2) and that the kinetic friction coefficient µk,2 between
gift 1 and 2 is equal to 75% of this minimum value and the coefficient µk,3 between gift 2 and 3 to
µk,3 =

µk,2
2

. How do the gifts behave now?

Exercise 20

Amina is doing postdoctoral research at the Sultan Qaboos University, in Muscat, Oman, whereby
she specializes in binary star systems, i.e., gravitationally bound systems in which two stars orbit
around their common center of mass called the barycenter (xbc). Amina is currently studying data
from the Lepus constellation, which lies at a declination of 20◦ south of the celestial equator, and
has identified a new binary star system of circular orbits. Star 1 has a mass of m1 = 1.45 ·Mz, with
Mz the mass of the star Zeta Leporis and equal to Mz = 1.46 ·Ms (whereby the mass of the Sun
measures Ms = 1.99 × 1030 kg), whereas the mass of star 2 is equal to m2 = 3.20 ·Mz. Amina has
furthermore calculated that the stars complete one orbit in exactly 166 days. (1) What distance
did Amina measure between both stars? Express your answer in terms of the Earth-Sun distance
res = 1.496× 108 km. (2) What value does Amina find for the orbital velocity of each star? Remem-
ber that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2).
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Exercise 1

Problem Statement

Figure 1

Suppose you live at the ge-
ographical coordinates 41◦21′

46.4′′N 15◦18′36.5′′E, whereby
your street makes an angle of
γ = 9.50◦ with the horizontal.
Today, the outdoor tempera-
ture indicates 27.3◦ and so you
planned a lunch outside with
the neighbours in front of your
house. You have just put a
glass of water (mw = 0.450
kg) on the table but forgot
that the tablecloth is a smooth
(i.e., frictionless) surface. As a
result, the glass starts sliding
towards the edge of the table.
(1) What is the effective acceleration ~aef of the glass if you take into account the fact that you’re
living on a rotating planet, i.e., you are subject to a centrifugal force? (2) How does ~aef compare
to the situation whereby you ignore the Earth’s centripetal acceleration ~acp? Remember that the
Earth’s radius is equal to rE = 6.38×106 m and assume that the center of the Earth is stable enough
to be the origin of an inertial coordinate system (x,y).

Solution

(1) Since we view this problem from the perspective of an object, i.e., the glass of water, situated
within a coordinate system (x’,y’) that itself undergoes rotational—and thus accelerating—motion
with respect to an inertial framework (x,y), the reference frame (x’,y’) is a non-inertial framework.
This means that in the coordinate system (x’,y’) Newton’s laws do not hold. However, if we introduce
pseudo-forces, we can nevertheless apply his laws. The rotational motion implies that a centripetal
acceleration ~acp is directed from the position of the glass of water perpendicular to the Earth’s axis

of rotation. Therefore, a pseudo-force ~Fcf , i.e., the centrifugal force, can be introduced that points
in the opposite direction of ~acp:

~Fcf = mw · ~acf = mw · (−~acp) = mw · (−
v2

r
) ·~ix

whereby v represents the orbital speed of the Earth and r the perpendicular (horizontal) distance
between the position of the glass of water and the Earth’s rotation axis.

Because of the centripetal acceleration ~acp, the actual or effective gravitational force ~F
′
G, which is also
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called the plumb line, does not exactly match the gravitational force ~FG, which is directed radially
towards the Earth’s center, and deflects from it by a very small angle φ.

Based on these three forces, we can now write the x’- and y’-component of Newton’s second law for
the fixed position at the specific latitude of the glass of water with respect to the coordinate system
(x’,y’):

x’-component y’-component

−mw ·
v2

r
· sin θ = mw · g′x′ −mw · g +mw ·

v2

r
· cos θ = mw · g′y′

Using the above equations of Newton’s second law and given that the latitude 41◦21’46.4”N cor-
responds to the angle θ = 41 + 21

60
+ 46.4

3600
= 41.4◦, that r = rE · cos θ, and that the Earth’s orbital

speed v at that latitude equals v = 2·π
T
· r = 2·π

T
· (rE · cos θ) = 2·π

86,400
· [6.38 × 106 · cos(41.4◦)] = 348

m/s, we can calculate the magnitude of the effective gravitational acceleration ~g
′

as follows:

g
′
=
√

(g′x′)
2 + (g′y′)

2

=

√(
−v

2

r
· sin θ

)2

+

(
v2

r
· cos θ − g

)2

=

√(
v2

r

)2

+ g2 − 2 · g · v
2

r
· cos θ

=

√(
v2

rE · cos θ

)2

+ g2 − 2 · g · v
2

rE

=

√(
3482

6.38× 106 · cos(41.4◦)

)2

+ 9.812 − 2 · 9.81 · 3482

6.38× 106

= 9.79 m/s2

The angle φ between the vectors ~g
′

and ~g can then be found in the following manner:

φ = tan−1

(
g′x′

g′y′

)

= tan−1

[
(−v2

r
) · sin θ

−g + v2

r
· cos θ

]

9
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= tan−1

[
−( v

2

rE
) · tan θ

−(g − v2

rE
)

]

= tan−1

[
( 3482

6.38×106 ) · tan(41.4◦)

(9.81− 3482

6.38×106 )

]

= 0.0979◦

We can now address your glass of water on the table. Applying Newton’s second law to the glass of
water in the coordinate system (x”,y”) gives us the following magnitude of the effective acceleration
~aef :

mw · aef = mw · g′ · sin(γ − φ) ⇔ aef = g′ · sin(γ − φ)

= 9.79 · sin(9.50◦ − 0.0979◦)

= 1.60 m/s2

(2) If we approach the problem in (1) using the standard gravitational force ~FG and ignoring the
Earth’s rotational motion, then Newton’s second law gives us the following magnitude of the accel-
eration ~aw of the glass of water:

mw · aw = mw · g · sin γ ⇔ aw = g · sin γ

= 9.81 · sin(9.50◦)

= 1.62 m/s2

Note that there is another pseudo-force acting on your glass of water due to the fact that the glass
is moving in a rotating frame of reference. This pseudo-force is called the Coriolis force, which we
have ignored in the above problem and is dealt with in another exercise package called “Rotational
Motion”.

10
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Exercise 2

Problem Statement

Figure 2

In Nagano, Japan, Yuuto’s
fourteen-year-old daughter Ko-
haru (mK) is coming home
from school and as usual, be-
fore going inside to do her
homework, she runs towards
the marble incline, which
makes an angle θ with the hor-
izontal, right beside the entry
porch and slides down on her
feet to see how far she gets
without falling. Today, it has
been freezing and while the
upper part of the incline (with a length of d1) is slightly wet, the lower part of the incline is covered
with a thin layer of ice for a distance of d2.

(1) If the coefficient of kinetic friction for rubber on wet marble and ice is represented by µk1 and
µk2, respectively, formulate an expression for the final velocity vf2 of Koharu at the bottom of the
incline in terms of the initial velocity v0, the angle θ, the gravitational constant g, the coefficients of
friction µk1 and µk2, and the distances d1 and d2. (2) Formulate an expression for the length L of the
incline in terms of the velocities v0, vf1, and vf2, the angle θ, and the coefficients for kinetic friction
µk1 and µk2, whereby vf1 is the velocity at the end of distance d1. (3) If d1 = 3.50 m, µk1 = 0.622,
θ = 28.5◦, v0 = 3.50 m/s, vf2 = 6.70 m/s, and the time Koharu spends on the ice t2 = 0.933 s, what
is the value of the coefficient of kinetic friction for rubber on ice µk2? (4) Using the formula derived
in part (2) and the provided data in part (3), what is the length L of the incline?

Solution

(1) Since Koharu’s acceleration depends upon the type of surface on which she slides, we apply
Newton’s second law for both cases of marble and ice, whereby the magnitude of the kinetic friction
force equals Fk = µk · FN (with ~FN representing the normal force):

Marble Ice

x : mK · a1 = −µk1 · FN +mk · g · sin θ x : mK · a2 = −µk2 · FN +mk · g · sin θ

y : 0 = FN −mk · g · cos θ y : 0 = FN −mk · g · cos θ

Inserting the expression for FN obtained from the y-direction into the equation of the x-direction
gives the following two expressions for the acceleration:

11
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Marble Ice

a1 = g · (sin θ − µk1 · cos θ) a2 = g · (sin θ − µk2 · cos θ)

In a next step, we write the equation of motion for each surface type:

Marble Ice

v2f1 − v20 = 2 · a1 · d1 v2f2 − v2f1 = 2 · a2 · d2

Replacing v2f1 in the equation for ice by the expression v2f1 obtained from the equation for mar-
ble, we find the following expression for Koharu’s final velocity vf2:

v2f2 −
[
v20 + 2 · a1 · d1

]
= 2 · a2 · d2

⇔ vf2 =
√
v20 + 2 · a1 · d1 + 2 · a2 · d2

=
√
v20 + 2 · [g · (sin θ − µk1 · cos θ)] · d1 + 2 · [g · (sin θ − µk2 · cos θ)] · d2

=
√
v20 + 2 · g · [(d1 + d2) · sin θ − (µk1 · d1 + µk2 · d2) · cos θ]

(2) Making use of the equations for the acceleration a1 and a2 obtained in section (1), we can
write the following expression for the length L:

L = d1 + d2

=
v2f1 − v20

2 · a1
+
v2f2 − v2f1

2 · a2

=
v2f1
2
·
(

1

a1
− 1

a2

)
− v20

2 · a1
+

v2f2
2 · a2

=
v2f1
2
·
(
a2 − a1
a1 · a2

)
− v20 · a2

2 · a1 · a2
+

v2f2 · a1
2 · a1 · a2

=
v2f1·([g·(sin θ−µk2·cos θ)]−[g·(sin θ−µk1·cos θ)])−v

2
0 ·[g·(sin θ−µk2·cos θ)]+v2f2·[g·(sin θ−µk1·cos θ)]

2·[g·(sin θ−µk1·cos θ)]·[g·(sin θ−µk2·cos θ)]

12
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=
v2f1 · (µk1 − µk2) · cos θ + (v2f2 − v20) · sin θ + (v20 · µk2 − v2f2 · µk1) cos θ

2 · g · [sin2 θ + µk1 · µk2 · cos2 θ − (µk1 + µk2) · sin θ · cos θ]

=
v2f1 · (µk1 − µk2) + (v2f2 − v20) · tan θ + (v20 · µk2 − v2f2 · µk1)

2 · g · cos θ · [tan2 θ + µk1 · µk2 − (µk1 + µk2) · tan θ]

=
(µk2 − tan θ) · v20 + (µk1 − µk2) · v2f1 + (tan θ − µk1) · v2f2

2 · g · cos θ · [tan2 θ + µk1 · µk2 − (µk1 + µk2) · tan θ]

(3) First, let us calculate the acceleration a1 as well as the velocity vf1:

a1 = g · (sin θ − µk1 · cos θ) vf1 =
√
v20 + 2 · a1 · d1

= 9.81 · [sin(28.5◦)− 0.622 · cos(28.5◦)] =
√

3.502 + 2 · (−0.681) · 3.50

= −0.681 m/s2 = 2.73 m/s

To find the value of the coefficient of kinetic friction µk2 for rubber on ice, we consider the following
equation of motion:

vf2 = vf1 + a2 · t2 = vf1 + [g · (sin θ − µk2 · cos θ)] · t2

⇔ µk2 = tan θ − vf2 − vf1
g · t2 · cos θ

= tan(28.5◦)− (6.70− 2.73)

9.81 · 0.933 · cos(28.5◦)
= 0.0500

(4) The length L of the incline is calculated as follows:

L =
(µk2 − tan θ) · v20 + (µk1 − µk2) · v2f1 + (tan θ − µk1) · v2f2

2 · g · cos θ · [tan2 θ + µk1 · µk2 − (µk1 + µk2) · tan θ]

=
[0.0500− tan(28.5◦)] · 3.502 + [0.622− 0.0500] · 2.732 + [tan(28.5◦)− 0.622] · 6.702

2 · 9.81 · cos(28.5◦) · [tan2(28.5◦) + 0.622 · 0.0500− (0.622 + 0.0500) · tan(28.5◦)]

= 7.90 m

13
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Exercise 3

Problem Statement

Figure 3

Harry just got back home from
buying a gift (mb = 4.85
kg) for his husband Leo in the
Meadowhall Shopping Centre in
Sheffield, United Kingdom. When
Harry is in the midst of gift wrap-
ping his present on his knees in the
living room, Leo unexpectedly ar-
rives home. Harry rushes to hide
the gift between his back and the
wall, and he casually gets up on his
feet in t = 1.90 s while pushing on
the gift with his back, in the hope
that it stays in place so that Leo is
not on to him. If the force ~F with
which Harry pushes against his gift makes an angle of θ = 64.1◦ with the xz-plane in the positive
y-direction and φ = 69.4◦ with the xy-plane in the negative z-direction (whereby the y-axis is directed
upwards and the z-axis points out of the wall), (1) what is the distance d that the gift has traveled

across the wall when Harry is standing upright? (2) What is the magnitude of the force ~F? Assume
that the origin of the coordinate system sits at the centre of the gift (at its initial position on the
wall), that the coefficient of kinetic friction of wrapping paper on the wall equals µk = 0.730, and that

the net acceleration ~a and the gift’s trajectory run parallel with the projection of ~F onto the xy-plane.

Solution

(1) Since we assume that the net acceleration ~a as well as the gift’s trajectory run parallel with the

projection of ~F onto the xy-plane, we know that both the vector ~a and the kinetic friction force ~Fk
make an angle θ with the x-axis. Let us now in a first instance write in detail the different compo-
nents of the force ~F and the friction force ~Fk:

Force ~F Friction force ~Fk

~Fx = (F · cos θ · cosφ) ·~ix ~Fkx = (−Fk · cos θ) ·~ix

~Fy = (F · sin θ) ·~iy ~Fky = (−Fk · sin θ) ·~iy

~Fz = (−F · cos θ · sinφ) ·~iz ~Fkz = 0 ·~iz

14
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Applying Newton’s second law to the gift for each of the three dimensions x, y, and z and given that
Fk = µk · FN , we obtain the following three equations:

x-dimension y-dimension z-dimension

Fx − Fkx = mb · ax Fy − Fky −mb · g = mb · ay − Fz + FN = 0

The z-dimension tells us that FN = Fz = F · cos θ · sinφ, from which follows that Fk = µk · FN =
µk ·F · cos θ · sinφ. As a result, the equations related to the x- and y-dimension become, respectively:



Fx − Fkx = mb · ax

⇔ (F · cos θ · cosφ)− [(µk · F · cos θ · sinφ) · cos θ] = mb · (a · cos θ)

⇔ F · (cosφ− µk · cos θ · sinφ) = mb · a

Fy − Fky −mb · g = mb · ay

⇔ (F · sin θ)− [(µk · F · cos θ · sinφ) · sin θ]−mb · g = mb · (a · sin θ)

⇔ F · (sin θ − µk · cos θ · sinφ · sin θ)−mb · g = mb · (a · sin θ)

Replacing F in the second equation (y-dimension) by the expression for F obtained from the first
equation (x-dimension), we find an expression for the acceleration of the gift:

[
mb · a

(cosφ− µk · cos θ · sinφ)

]
· (sin θ − µk · cos θ · sinφ · sin θ)−mb · g = mb · (a · sin θ)

⇔ a · (sin θ − µk · cos θ · sinφ · sin θ)
(cosφ− µk · cos θ · sinφ)

− a · sin θ = g

⇔ a ·
[

sin θ − µk · cos θ · sinφ · sin θ − sin θ · cosφ+ µk · cos θ · sinφ · sin θ
cosφ− µk · cos θ · sinφ

]
= g

⇔ a ·
[

sin θ · (1− cosφ)

cosφ− µk · cos θ · sinφ

]
= g

⇔ a =
g · (cosφ− µk · cos θ · sinφ)

sin θ · (1− cosφ)
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=
9.81 · [cos(69.4◦)− 0.730 · cos(64.1◦) · sin(69.4◦)]

sin(64.1◦) · [1− cos(69.4◦)]

= 0.898 m/s2

The distance that the gift has traveled in the x- and y-direction, respectively, is equal to:


x =

ax
2
· t2 =

a · cos θ

2
· t2 =

0.898 · cos(64.1◦)

2
· 1.902 = 0.708 m

y =
ay
2
· t2 =

a · sin θ
2

· t2 =
0.898 · sin(64.1◦)

2
· 1.902 = 1.46 m

Therefore, the total distance d covered by the gift is found to be:

d =
√
x2 + y2 =

√
0.7082 + 1.462 = 1.62 m

(2) The magnitude of the force ~F can be calculated by considering the equation of Newton’s second
law with respect to, for instance, the x-dimension as determined in part (1):

F · (cosφ− µk · cos θ · sinφ) = mb · a

⇔ F =
mb · a

(cosφ− µk · cos θ · sinφ)

=
4.85 · 0.898

[cos(69.4◦)− 0.730 · cos(64.1◦) · sin(69.4◦)]

= 81.6 N
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Exercise 4

Problem Statement

Figure 4

Near an amusement park in the
centre of al-Hilla in Iraq, Bibi
(mB = 58 kg) is practicing her
kickflip and 360 spin backside with
her brand new Core C2 skateboard
(ms = 3.1 kg). Bibi notices a
semi-circle steel rail with a height
of h = 0.45 m and a radius of
r = 7.5 m and starts building up
speed so that she can grind the
rail as far as possible. By the
time she jumps onto the rail, Bibi
has reached a speed of v0 = 6.5
m/s. (1) Under what angle with
the horizontal should Bibi hit the
rail with her skateboard deck? (2) As Bibi slides along the rail, she manages to keep her balance until
she comes to a halt. At what angle is she now positioning her skateboard to avoid falling from the
rail? (3) How far did Bibi slide (work with average values)? Assume that the coefficient of kinetic
and static friction for wood on steel is equal to µk = 0.29 and µs = 0.42, respectively.

Solution

(1) Let us start with applying Newton’s second law to the system “Bibi plus skateboard deck” for

the x-and y-direction, whereby mtot = mB +ms, ~Fk (~Fs) the force related to kinetic (static) friction,
~FN the normal force, and ~acp the centripetal acceleration:

x-direction y-direction

− Fs +mtot · g · sin θ = mtot · acp · cos θ FN −mtot · g · cos θ = mtot · acp · sin θ

Given that Fs = µs · FN and inserting the expression for FN obtained from the y-direction into
the equation of the x-direction, we can calculate the appropriate angle θ when hitting the rail:

− (µs · FN) +mtot · g · sin θ = mtot · acp · cos θ

⇔ − (µs · [mtot · g · cos θ +mtot · acp · sin θ]) +mtot · g · sin θ = mtot · acp · cos θ

⇔ − (µs · [g + acp · tan θ]) + g · tan θ = acp

17
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⇔ tan θ =
(acp + µs · g)

(g − µs · acp)

⇔ θ = tan−1
[

(acp + µs · g)

(g − µs · acp)

]

= tan−1

[
(
v20
r

+ µs · g)

(g − µs · v
2
0

r
)

]
= tan−1

[
(6.5

2

7.5
+ 0.42 · 9.81)

(9.81− 0.42 · 6.52
7.5

)

]
= 53◦

(2) When Bibi eventually comes to a stop after skillfully handling her skateboard deck, her speed v
will be equal to zero along with the centripetal acceleration acp. Under these conditions, the angle
θs becomes:

θs = tan−1
[

(acp + µs · g)

(g − µs · acp)

]
= tan−1

[
(0 + µs · g)

(g − µs · 0)

]
= tan−1 ( µs ) = tan−1 ( 0.42 ) = 23◦

(3) As she slides along the rail, Bibi experiences kinetic friction ~Fk (directed towards the posi-
tive z-direction) so that the net acceleration, i.e., the tangential acceleration ~atan, is pointing in the
opposite direction of Bibi’s motion. This causes the magnitude of Bibi’s velocity ~v, which points in
the negative z-direction, to decrease continuously.

This means, in turn, that the magnitude of the centripetal acceleration ~acp as well as the angle θ

and, consequently, the magnitude of the normal force ~FN constantly change, i.e., their value declines.
Therefore, to find the distance that Bibi slid on the rail, we consider average values. For an average
speed of vav = 6.5+0.0

2
= 3.3 m/s, the corresponding average angle is equal to θav = 31◦ (by using

the expression obtained in part (1)). We can now find the average tangential acceleration atan by
applying Newton’s second law in the z-direction:

Fk = mtot · atan

⇔ µk ·
[
mtot · g · cos θav +mtot ·

v2av
r
· sin θav

]
= mtot · atan

⇔ atan = µk ·
[
g · cos θav +

v2av
r
· sin θav

]
= 0.29 ·

[
9.81 · cos(31◦) +

3.32

7.5
· sin(31◦)

]
= 2.6m/s2

The corresponding displacement ∆z by Bibi on the rail is then equal to:

v2 − v20 = 2 · atan ·∆z

⇔ ∆z =
v2 − v20
2 · atan

=
0− 6.52

2 · 2.6
= −8.0 m
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Exercise 5

Problem Statement

Figure 5

A rock with a mass of mr = 20.0 ton is hurtling
through space in the vertical direction and when it
is r = 1, 250 km away from the surface of the Earth
at an angle of θ = 59.5◦ with the vertical, the rock
possesses a speed of v0 = 2, 500 m/s and is acceler-
ating at a0 = 275 m/s2. Will it hit the Earth? As
an approximate criterion for the condition of “hitting
the Earth”, consider the critical distance xc. Given
that the gravitational force ~FG dynamically changes
as the rock approaches Earth, use the average be-
tween ~FG’s magnitude at the rock’s current position
and that at the surface of the Earth. Assume further-
more that the Earth and the rock are moving in the
xy-plane. Finally, remember that the radius of the
Earth is equal to rE = 6.38×106 m, the Earth’s mass
to M = 5.98×1024 kg, and the universal gravitational
constant to G = 6.67× 10−11 m3/(kg· s2).

Solution

According to classical mechanics, as the rock approaches Earth, it is subjected to a growing gravita-
tional force ~FG = G · mr·M

(r+rE)2
·~ir = mr ·~ag, since the distance between both objects becomes smaller.

The result is that the rock is being pulled closer towards the Earth. Before applying Newton’s sec-
ond law to the rock, let us calculate the average magnitude aav of the gravitational acceleration ~ag
between the current position and the surface of the Earth:

aav =
1

2
· (ag,current + ag,surface)

=
1

2
·
[

G ·M
(r + rE)2

+
G ·M
r2E

]

=
G ·M

2
·
[

1

(r + rE)2
+

1

r2E

]

=
6.67× 10−11 · 5.98× 1024

2
·
[

1

(1.25× 106 + 6.38× 106)2
+

1

(6.38× 106)2

]

= 8.33 m/s2
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As per Newton’s second law, we write the following equations for the rock:

x-direction y-direction

mr · ax = FG · sin θ mr · ay = FG · cos θ +mr · a0

= mr · aav · sin θ = mr · aav · cos θ +mr · a0

⇔ ax = aav · sin θ ⇔ ay = aav · cos θ + a0

= 8.33 · sin(59.5◦) = 8.33 · cos(59.5◦) + 275

= 7.17 m/s2 = 279 m/s2

In a next step, we wish to find out how long it takes the rock to travel the distance y0 + δy. This
distance is equal to:

y0 + δy = (r + rE) · cos θ = (1.25× 106 + 6.38× 106) · cos(59.5◦) = 3.87× 106 m

The time it takes to travel the distance y0 + δy is calculated by solving the below equation of
motion for the y-direction:

y0 + δy = v0 · t+
ay
2
· t2 ⇔ 3.87× 106 = 2.50× 103 · t+

279

2
· t2

The physically sensible (t ≥ 0) solution is equal to t = 158 s. This allows us to determine the
horizontal distance that the rock has covered during this time:

x =
a · sinφ

2
· t2 =

279 · sin(1.47◦)

2
· 1582 = 89, 348 m

In order to know whether the rock has hit the Earth, we first must calculate the critical distance xc:

xc = r · sin θ − δx = r · sin θ − rE · (1− sin θ)

= 1.25× 106 · sin(59.5◦)− 6.38× 106 · [1− sin(59.5◦)]

= 194, 230 m
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In other words, at the height of y0 + δy, the rock passes by the Earth at a distance of d = xc − x =
194, 230 − 89, 348 = 104, 883 m or 105 km from the surface. The rock does not hit the Earth, but
given that the Earth’s atmosphere begins around the same altitude, there is a possibility that the
rock will be slowed down and burnt by colliding with atmospheric particles.

In our problem, we took the critical distance xc as an approximate criterion for the condition “hitting
the Earth”. If we wish to be more accurate, we would need to write an expression for the distance
that the rock passes by the Earth in function of time, calculate its derivative, equate it to zero and
solve it with respect to time. The expression should be:

d =

√(
rE + xc −

a · sinφ
2

· t2
)2

+

(
(r + rE) · cos θ −

[
v0 · t+

a · cosφ
2

· t2
])2

− rE

After some calculations, we would find that after a time of t = 161.186 s, the rock reaches the
minimal distance of dmin = 102, 965 m, which is not too far off from our solution, i.e., 104,883 m.
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Exercise 6

Problem Statement

Figure 6

Emilio (mE = 72.9 kg) just
drove an hour from his home
in Viseu, Portugal, to go
water skiing in the Atlantic
Ocean along the coast of
Aveiro. His friend Isabela
agreed to take him onto the
water with her boat. At
one point, Isabela takes a
turn with a radius of r =
125 m at a constant speed.
Meanwhile, Emilio is firmly
holding the tow rope, which
makes an angle of θ = 13.7◦

with the horizontal, and in
the curve, he is following a
path (without skidding) that lies radially d = 5.10 m more outwards compared to Isabela’s posi-
tion, producing an angle φ between the tow rope and his velocity vector ~v = 18.4 ·~iy m/s. The water

that Emilio pushes away sideways in the curve exerts a force of ~Fw = 150 ·~ix N upon him, and he
is also experiencing a kinetic friction force ~Fk opposite to his direction of motion—assume a kinetic
friction coefficient of skis on water of µk = 0.175. What is the value of the angle φ?

Solution

We start with applying Newton’s second law to Emilio in the three spatial dimensions, whereby
keeping in mind that Fk = µk · FN and that ~T represents the tension force in the tow rope:

Emilio

x : (T · cos θ) · sinφ+ Fw =
mE · v2

r + d

y : (T · cos θ) · cosφ− (µk · FN) = 0

z : FN −mE · g − T · sin θ = 0

Plugging the expression for FN obtained from the equation in the z-direction into that of the y-
direction, we can write the following equation for the magnitude of the tension force ~T :
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(T · cos θ) · cosφ− µk · [mE · g + T · sin θ] = 0

⇔ T =
µk ·mE · g

cos θ · cosφ− µk · sin θ

We now insert the above expression for T into the equation of the x-direction:

[
µk ·mE · g

cos θ · cosφ− µk · sin θ

]
· cos θ · sinφ+ Fw =

mE · v2

r + d

⇔
(
mE · v2

r + d
− Fw

)
· cosφ− (µk ·mE · g) · sinφ = µk · tan θ ·

(
mE · v2

r + d
− Fw

)

Remember that the linear combination of a cosine and a sine function, i.e., “a ·cos γ+b ·sin γ”, can be
replaced by a single cosine function “c · cos(γ+ δ)”, whereby c = sgn(a)

√
a2 + b2 and δ = tan−1(− b

a
).

If we apply this to our above expression, we obtain:

√(
mE · v2
r + d

− Fw
)2

+ (−µk ·mE · g)2 · cos

[
φ+ tan−1

(
µk ·mE · g
mE ·v2
r+d
− Fw

)]
= µk · tan θ ·

(
mE · v2

r + d
− Fw

)

⇔ φ+ tan−1

(
µk ·mE · g
mE ·v2
r+d
− Fw

)
= cos−1

 µk · tan θ ·
(
mE ·v2
r+d
− Fw

)
√(

mE ·v2
r+d
− Fw

)2
+ (µk ·mE · g)2



Let us first calculate the angle δ = tan−1(− b
a
) at the left-hand side of the above equation:

tan−1

(
µk ·mE · g
mE ·v2
r+d
− Fw

)
= tan−1

(
0.175 · 72.9 · 9.81

72.9·18.42
125+5.10

− 150

)
= 72.4◦

The right-hand side of our equation is equal to:

cos−1

 µk · tan θ ·
(
mE ·v2
r+d
− Fw

)
√(

mE ·v2
r+d
− Fw

)2
+ (µk ·mE · g)2

 = cos−1

 0.175 · tan(13.7◦) ·
(

72.9·18.42
125+5.10

− 150
)

√(
72.9·18.42
125+5.10

− 150
)2

+ (0.175 · 72.9 · 9.81)2



= 89.3◦

Inserting the above two values into our equation, we obtain the value of the angle φ:

φ+ 72.4◦ = 89.3◦ ⇔ φ = 16.9◦
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Exercise 7

Problem Statement

Feeling re-energized after a weekend of hiking close to the Bavarian Sea, Grgur is analyzing astro-
nomical data with a pair of fresh eyes on Monday morning in the ESO’s headquarters in Garching,
Germany. Apparently, the mental and physical recharging over the weekend have payed off as Grgur
identifies a pattern between two newly discovered objects after one hour of work. The first object,
which he named MS-X52R, is orbiting the planet Mars (in a circular orbit), while the second object,
called SN-Y22T, circles the planet Saturn. By the time SN-Y22T has completed 1 revolution around
Saturn, MS-X52R has already orbited Mars 7.43 times. Moreover, Grgur also found that the orbital
height of SN-Y22T above the planet’s surface relative to that of MS-X52R is ten times their respec-
tive relative velocity. Grgur is interested in calculating these orbital heights. What values does he
find? Remember that the radius and mass of Mars and Saturn are equal to rM = 3.39× 106 m and
rS = 60.3× 106 m and MM = 6.42× 1023 kg and MS = 5.69× 1026 kg, respectively.

Solution

For our system “object MS-X52R orbiting planet Mars”, the only force acting on that object is the
gravitational force ~FG = G · mo·MM

(hM+rM )2
·~ir in the radial direction (with mo the mass of the object and

hM the height above the surface). Therefore, when applying Newton’s second law to object MS-X52R

and keeping in mind that its orbital speed equals vM = 2π·(hM+rM )
T

, we obtain the following expression:

FG = mo · ar

⇔ G · mo ·MM

(hM + rM)2
= mo ·

v2M
hM + rM

⇔ G · MM

(hM + rM)2
=

[2 · π · (hM + rM)]2

T 2
M · (hM + rM)

⇔ T 2
M =

4 · π2

G ·MM

· (hM + rM)3

For the object SN-Y22T we find a similar expression. Based on the observed pattern that the period
of the object MS-X52R is 7.43 times shorter compared to the object SN-Y22T (TS = 7.43 · TM), we
can write the following:

T 2
S = 7.432 · T 2

M

⇔ 4 · π2

G ·MS

· (hS + rS)3 = 7.432 · 4 · π2

G ·MM

· (hM + rM)3
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⇔ (hM + rM)

(hS + rS)
= 3

√
MM

7.432 ·MS

Based on the second pattern that Grgur observed and given the expression derived from the first
pattern together with the equation for the orbital speed obtained from Newton’s second law, we find
the ratio between the heights hS and hM :

10 · vS
vM

=
hS
hM

⇔ 100 · v
2
S

v2M
=

h2S
h2M

⇔ 100 · G ·MS

(hS + rS)
· (hM + rM)

G ·MM

=
h2S
h2M

⇔ 100 · MS

MM

· (hM + rM)

(hS + rS)
=

h2S
h2M

⇔ 100 · MS

MM

·

[
3

√
MM

7.432 ·MS

]
=

h2S
h2M

⇔ hS
hM

=

√
100 · MS

MM

· 3

√
MM

7.432 ·MS

=

√
100 · 5.69× 1026

6.42× 1023
· 3

√
6.42× 1023

7.432 · 5.69× 1026
= 49.2

If we plug this ratio into the expression obtained from the first observed pattern, we can calcu-
late the height above the surface hM at which object MS-X52R orbits the planet Mars:

(hM + rM)

(49.2 · hM + rS)
= 3

√
MM

7.432 ·MS

⇔ hM =

[
rM − rS · 3

√
MM

7.432 ·MS

]
[

49.2 · 3

√
MM

7.432 ·MS

− 1

] =

[
3.39× 106 − 60.3× 106 · 3

√
6.42× 1023

7.432 · 5.69× 1026

]
[

49.2 · 3

√
6.42× 1023

7.432 · 5.69× 1026
− 1

]

= 5.03× 103 km

Finally, the orbital height hS at which object SN-Y22T circles around the planet Saturn above
its surface is equal to hS = 49.2 · hM = 49.2 · 5.04× 103 = 2.48× 105 km.
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Exercise 8

Problem Statement

Figure 7

At this time of the year, the volcano Maat Mons on the planet
Venus (MV = 4.87×1024 kg) is highly active. Within the atmo-
spheric region close to the planet’s surface, where the 8 km-high
volcano resides, the air density is immense at a value of approx-
imately ρ = 67.0 kg/m3. At a certain point, a large basaltic
rock (mr = 1, 250 kg) is being ejected from Maat Mons. When
it reaches the highest point in its trajectory it collides with an-
other rock, thereby effectively eliminating any horizontal mo-
tion, so that the rock now starts falling vertically. If you know
that the drag force ~FD has the form of ~FD = −b · v2 · ~iy N
(with b = 1

2
· cD · ρ · π · r2, whereby the drag coefficient equals

cD = 0.635), that the radius of Venus measures rV = 6.05× 106

m, and that the basaltic rock has a diameter of about d = 92.6
cm, (1) what is the magnitude of the terminal velocity ~vT ? (2)
Write an expression for the magnitude of the rock’s velocity in
terms of the time variable t. Assume that t = 0 s when the rock is at the highest point of its
trajectory. (3) When does the rock reach 95.5% of its terminal velocity ~vT ?

Solution

(1) In a first instance, we want to calculate the magnitude of the gravitational acceleration ~g for
the planet Venus:

g =
G ·MV

r2V
=

6.67× 10−11 · 4.87× 1024

(6.05× 106)2
= 8.87 m/s2

In order to calculate the terminal velocity vT , we apply Newton’s second law to the rock (in terms
of the y-direction), keeping in mind that the net acceleration is equal to zero:

− FD + FG = 0

⇔ − 1

2
· cD · ρ · π ·

(
d

2

)2

· v2T +mr · g = 0

⇔ vT =

√
mr · g

1
2
· cD · ρ · π ·

(
d
2

)2 =

√
1, 250 · 8.87

1
2
· 0.635 · 67.0 · π ·

(
0.926
2

)2 = 27.8 m/s
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(2) Since the basaltic rock is at the highest point in its trajectory when it collides, the magnitude of
the y-component of its initial velocity ~v0 with which it starts falling is equal to zero. Based on this
information and given that we set t = 0 s at that moment, we start with writing Newton’s second
law under general conditions, i.e., the terminal velocity is not yet reached:

− FD + FG = mr · a

⇔ − b · v2 +mr · g = mr ·
(
dv

dt

)

⇔ dt =
dv(

−b
mr

)
· v2 + g

⇔
∫ t

0

dt′ =

∫ v

0

dv′(
−b
mr

)
· v′2 + g

=
(
−mr

b

)∫ v

0

dv′

v′2 − mr
b
· g

We wish to tackle this integral by applying integration by partial fractions. In a first step, we
rewrite the fraction in the integral related to the velocity in the following way:

1

v′2 − mr
b
· g

=
A

v′ +
√

g·mr
b

+
B

v′ −
√

g·mr
b

=
(A+B) · v′ + (B − A) ·

√
g·mr
b

v′2 − mr
b
· g

This means that we have to solve the following two equations:
A+B = 0

(B − A) ·
√
g ·mr

b
= 1

This gives us the solutions A = −1
2
·
√

b
g·mr and B = 1

2
·
√

b
g·mr . The integral related to the ve-

locity can now be written as follows:

(
−mr

b

)∫ v

0

dv′

v′2 − mr
b
· g

=
(
−mr

b

)∫ v

0


(
−1

2
·
√

b
g·mr

)
v′ +

√
g·mr
b

+

(
1
2
·
√

b
g·mr

)
v′ −

√
g·mr
b

 · dv′

=
1

2
·
√

mr

g · b

∫ v

0

[
1

v′ +
√

g·mr
b

− 1

v′ −
√

g·mr
b

]
· dv′
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=
1

2
·
√

mr

g · b
·

[ ∫ v

0

dv′

v′ +
√

g·mr
b

−
∫ v

0

dv′

v′ −
√

g·mr
b

]

We can now solve the integrals from the equation derived from Newton’s second law:

∫ t

0

dt′ =
1

2
·
√

mr

g · b
·

[ ∫ v

0

dv′

v′ +
√

g·mr
b

−
∫ v

0

dv′

v′ −
√

g·mr
b

]

⇔ t =
1

2
·
√

mr

g · b
·
[ (

ln

∣∣∣∣v +

√
g ·mr

b

∣∣∣∣− ln

∣∣∣∣√g ·mr

b

∣∣∣∣)− (ln

∣∣∣∣v −√g ·mr

b

∣∣∣∣− ln

∣∣∣∣√g ·mr

b

∣∣∣∣) ]

⇔ t =
1

2
·
√

mr

g · b
·
[

ln

∣∣∣∣v +

√
g ·mr

b

∣∣∣∣− ln

∣∣∣∣v −√g ·mr

b

∣∣∣∣ ]

⇔ t =
1

2
·
√

mr

g · b
· ln

∣∣∣∣∣v +
√

g·mr
b

v −
√

g·mr
b

∣∣∣∣∣ =
1

2
·
√

mr

g · b
· ln

(
v +

√
g·mr
b

−v +
√

g·mr
b

)

In the final step of the above equation, we changed the absolute value of the natural logarithm
into regular parentheses and thereby switching the sign of the expression in the denominator. From
part (1), we have seen that the terminal velocity is equal to vT =

√
g·mr
b

. Since v < vT and given
that the input value of the natural logarithm must always be greater than zero (keep furthermore in
mind that the nominator of the above logarithm is greater than zero), we need to change the sign of
the expression in the denominator, if we put regular parentheses.

In a final step, we rewrite the above equation, so that we obtain an expression for the magnitude of
the rock’s velocity:

t =
1

2
·
√

mr

g · b
· ln

(
v +

√
g·mr
b

−v +
√

g·mr
b

)

⇔ e

(
2·
√

g·b
mr

)
·t

=
v +

√
g·mr
b

−v +
√

g·mr
b

⇔ v =

√
g ·mr

b
·

 e

(
2·
√

g·b
mr

)
·t − 1

e

(
2·
√

g·b
mr

)
·t

+ 1



The above equation tells us that the speed v of the basaltic rock goes asymptotically to vT =
√

g·mr
b

for large values of the time variable t.
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(3) Using the formula derived in part (2) for the time t in terms of the velocity v and given that
v = 0.955 ·vT and that vT =

√
g·mr
b

, we calculate the time required for the rock to reach that velocity
v as follows:

t =
1

2
·
√

mr

g · b
· ln
(
v + vT
−v + vT

)

=
1

2
·
√

mr

g · b
· ln
(

0.955 · vT + vT
−0.955 · vT + vT

)

=
1

2
·
√√√√ 1, 250

8.87 ·
[
1
2
· 0.635 · 67.0 · π ·

(
0.926
2

)2] · ln(1.955

0.045

)

= 5.91 s
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Exercise 9

Problem Statement

Figure 8

Willow is visiting her grand-
mother Evie, who lives in
Launceston, Tasmania, to
spend some quality time with
her. During some after-
noon tea with traditional An-
zac biscuits, Evie tells Wil-
low to go and get an old
painting from the attic that
she made during her child-
hood. Once up there, Wil-
low spots the painting on top
of a large storage cupboard.
While standing on the tips of
her toes, she grabs the paint-
ing and tilts it away from her
by an angle of φ = 21.3◦ with the vertical. At that moment, an old golden medallion (mm = 0.350
kg), which was hanging just over the left side of the painting and attached to a chain, which is fixed
to the middle of the top edge of the painting, slides from the left side in an arc-like motion towards
the middle—initially, the chain, which has a length of L = 34.4 cm, was making an angle of θ = 63.6◦

with the left side. If the average blink of an eye lasts tb = 0.120 s, how many times can Willow blink
before the medallion reaches the middle of the painting? Assume that the kinetic friction coefficient
between the metal of the medallion and the canvas is equal to µk = 0.784.

Solution

Note that the gravitational acceleration in the xy-plane, i.e., the plane parallel to the surface of
the canvas, is equal to ~FG · cosφ, given that Willow is tilting the painting with an angle φ. Let us
apply Newton’s second law to the three spatial dimensions, respectively (whereby ~atan represents the
tangential component of the acceleration ~a):



x : −Fk + (mm · g · sin θ) · cosφ = mm · atan

y : T − (mm · g · cos θ) · cosφ = mm · ay

z : FN −mm · g · sinφ = 0

Keep in mind that the centripetal acceleration in the y-direction (ay = v2

L
) is not equal to zero

when the medallion is swinging, so that the tension force ~T in the chain does not cancel out the
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respective component of the gravitational force ~FG. This would only be the case when the medallion
is hanging still (v = 0 m/s).

Given that the magnitude of the kinetic friction force ~Fk is equal to Fk = µk · FN , we combine the
equations from the x- and z-direction to obtain an expression for the magnitude of the acceleration
~atan along the arc-shaped line of the medallion’s path of motion:

− (µk · FN) + (mm · g · sin θ) · cosφ = mm · atan

⇔ − (µk · [mm · g · sinφ]) + (mm · g · sin θ) · cosφ = mm · atan

⇔ atan = g · (sin θ · cosφ− µk · sinφ)

Now we write an expression for the time it takes the medallion to reach the middle of the painting.
The distance d that the medallion has to cover is equal to the length of the arc over the angle θ.
In other words, d = L · (θ · π

180
), since θ has to be expressed in radians. Based on the appropriate

equation of motion, we calculate the time t it takes the medallion to reach the middle:

d =
atan

2
· t2

⇔ t =

√
2 · d
atan

=

√
2 · L · (θ · π

180
)

g · (sin θ · cosφ− µk · sinφ)

=

√
2 · 0.344 · (63.6◦ · π

180
)

9.81 · [sin(63.6◦) · cos(21.3◦)− 0.784 · sin(21.3◦)]

= 0.376 s

Given that the average blink lasts about tb = 0.120 s, we find the number of times N Willow is
able to blink by the time the medallion reaches the centre of the painting with the following calcu-
lation:

N =
t

tb
=

0.376

0.120
= 3.14
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Exercise 10

Problem Statement

Figure 9

In the western Pacific Ocean, close to the coast of Tobi Is-
land, Palau, two blacktail damselfish are feeling playful.
The heavier of the two (m1) is swimming right behind the
other one (m2 = 3.92 kg), who is moving at a constant
speed of ~v0 = 1.51 ·~ix m/s under an angle of θ = 34.8◦

with the horizontal. At a certain moment, the heavier
damselfish is pushing his friend in the same direction of
her motion with a constant force of ~F21 = 24.4 ·~ix N.
The drag force ~FD in a viscous medium for lower veloc-
ities has the general form of ~FD = −(K · η) · ~v, with η
the viscosity coefficient with a value of η = 1.787× 10−3

kg/(m·s) for water at 0◦C. The parameter K depends on
the shape of the object, and if we approximate the fish
by a sphere, we obtain K = 6 ·π · r (in m), with r = 12.0
cm. If we ignore the buoyancy force in our problem, how fast is the first blacktail damselfish going
after being pushed for t = 6.25 s?

Solution

Applying Newton’s second law to the x-direction of the first blacktail damselfish results in the fol-
lowing equation:

F21 − FD − FG · sin θ = m2 · ax

⇔ F21 − (K · η) · vx −m2 · g · sin θ = m2 · ax

If we wish to find the velocity vx at which the fish is going, we need to solve the above differen-
tial equation for the velocity vx with respect to the time variable t:

F21 − (K · η) · vx −m2 · g · sin θ = m2 ·
dvx
dt

⇔ dt =
m2 · dvx

(F21 −m2 · g · sin θ)− (K · η) · vx

⇔
∫ t

0

dt′ =

∫ vx

v0x

m2 · dv′x
(F21 −m2 · g · sin θ)− (K · η) · v′x
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The general solution of the above integral related to the velocity with random parameters is the
following:

∫ vx

v0x

dv′x
a− b · v′x

=

(
−1

b

)
· (ln |a− b · vx| − ln |a− b · v0x|)

Therefore, applying this generic solution to our integral related to the velocity, we can write the
following solution:

t =

(
− m2

K · η

)
· (ln |(F21 −m2 · g · sin θ)− (K · η) · vx| − ln |(F21 −m2 · g · sin θ)− (K · η) · v0x|)

⇔ t =

(
− m2

K · η

)
· ln
∣∣∣∣ (F21 −m2 · g · sin θ)− (K · η) · vx
(F21 −m2 · g · sin θ)− (K · η) · v0x

∣∣∣∣
⇔ e

(
−K·η
m2

)
·t

=
(F21 −m2 · g · sin θ)− (K · η) · vx
(F21 −m2 · g · sin θ)− (K · η) · v0x

⇔ vx =

(
F21 −m2 · g · sin θ

K · η

)
+

[
v0x −

(
F21 −m2 · g · sin θ

K · η

)]
· e
(
−K·η
m2

)
·t

Bearing in mind that the parameter K is equal to K = 6 · π · 0.12 = 2.26 m, we find the fol-
lowing speed vx of the first blacktail damselfish after a time of t = 6.25 s:

vx =

(
F21 −m2 · g · sin θ

K · η

)
+

[
v0x −

(
F21 −m2 · g · sin θ

K · η

)]
· e
(
−K·η
m2

)
·t

=

(
24.4−3.92·9.81·sin(34.8◦)

2.26·1.787×10−3

)
+
[

1.51−
(

24.4−3.92·9.81·sin(34.8◦)
2.26·1.787×10−3

)]
· e
(
− 2.26·1.787×10−3

3.92

)
·6.25

= 5.40 m/s
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Exercise 11

Problem Statement

Figure 10

The thirteen-year-old Bahadur is
visiting the new science fair with
his dad Husani in the Planetar-
ium Science Center in Alexan-
dria, Egypt. In one of the activ-
ities, Bahadur has to pull a large
block (M = 8.50 kg), which is
moving on a frictionless rail. On
top of the large block, a small
block (m = 4.50 kg) is positioned
precisely 12.0 cm to the right of
a marked area. Bahadur is asked
to pull the lower block for just the right amount of time t∗, so that the upper block moves to the
left and comes to rest precisely within the marked area. Since the top surface of the large block is
slightly roughened, the small block needs a minimum amount of force ~Fs before it can start moving
(the static friction coefficient is equal to µs = 0.115). Once the small block is set in motion, it
experiences a slightly lower amount of (kinetic) friction, i.e., µk = 0.102. If Bahadur pulls the large

block M with a force of ~Fpull = 15.0 ·~ix N, for how long (t∗) should he sustain this force? Assume
that the time ts corresponds to the time needed for block m to overcome the static friction—during
this time, block m is not yet moving—and is equal to ts = t∗

10
s.

Solution

Since time ts corresponds to the time for block m to surmount the static friction, whereby block m
still remains stationary, let us define time tk as the time during which Bahadur is pulling block M
and whereby block m is actually in motion. Therefore, the total time of pulling block M is equal to
t∗ = ts + tk.

When Bahadur pulls block M during a time of tk seconds, the block m experiences an inertial force
~Fi in the opposite direction of ~Fpull, as a result of block m being positioned within a non-inertial
(accelerating) reference frame, i.e., block M. During time tk, block m moves a certain distance ∆x1 to
the left and at the instant when Bahadur stops pulling, it will have obtained a velocity ~v1 = −v1 ·~ix
m/s.

From that moment onwards, the inertial force ~Fi disappears, but block m still undergoes a frictional
force ~Fk, effectively slowing the block down. If we call the distance over which the block slows down
and eventually comes to a halt ∆x2, then the general constraint for our problem is translated as
∆x1 + ∆x2 = −0.12 m (the x-axis points to the right).

Before proceeding, let us first check whether the net acceleration ~an =
~Fpull
m+M

of the system “block
m plus block M” that acts on block m is sufficiently large to induce relative motion between both
blocks. In other words, the magnitude of the force ~F = m ·~an should be larger than that of the static
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friction force ~Fs, i.e., Fs = µs · FN = µs · (m · g):

m · an > µs · (m · g) ⇔ Fpull
m+M

> µs · g

⇔ 15.0

4.50 + 8.50
> 0.115 · 9.81

⇔ 1.15 > 1.13

Now that we know that block m will effectively move to the left when Bahadur provides the force
~Fpull, let us calculate the magnitude of the net acceleration ~ap of block M once it is set in motion.
Applying Newton’s second law to block M, we obtain the following value for ap (keep in mind that
block M only experiences kinetic friction at its top side with block m, not with the rail):

−µk·(m·g)+Fpull = M ·ap ⇔ ap =
−µk · (m · g) + Fpull

M
=
−0.102 · (4.50 · 9.81) + 15.0

8.50
= 1.23 m/s2

Applying Newton’s second law to block m both during pulling block M and after letting it go, we
find the following value for the respective acceleration:

During pull After pull

− Fi + Fk = m · a1 Fk = m · a2

⇔ − (m · ap) + (µk ·m · g) = m · a1 ⇔ (µk ·m · g) = m · a2

⇔ a1 = µk · g − ap ⇔ a2 = µk · g

= 0.102 · 9.81− 1.23 = −0.234 m/s2 = 0.102 · 9.81 = 1.00 m/s2

In a next step, we write the following two equations of motion for the moment during and after the
pull, respectively:

During pull After pull

(−v1)2 − 02 = 2 · a1 ·∆x1 02 − (−v1)2 = 2 · a2 ·∆x2

⇔ ∆x1 =
v21

2 · a1
⇔ ∆x2 = − v21

2 · a2
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Plugging the above two equations for the displacement into the constraint that ∆x1 + ∆x2 = −0.12,
we obtain the following expression:

∆x1 + ∆x2 = −0.12 ⇔ v21
2 · a1

− v21
2 · a2

= −0.12

⇔ v21
2
·
(
a1 − a2
a1 · a2

)
= 0.12

Now, we insert the equation of motion v1 = a1 · tk into the above expression, which allows us to
calculate the time tk during which Bahadur pulls the block M and whereby block m is accelerating
to the left:

(a1 · tk)2

2
·
(
a1 − a2
a1 · a2

)
= 0.12 ⇔ tk =

√
0.24

a21
·
(
a1 · a2
a1 − a2

)

=

√
0.24

(−0.234)2
·
(

(−0.234) · 1.00

−0.234− 1.00

)

= 0.911 s

Finally, the total amount of time t∗ that Bahadur pulls the block M, whereby the time ts needed to
overcome the static friction is taken into account, is equal to:

t∗ = ts + tk =
t∗
10

+ tk ⇔ t∗ = tk ·
10

9
= 0.911 · 10

9
= 1.01 s

Given that the velocity v1 is equal to v1 = a1 · tk = (−0.234) · 0.911 = −0.213 m/s, let us per-
form a final check to see whether our constraint ∆x1 + ∆x2 = −0.12 m is indeed upheld:

∆x1 + ∆x2 =
v21

2 · a1
− v21

2 · a2

=
(−0.213)2

2 · (−0.234)
− (−0.213)2

2 · 1.00

= −0.12 m
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Exercise 12

Problem Statement

Figure 11

Lagrange points are relatively stable
orbits of objects of little mass in the
presence of two heavier masses (with
one mass (M1) larger than the other
(M2) for a minimum ratio of M1

M2
=

24.96), which are all orbiting around
a common center of mass, i.e., the
barycenter. In our Solar System,
examples of such massive bodies in-
clude the Sun-Jupiter and the Sun-
Earth duo as well as the Earth-Moon
system. The gravitational interplay
within these systems allows for the ex-
istence of five Lagrange points, i.e., L1

up to L5. From the perspective of a
rotating reference frame, the relatively
stable circular orbit of the object of little mass (say, m1) is the result of the combined gravitational
impact on m1, due to the large masses M1 and M2, being balanced by a pseudo-force, i.e., the cen-
trifugal force, experienced by m1 from the center of mass. The final effect is such that the period
T of the object m1 is equal to that of both mass M1 and M2—the period T is the amount of time
during which an object completes one revolution around another object.

With regard to point L3 of the Earth-Moon system, the orbit of mass m1 lies a little bit farther from
the barycenter with respect to the Moon (M2) and there is a small distance d between the position
of m1 and M2, if both objects would be located at the same side of mass M1 (with m1 being closer
to M1). If you know that the mass of the Earth and the Moon are equal to M1 = 5.972 × 1024 kg
and M2 = 7.342×1022 kg, respectively, and that the Earth-Moon distance measures R = 3.844×105

km, how far lies the Lagrange point L3 from the center of the Earth?

Solution

First off, let us define the distances r1 and r2 from the barycenter xbc, which sits in the origin of
our coordinate system (xbc = 0). Remember that the definition of the center of mass is equal to
xbc = x1·M1+x2·M2

M1+M2
.

Distance r1 Distance r2

0 =
−r1 ·M1 + r2 ·M2

M1 +M2

r2 = R− r1

⇔ r1 =
r2 ·M2

M1

⇔ r2 = R− R ·M2

M1 +M2
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⇔ r1 = (R− r1) ·
M2

M1

⇔ r2 =
R ·M1 +R ·M2 −R ·M2

M1 +M2

⇔ r1 =
R ·M2

M1 +M2

⇔ r2 =
R ·M1

M1 +M2

In a next step, we determine the orbital speed v1 and v2 of the Earth and the Moon, respectively,
around the barycenter xbc. In the isolated Earth-Moon system, whereby our coordinate system (x,y)
rotates along with the masses M1 and M2 according to their angular velocity ω = 2·π

T
(with T the

period), the gravitational force, which acts over the distance R between the Earth and the Moon,
is balanced by the centrifugal force, which acts from the respective body to the axis of rotation at xbc:

Orbital speed Earth (v1) Orbital speed Moon (v2)

G · M1 ·M2

R2
= M1 ·

v21
r1

G · M1 ·M2

R2
= M2 ·

v22
r2

⇔ v1 =

√
G ·M2 · r1

R2
⇔ v2 =

√
G ·M1 · r2

R2

As the Lagrange point L3 rotates around the barycenter xbc with the same period T—and thus
the same angular velocity ω—as the Earth and the Moon, we find the following expression for the
angular velocity ω of L3 by using, for instance, the orbital speed v1 and the definition of r1:

v1 =
2 · π
T
· r1 = ω · r1 ⇔ ω =

v1
r1

=
1

r1
·
√
G ·M2 · r1

R2
=

√
G ·M2

R2 · r1
=

√
G · (M1 +M2)

R3

Before writing the balancing equation between the gravitational forces and the centrifugal force,
let us first have a look at L3’s centrifugal force ~Fcf,L3 . Using the general expression v = ω · r, we

write ~Fcf,L3 ’s magnitude as follows (with vL3 representing L3’s orbital speed and “r1 + R − d” the
distance between L3 and the axis of rotation at xbc):

Fcf,L3 = m1 ·
v2L3

(r1 +R− d)
=

m1

(r1 +R− d)
· [ω · (r1 +R− d)]2 = m1 · ω2 · (r1 +R− d)

We can now write the balancing equation as follows:

G · M1 ·m1

(R− d)2
+G · M2 ·m1

(2 ·R− d)2
= m1 · ω2 · (r1 +R− d)

Using the above expression for the angular velocity ω and the distance r1, the equation becomes:
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G · M1 ·m1

(R− d)2
+G · M2 ·m1

(2 ·R− d)2
= m1 ·

[
G · (M1 +M2)

R3

]
·
(

R ·M2

M1 +M2

+R− d
)

⇔ M1

(R− d)2
+

M2

(2 ·R− d)2
=

[
(M1 +M2)

R3

]
·
(

R ·M2

M1 +M2

+R− d
)

⇔ M1

R2
·

(
1

1− d
R

)2

+
M2

4 ·R2
·

(
1

1− d
2·R

)2

=
M2

R2
+

(M1 +M2)

R2
− (M1 +M2) · d

R3

⇔ M1 ·
(

1− d

R

)−2
+
M2

4
·
(

1− d

2 ·R

)−2
= M2 + (M1 +M2)−

(M1 +M2) · d
R

Under the assumption that the distance d is much smaller than the distance between the Earth
and the Moon R (d << R), we can apply the method of binomial expansion (the negative binomial
theorem) of the general form “(1 + x)−b ≈ (1− b · x)” to our equation and calculate the distance d:

M1 ·
(

1 + 2 · d
R

)
+
M2

4
·
(

1 +
d

R

)
≈M2 + (M1 +M2)−

(M1 +M2) · d
R

⇔
(

2 ·M1 +
M2

4
+M1 +M2

)
· d
R
≈ 7 ·M2

4

⇔ d ≈
(

7 ·M2

12 ·M1 + 5 ·M2

)
·R

≈
(

7 · 7.342× 1022

12 · 5.972× 1024 + 5 · 7.342× 1022

)
· 3.844× 108

≈ 2.743× 103 km

Finally, the distance between the Lagrange point L3 and the center of the Earth of the Earth-
Moon system is approximately equal to:

R− d ≈ 3.844× 108 − 2.743× 106 ≈ 3.817× 105 km
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Exercise 13

Problem Statement

Figure 12

On a 5.00 m-wide gravel road outside of Balkanabat,
Turkmenistan, Melek is going ~v0 = 47.2 ·~iy m/s, when
she suddenly notices that a 90◦ left curve is ahead.
Melek hits the breaks over a distance of ∆x0 = 156
m and t0 = 4.30 s later she enters the curve, which
has a radius of r = 85.0 m, at a velocity ~vin at 1.00
m from the left guardrail. (1) Will Melek skid in the
curve? (2) If yes, will she hit the guardrail on the
right-hand side? (3) If so, when? If not, at what dis-
tance from the right rail does Melek exit the curve?
Given that Melek may change her distance from the
left rail while going through the curve, apply average
values over the width of the road between her point
of entry and the right rail when dealing with circular
motion. Assume furthermore that Melek maintains
her speed vin throughout the curve and that the ki-
netic friction coefficient between gravel and rubber tires is equal to µk = 0.718.

Solution

(1) In order to determine whether Melek will skid in the curve, we have to know the magnitude of
her incoming velocity ~vin. In a first instance, let us calculate the magnitude of the deceleration ~adec
of Melek’s car when she hit the breaks, so that we can find her speed vin:

Deceleration adec Incoming speed vin

∆x0 = v0 · t0 +
adec
2
· t20 v2in − v20 = 2 · adec ·∆x0

⇔ adec =
2 · (∆x0 − v0 · t0)

t20
⇔ vin =

√
v20 + 2 · adec ·∆x0

=
2 · (156− 47.2 · 4.30)

4.302
=
√

47.22 + 2 · (−5.08) · 156

= −5.08 m/s2 = 25.4 m/s

In a next step, we want to know at what maximal speed Melek can go through the curve with-
out skidding. Keep in mind that the kinetic friction force is equal to ~Fk = −(µk ·mc · g) ·~ix (with
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mc the mass of the car) and that the car in a rotating framework, relative to an inertial reference

frame, experiences a centrifugal force ~Fcf =
(
mc·v2
r

)
·~ix. However, as Melek enters the curve at 1.00

m from the left guardrail and since she may or may not change her position over the remaining width
of the road, we add the average distance

(
5.00−1.00

2

)
= 2.00 m as well as the 1.00 m to the radius

of the curve. Therefore, the centrifugal force becomes ~Fcf =
(
mc·v2
r+3.00

)
·~ix. Applying Newton’s sec-

ond law (in the x-direction) to Melek’s car under these conditions, we obtain the following speed vmax:

− (µk ·mc · g) +

(
mc · v2max
r + 3.00

)
= 0

⇔ vmax =
√
µk · g · (r + 3.00)

=
√

0.718 · 9.81 · (85.0 + 3.00)

= 24.9 m/s

Since vin = 25.4 m/s > vmax = 24.9 m/s, Melek’s car will start skidding in the curve.

(2) As the sideways acceleration is thus not equal to zero, the car will pick up some velocity in
the positive x-direction. Let us first establish how much time Melek spends in the curve. Given
a constant speed of vin = 25.4 m/s and a distance of s = (r + 3.00) · π

2
= 138 m (the angle 90◦

is expressed in radians), the time is equal to t = s
vin

= 138
25.4

= 5.45 s. Next, we wish to know the
maximal sideways acceleration amax the car can have before hitting the guardrail on the right:

xmax =
amax

2
· t2 ⇔ amax =

2 · xmax
t2

=
2 · (5.00− 1.00)

5.452
= 0.269 m/s2

We find the sideways acceleration of Melek’s car by applying Newton’s second law:

−(µk ·mc · g) +

(
mc · v2in
r + 3.00

)
= mc · a ⇔ a = −(0.718 · 9.81) +

(
25.42

85.0 + 3.00

)
= 0.264 m/s2

As a = 0.264 m/s2 < amax = 0.269 m/s2, Melek will not hit the guardrail.

(3) Keeping in mind Melek’s entry point into the curve at 1.00 m from the left guardrail, the final
position in the x-direction of Melek’s car at the moment when he exits the curve is equal to:

x = x0 +
a

2
· t2 = 1.00 +

0.264

2
· 5.452 = 4.92 m

Therefore, the distance d from the guardrail at the right-hand side then becomes:

d = 5.00− x = 5.00− 4.92 = 0.0830 m or 8.30 cm
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Exercise 14

Problem Statement

Figure 13

Halima is doing research at the Copper-
belt University in Zambia on superclus-
ters, which are aggregate systems of various
galaxy groups and smaller clusters, whereby
one of them, the Ophiuchus Supercluster,
which is located at a distance of roughly 370
million light-years away from us (1 light-year
is equal to 9.46×1015 m), particularly inter-
ests her. Halima suspects to have found a
black hole at the edge of the Ophiuchus Su-
percluster around which three other objects
are orbiting in a circular fashion. So far, Hal-
ima has managed to retrieve the following
information from the orbiting objects: ob-
ject 1 has a period of T1 = 163 Earth days,
the distance from object 2 to the center of the black hole is equal to r2 = 5.93×107 km, the distance
from object 1 to the black hole is twice as large relative to that of object 3, and the distance from
object 3 to the black hole is 1.26 times greater with respect to object 2. (1) Halima wants to calculate
the mass of the black hole in terms of the mass of our Sun, which is equal to Ms = 1.99 × 1030 kg.
What value does she find? (2) What is the period (in Earth days) for object 2 and 3? (3) What
are the orbital velocities of the three objects? Remember that the universal gravitational constant
G is equal to G = 6.67 × 10−11 m3/(kg· s2) and assume that, due to the overwhelmingly strong
gravitational influence of the black hole, the gravitational interactions between the three objects are
minimal and can therefore be ignored, and that the mass MBH of the black hole remains constant.

Solution

(1) For each of the three isolated subsystems “object plus black hole”, the gravitational force
~FG = −G · M ·MBH

r2
·~ir between the object and the black hole is counteracted by the existence of

a centrifugal force ~Fcf = M ·v2
r
·~ir, when viewed from the perspective of the rotating object. As a

result, both forces balance each other out and the object follows a relatively stable orbit. Applying
Newton’s second law to any of the objects, and bearing in mind that the orbital speed v is equal to
v = 2·π

T
· r, we obtain the following equation (which is Kepler’s third law):

−G · M ·MBH

r2
+
M · v2

r
= 0

⇔ G ·MBH

r2
=

4 · π2

T 2
· r
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⇔ T 2 =
4 · π2

G ·MBH

· r3

The respective distances between the objects and the center of the black hole are calculated as follows:



r2 = 5.93× 1010 m

r3 = 1.26 · r2 = 1.26 · 5.93× 1010 = 7.47× 1010 m

r1 = 2 · r3 = 2 · 7.47× 1010 = 1.49× 1011 m

From the equation for object 1, we can now calculate the mass MBH of the black hole (note that the
period is expressed in seconds, not Earth days, during the following calculation):

T 2
1 =

4 · π2

G ·MBH

· r31

⇔ MBH =
4 · π2

G · T 2
1

· r31

=
4 · π2

6.67× 10−11 · (163 · 24 · 3600)2
· (1.49× 1011)3

= 9.96× 1030 kg

In terms of solar masses, we find the value:

MBH =
9.96× 1030

1.99× 1030
= 5.00 Ms

(2) Since the mass of the black hole MBH is constant, we obtain the following expression based
on the equation derived in part (1):

4 · π2

G ·MBH

=
T 2
1

r31
=
T 2
2

r32
=
T 2
3

r33

Therefore, the period of object 2 and 3, respectively, can be found as follows:
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Period Object 2 Period Object 3

T 2
1

r31
=
T 2
2

r32

T 2
1

r31
=
T 2
3

r33

⇔ T2 = T1 ·

√
r32
r31

⇔ T3 = T1 ·

√
r33
r31

⇔ T2 = 163 ·

√
(5.93× 1010)3

(1.49× 1011)3
⇔ T3 = 163 ·

√
(7.47× 1010)3

(1.49× 1011)3

= 40.7 Earth days = 57.6 Earth days

(3) The expression for the orbital velocity of any object can be derived from the equation obtained
in part (1). Therefore, the orbital velocities of the three objects can be calculated as follows:

Orbital speed Object 1 Orbital speed Object 2 Orbital speed Object 3

v1 =

√
G ·MBH

r1
v2 =

√
G ·MBH

r2
v3 =

√
G ·MBH

r3

=

√
6.67× 10−11 · 9.96× 1030

1.49× 1011
=

√
6.67× 10−11 · 9.96× 1030

5.93× 1010
=

√
6.67× 10−11 · 9.96× 1030

7.47× 1010

= 6.67× 104 m/s = 1.06× 105 m/s = 9.43× 104 m/s

= 2.40× 105 km/h = 3.81× 105 km/h = 3.39× 105 km/h

Alternatively, the orbital speeds can also be calculated based on the formula v = 2·π
T
· r. For in-

stance, the speed for object 2 is equal to v2 = 2·π
T2
· r2 = 2·π

40.7·86,400 · 5.93× 1010 = 1.06× 105 m/s.

The orbital speeds reveal that the object closest to the black hole, i.e., object 2, is the one with the
highest orbital speed and the shortest period. The object farthest away from the black hole, i.e.,
object 1, has the lowest orbital speed and the longest period.
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Exercise 15

Problem Statement

Figure 14

On 23 January 1960, Jacques Piccard and Don Walsh
descended in their 18 m-long small submarine, called a
bathyscaphe, to a depth of d = 10, 911 m in the Mariana
Trench in the Pacific Ocean. During the descent, both men
spent nearly five hours in a 2.16 m-wide pressure sphere.
Suppose that at one moment, Jacques was holding a maga-
zine of length L = 25.00 cm horizontally with both hands,
and on top of it, a set of keys (msk = 0.3850 kg) was
resting. The keys were connected to one end of an elas-
tic rubber spring, while the other end was attached to a
metal ring through which Jacques had put his index fin-
ger of his right hand. Due to a sudden disturbance in the
bathyscaphe’s balance, Jacques removed his left hand from
the magazine to hold on to the side of the pressure sphere.
As a result, Jacques tilted the magazine by an angle of
θ = 46.80◦ with the vertical and the set of keys slid downwards (from the top side of the magazine
cover), stretching thereby the rubber spring (the metal ring was still around Jacques’ index finger

of his right hand). If the restoring force in a spring has the general form of ~Fr = −k · x ·~ix, with
k the spring constant, which for this particular rubber spring is equal to k = 9.450 N/m, (1) did
the set of keys slide off of the bottom of the magazine? (2) If they did, at what distance did the
keys dangle from the bottom of the magazine? (3) If Jacques would have held the magazine in the
same way when sitting in his living room at home, what would the results have been then? Re-
member that the universal gravitational constant G is equal to G = 6.673× 10−11 m3/(kg· s2), and
the mass and the radius of the Earth to ME = 5.9722×1024 kg and rE = 6.3781×106 m, respectively.

Solution

(1) Let us first determine the value of the gravitational acceleration ~gd at the depth d = 10, 911 m:

gd =
G ·ME

(rE − d)2
=

6.673× 10−11 · 5.9722× 1024

(6.3781× 106 − 10, 911)2
= 9.830m/s2

Due to the friction between the keys and the magazine, the keys would have reached at some point
an equilibrium position, whereby the elastic rubber spring was stretched over a distance Ls with
respect to its initial position. Applying Newton’s second law (in the x-direction) to the set of keys
in their equilibrium situation, we find the following value for Ls:

−k · Ls +msk · gd · cos θ = 0 ⇔ Ls =
msk · gd · cos θ

k
=

0.3850 · 9.830 · cos(46.80◦)

9.450
= 27.42 cm
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Since the length of the magazine L = 25.00 cm was shorter than the equilibrium distance Ls = 27.42
cm of the set of keys, the keys would have fallen off of the bottom of the magazine.

(2) Under the angle of θ = 46.80◦, the remaining distance ∆x to the equilibrium position of the keys
was equal to ∆x = Ls − L = 27.42 − 25.00 = 2.415 cm. However, at the moment when the keys
fell off of the bottom of the magazine, they were subject to the gravitational acceleration gd and not
gd · cos θ. Therefore, if we take into account the full acceleration gd, the remaining part of the rubber
string, which was dangling vertically from the bottom of the magazine, stretched over the following
distance h:

h =
∆x

cos θ
=

2.415

cos(46.80◦)
= 3.528 cm

(3) At his home, Jacques would have experienced the gravitational acceleration at the surface of
the Earth, which is equal to g = 9.81 m/s2. The equilibrium distance Lsh would have been equal to:

Lsh =
msk · g · cos θ

k
=

0.3850 · 9.81 · cos(46.80◦)

9.450
= 27.36 cm

In other words, at the surface of the Earth the rubber spring would stretch over a slightly lesser
distance, which is equal to Ls − Lsh = 27.42− 27.36 = 5.619× 10−2 cm.

The vertical distance hh at which the keys dangle from the bottom of the magazine would then
become:

hh =
(Lsh − L)

cos θ
=

27.36− 25.00

cos(46.80◦)
= 3.446 cm

The difference in vertical height in the two scenarios is equal to h − hh = 3.528 − 3.446 = 8.208 ×
10−2 cm. To check our results, if we multiply the difference in vertical height by the cosine of the
angle θ, we must obtain the difference between the respective equilibrium distances:

(h− hh) · cos θ = Ls − Lsh ⇔ (8.21× 10−2) · cos(46.80◦) = 5.62× 10−2 cm = Ls − Lsh
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Exercise 16

Problem Statement

Figure 15

The four largest moons—called the
Galilean moons—orbiting (anti-
clockwise) around the planet Jupiter
(Mj = 1.898 × 1027 kg) are among
the largest within our Solar Sys-
tem. Of this quartet, the two in-
nermost moons orbiting Jupiter are
Io (Mio = 8.93 × 1022 kg) and
Europa (Meur = 4.80 × 1022 kg),
whereby Io travels at a height of
hio = 350, 500 km above Jupiter’s
surface. Suppose that about 6.5
years ago the China National Space
Administration (CNSA) launched
a space probe (msp = 2, 850 kg),
which just now successfully settled into Europa’s orbit at a distance of roughly s = 526, 800 km
behind the moon with an orbital speed of vsp = 13, 739 m/s. (1) What is the net gravitational force
~FG experienced by the probe when at the moment of arrival Io is located right above Jupiter whereas
Europa makes an angle of θ = 45.0◦ with the horizontal? (2) Suppose that, after being in orbit for
21.3 hours, the CNSA decides to bring the probe into Io’s orbit. It takes the probe 22.4 hours to
reach Io’s orbit at an angle of φ = 25.0◦ south of west. When the probe arrives at its new location,
what angle does Io’s position make with the vertical and at what distance is the probe ahead of or
behind the moon Io? (3) At that moment, where is Europa located in its orbit with respect to both
the vertical and the probe’s position? Remember that the universal gravitational constant G is equal
to G = 6.67 × 10−11 m3/(kg· s2) and that Jupiter’s radius measures about rj = 7.15 × 107 m, and
assume furthermore circular orbits.

Solution

(1) At the moment when the probe enters into Europa’s orbit, it undergoes a gravitational force of
Jupiter, Io, and Europa according to our isolated system. In order to determine the net gravitational
force ~FG on the probe, we need to find the distances between the probe and the three masses. Let us
start with the distance dj,sp between Jupiter and the space probe. From a rotating frame of reference
put at the center of Jupiter, the gravitational force exerted on an orbiting body is balanced by the
centrifugal force. As a result, given that the probe’s orbital speed is equal to vsp = 13, 739 m/s, we
find dj,sp as follows:

G · Mj ·msp

d2j,sp
=
msp · v2sp
dj,sp

⇔ dj,sp =
G ·Mj

v2sp
=

6.67× 10−11 · 1.898× 1027

13, 7392
= 670, 680 km
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The distance dio,sp, which is equal to distance a in Fig. 15, between the moon Io and the probe can
be calculated with the help of the Pythagorean theorem applied to the right-angled triangle between
Jupiter, Io, and the probe:

dio,sp =
√

(rj + hio)2 + (dj,sp)2 =
√

(7.15× 107 + 3.505× 108)2 + (6.7068× 108)2 = 7.92× 108 m

Still within the same triangle, the angle at the probe (let’s call it γ) is equal to:

γ = tan−1
(
rj + hio
dj,sp

)
= tan−1

(
7.15× 107 + 3.505× 108

6.7068× 108

)
= 32.2◦

For the distance deur,sp between the moon Europa and the probe, which corresponds to distance
b in Fig. 15, we can apply the law of sines to the triangle formed between Jupiter, Europa, and the

probe
(

b
sin θ

=
dj,eur
sinα

=
dj,sp
sinβ

)
, with dj,eur the distance between Jupiter and the moon Europa and

α (β) the angle at the probe (the moon Europa). Since dj,eur = dj,sp, it follows from the law of
sines that sinα = sin β. As none of the angles within this triangle are larger than 90◦, we have that
α = β = 67.5◦. As per the law of sines, the distance deur,sp is then calculated as follows:

deur,sp = b = dj,sp ·
sin θ

sin β
= 6.7068× 108 · sin(45.0◦)

sin(67.5◦)
= 5.13× 108 m

We can now write the x-and y-components of the net gravitational force ~FG exerted upon the space
probe by the three massive bodies in the probe’s vicinity:

x-direction

~FG,x =

[
−G ·Mj ·msp

d2j,sp
− G ·Mio ·msp

a2
· cos γ − G ·Meur ·msp

b2
· cosα

]
·~ix

= (−G ·msp) ·
[
Mj

d2j,sp
+
Mio

a2
· cos γ +

Meur

b2
· cosα

]
·~ix

= (−6.67× 10−11 · 2, 850) ·
[

1.898× 1027

[6.7068× 108]2
+

8.93× 1022

[7.92× 108]2
· cos(32.2◦) +

4.80× 1022

[5.13× 108]2
· cos(67.5◦)

]
·~ix

= −802 ·~ix N
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y-direction

~FG,y =

[
G ·Mio ·msp

a2
· sin γ +

G ·Meur ·msp

b2
· sinα

]
·~iy

= (G ·msp) ·
[
Mio

a2
· sin γ +

Meur

b2
· sinα

]
·~iy

= (6.67× 10−11 · 2, 850) ·
[

8.93× 1022

[7.92× 108]2
· sin(32.2◦) +

4.80× 1022

[5.13× 108]2
· sin(67.5◦)

]
·~iy

= 0.0464 ·~iy N

The net gravitational force ~FG is then equal to:

~FG = −
(√

F 2
G,x + F 2

G,y

)
·~ir = −

(√
(−802)2 + 0.04642

)
·~ir = −802 ·~ir N

The vector ~FG thereby makes an angle δ = tan−1
(
FG,y
|FG,x|

)
= tan−1

(
0.0464
802

)
= 0.00331◦ with the

horizontal. In other words, the net gravitational force ~FG basically points in the negative x-direction
towards the planet Jupiter, i.e., the center of the probe’s orbit. As a check, we can indeed see that
the net gravitational force ~FG is balanced by the centrifugal force ~Fcf :

~Fcf =
msp · v2sp
dj,sp

·~ir =
2, 850 · 13, 7392

6.7068× 108
·~ir = 802 ·~ir N

(2) One way to find the angular distance δd,io, i.e., the number of degrees the moon Io has re-
volved around Jupiter after tio = 21.3 + 22.4 = 43.7 hours, is the following (with Tio representing the
period of Io):

δd,io =
tio
Tio
· 360◦ =

tio√
4·π2

G·Mj
· (rj + hio)3

· 360◦ =
43.7 · 3, 600√

4·π2·(7.15×107+3.505×108)3
6.67×10−11·1.898×1027

· 360◦ = 369.955◦

In other words, during the time tio, the moon Io has completed just a bit more than one rev-
olution around Jupiter. Io’s angular position δp,io with respect to the vertical is then equal to
δp,io = 369.955◦−360◦ = 9.96◦ west of north. This means that the probe is ahead of Io by an angular
distance equal to ∆δio = (90◦ − δp,io) + φ = (90◦ − 9.96◦) + 25◦ = 105◦. This corresponds with the
following distance d (expressed in meters) between Io and the probe:

d =
∆δio
360◦

· [2 · π · (rj + hio)] =
105◦

360◦
· [2 · π · (7.15× 107 + 3.505× 108)] = 7.74× 105 km
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(3) As the orbital speed veur of the moon Europa is equal to veur = vsp = 13, 739 m/s, the distance
deur covered by Europa during the time tio is equal to:

deur = veur · tio = 13, 739 · (43.7 · 3, 600) = 2.16× 109 m

The corresponding angular distance δd,eur is calculated as follows:

δd,eur =
deur

2 · π · dj,eur
· 360◦ =

2.16× 109

2 · π · 6.7068× 108
· 360◦ = 184.65◦

In other words, the angular position δp,eur of Europa is equal to δp,eur = 45◦−(184.65◦−180◦) = 40.4◦

west of south. Note that with respect to the probe’s angular position, i.e., φ = 25.0◦ south of west,
Europa’s angular position δp,eur becomes δp,eur = [(184.65◦ − 180◦) + 45◦]− 25◦ = 24.7◦ ahead of the
probe (in the counterclockwise direction).
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Exercise 17

Problem Statement

Figure 16

On a sunny Sunday afternoon, Micaela is practicing one
of her favourite sport activities, i.e., clay target shoot-
ing, at the Club de Cazadores in Tucumán, Argentina.
If the target (mt = 105 g) leaves the shooting station,
which is installed at d = 45.5 cm above the ground,
with an initial speed of v0 = 23.6 m/s under an an-
gle of θ = 35.2◦ with the horizontal, while undergo-
ing a drag force ~FD = −b · ~v (with a drag coeffi-
cient of b = 0.0068 kg/s), at what distance h from the
ground does the target find itself when it’s at its highest
point?

Solution

When applying Newton’s second law to the target in the y-direction (the x-direction is irrelevant to
our problem), we obtain the following equation:

−mt · g − b · sin θ · v = mt · ay

As we need to find the height h, we must find an expression for h in terms of the time variable t. One
way to tackle this problem is to directly integrate the above equation twice. We will apply another
method based on differential equations. Keeping in mind that the acceleration a (the speed v) is
equal to the second (first) derivative of the position y, the differential equation has the following form:

mt · ay = −mt · g − b · sin θ · v ⇔ ay = −g − b · sin θ
mt

· v

⇔ d2y

dt2
= −g − b · sin θ

mt

· dy
dt

⇔ d2y

dt2
+
b · sin θ
mt

· dy
dt

= −g

Let us solve this differential equation in two steps. First, we consider the so-called homogeneous
solution, whereby we set the right-hand side of the above equation to zero:

d2y

dt2
+
b · sin θ
mt

· dy
dt

= 0
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A possible solution for this equation could be, for instance, y = eλ·t. Implementing our suggestion,
the equation becomes:

d2y

dt2
+
b · sin θ
mt

· dy
dt

= 0 ⇔ d2(eλ·t)

dt2
+
b · sin θ
mt

· d(eλ·t)

dt
= 0

⇔ λ2 · eλ·t +
λ · b · sin θ

mt

· eλ·t = 0

⇔ λ2 +
λ · b · sin θ

mt

= 0

⇔ λ1 = 0 and λ2 = −b · sin θ
mt

As both values for λ are a solution, any linear combination of y = eλ·t for these two values is also
a solution. Therefore, we can write the homogeneous solution yh to our differential equation in the
following general form (with c1 and c2 two constants):

yh = c1 · eλ1·t + c2 · eλ2·t ⇔ yh = c1 · e0·t + c2 · e−
b·sin θ
mt
·t

⇔ yh = c1 + c2 · e−
b·sin θ
mt
·t

The second step involves finding a particular solution yp, when taking into account that the right-
hand side of our original differential equation is not equal to zero (it is equal to “-g”). As a possible
solution, we might try the expression yp = A · t+B, with A and B certain constants. Inserting this
possible solution into our original differential equation, we obtain the following expression for the
constant A:

d2yp
dt2

+
b · sin θ
mt

· dyp
dt

= −g ⇔ d2(A · t+B)

dt2
+
b · sin θ
mt

· d(A · t+B)

dt
= −g

⇔ 0 +
b · sin θ
mt

· A = −g

⇔ A = − mt · g
b · sin θ

If we add the particular solution yp to the homogeneous solution yh, we get the following complete
solution to our differential equation:

y = yh + yp =
[
c1 + c2 · e−

b·sin θ
mt
·t
]

+
[
− mt · g
b · sin θ

· t+B
]
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We can find the value of the constants c1, c2, and B by taking into account the two initial conditions
at t = 0 s, whereby the position of the target is equal to y0 = d and the speed (in the y-direction) is
equal to v0y = v0 · sin θ. For the first initial condition (y0 = d), we get:

d =
[
c1 + c2 · e−

b·sin θ
mt
·0
]

+
[
− mt · g
b · sin θ

· 0 +B
]
⇔ d = c1 + c2 +B

For the second initial condition (v0y = v0 · sin θ), we get:

v0 · sin θ =
dy

dt

∣∣∣∣
t=0

⇔ v0 · sin θ = −c2 ·
b · sin θ
mt

· e−
b·sin θ
mt
·0 − mt · g

b · sin θ

⇔ c2 = − mt

b · sin θ
·
( mt · g
b · sin θ

+ v0 · sin θ
)

Given that d = c1 + c2 +B, the sum of the constants c1 +B becomes:

c1 +B = d− c2 = d+
mt

b · sin θ
·
( mt · g
b · sin θ

+ v0 · sin θ
)

If we insert these values for c1 +B and c2 into our complete solution to our differential equation, we
obtain the following expression:

y = d+
mt

b · sin θ
·
( mt · g
b · sin θ

+ v0 · sin θ
)
·
(

1− e−
b·sin θ
mt
·t
)
− mt · g
b · sin θ

· t

When the target is at its highest point during its trajectory, we know that the y-component of
its velocity is equal to zero. The time tmax at which this occurs is calculated as follows:

dy

dt

∣∣∣∣
t=tmax

= 0

⇔
(
b · sin θ
mt

)
·
( mt

b · sin θ

)
·
( mt · g
b · sin θ

+ v0 · sin θ
)
· e−

b·sin θ
mt
·tmax − mt · g

b · sin θ
= 0

⇔ b · sin θ
mt · g

·
( mt · g
b · sin θ

+ v0 · sin θ
)

= e
b·sin θ
mt
·tmax

⇔
(

1 +
b · v0 · sin2 θ

mt · g

)
= e

b·sin θ
mt
·tmax
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⇔ ln

∣∣∣∣1 +
b · v0 · sin2 θ

mt · g

∣∣∣∣ =
b · sin θ
mt

· tmax

⇔ tmax = ln

∣∣∣∣1 +
b · v0 · sin2 θ

mt · g

∣∣∣∣
mt
b·sin θ

= ln

∣∣∣∣1 +
0.0068 · 23.6 · sin2(35.2◦)

0.105 · 9.81

∣∣∣∣ 0.105
0.0068·sin(35.2◦)

= 1.35 s

Inserting this value for tmax into the above expression for y , we find the distance h from the ground
at the time when the target is at its highest point:

y = d+
mt

b · sin θ
·
( mt · g
b · sin θ

+ v0 · sin θ
)
·
(

1− e−
b·sin θ
mt
·tmax

)
− mt · g
b · sin θ

· tmax

⇔ h = 0.455 +
0.105

0.0068 · sin(35.2◦)
·
(

0.105 · 9.81

0.0068 · sin(35.2◦)
+ 23.6 · sin(35.2◦)

)
·
(

1− e−
0.0068·sin(35.2◦)

0.105
·1.35
)

− 0.105 · 9.81

0.0068 · sin(35.2◦)
· 1.35

⇔ h = 9.57 m
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Exercise 18

Problem Statement

Figure 17

Trans-Neptunian Objects
(TNOs) are dwarf plan-
ets (or minor planets)
in the outer Solar Sys-
tem whereby their aver-
age orbiting distance to
the Sun (Ms = 1.99 ×
1030 kg) is larger than
that of Neptune, i.e., the
outermost planet within
our Solar System. Eris
and Sedna are two TNOs
following elliptical trajec-
tories around the Sun,
whereby the orbit of the
dwarf planet Eris, which
has an elliptical eccentricity equal to eE = 0.436 and a semi-minor axis of length bE = 9.14× 1012 m,
is the consequence of historically significant gravitational interactions with Neptune—it is therefore
assigned to the sub-classification of “scattered-disk objects”. In contrast, due to the much larger
orbit of the dwarf planet Sedna, which is most likely the result of a collision with some planet-sized
object or star, Sedna is only marginally experiencing Neptune’s gravitational influence and therefore
belongs, arguably, to the sub-classification of “detached objects”. (1) If the eccentricity of Sedna’s
orbit is 1.95 times greater with respect to Eris and if the distance between one of the foci and the
center of Sedna’s orbit is 14.54 times larger compared to Eris, how do the orbital velocities of these
two dwarf planets compare at their perihelion, i.e., the point on their elliptical orbit closest to the
massive body around which they orbit? Use the vis-viva equation, i.e., v2 = G ·Ms ·

(
2
r
− 1

a

)
, with G

the universal gravitational constant (G = 6.67× 10−11 m3/(kg· s2)) and a the semi-major axis of the
ellipse, to calculate the velocities. (2) What are the periods of the dwarf planets Eris and Sedna?
For this problem, put the origin of the respective coordinate system in the focus point to the right
of the center of the ellipse and use polar coordinates.

Solution

(1) Let us in the first place recall some of the properties of an elliptical orbit, when expressed in
polar coordinates and the origin of the coordinate system is positioned in the right focus point:

General Properties Elliptical Trajectory

e2 = 1− b2

a2
r =

a · (1− e2)
1 + e · cos θ

c = e · a
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In order to calculate the orbital velocities, we need to determine both the length a of the semi-major
axis and the distance rp between the Sun and the perihelion. Based on the general properties of an
ellipse, we find the semi-major axis aE of Eris’ orbit as follows:

aE =
bE√

1− e2E
=

9.14× 1012

√
1− 0.4362

= 1.02× 1013 m

From Fig. 17 (right-hand side) we can see that the angle θ at the perihelion is equal to θ = 0◦.
Therefore, using the equation of an elliptical trajectory, we can find the distance rp,E for Eris’ orbit:

rp,E =
aE · (1− e2E)

1 + eE
= aE · (1− eE) = 1.02× 1013 · (1− 0.436) = 5.73× 1012 m

To calculate the length aS of the semi-major axis of Sedna’s orbit, we use the provided relation-
ship between the eccentricities (eS = 1.95 · eE) as well as the distances c (cS = 14.54 · cE) of both
dwarf planets. Based on the general properties of ellipses, we find aS:

cS = eS · as

⇔ [14.54 · cE] = [1.95 · eE] · as

⇔ [14.54 · (eE · aE)] = [1.95 · eE] · as

⇔ aS =
14.54

1.95
· aE =

14.54

1.95
· 1.02× 1013 = 7.57× 1013 m

The distance rp,S between the Sun and the perihelion of Sedna’s orbit then becomes:

rp,S = aS · (1− eS) = aS · (1− [1.95 · eE]) = 7.57× 1013 · (1− [1.95 · 0.436]) = 1.13× 1013 m

The orbital speed of Eris and Sedna, respectively, at their perihelion can now be found as follows:


vp,E =

√
G ·Ms ·

(
2

rp,E
− 1

aE

)
=
√

6.67× 10−11 · 1.99× 1030 ·
(

2
5.73×1012 −

1
1.02×1013

)
= 5,770 m/s

vp,S =

√
G ·Ms ·

(
2
rp,S
− 1

aS

)
=
√

6.67× 10−11 · 1.99× 1030 ·
(

2
1.13×1013 −

1
7.57×1013

)
= 4,650 m/s

56



Physics Exercises on Applications of Newton’s Laws Olivier Loose

Let us now consider the orbital speed vp,E of Eris as well as the distance rp,E to its perihelion relative
to Sedna:



vp,E
vp,S

=
5, 770

4, 650
= 1.24

rp,E
rp,S

=
5.73× 1012

1.13× 1013
= 0.505

For circular orbits, we know that the orbital speed increases with a shorter radius
(
v ∼

√
1
r

)
, and

from the vis-viva equation we expect a similar trend for elliptical orbits. Indeed, while the distance
to the Sun from Eris’ perihelion is half that of Sedna, the orbital speed at its perihelion is 24% higher.

(2) The definition of the period T in the case of elliptical orbits is the same as for circular orbits,
except that the radius r is replaced by the semi-major axis a. In fact, both definitions of the period
become equal to each other when we set the eccentricity in the expression for an elliptical trajectory
equal to zero, which is the case for a circle, whereby we find that r = a. The period of Eris and
Sedna is calculated as follows, respectively (whereby 1 year counts 365.25 days):



TE = 2 · π ·

√
a3E

G ·Ms

= 2 · π ·
√

(1.02× 1013)3

6.67× 10−11 · 1.99× 1030
= 1.77× 1010 s or 559 years

TS = 2 · π ·

√
a3S

G ·Ms

= 2 · π ·
√

(7.57× 1013)3

6.67× 10−11 · 1.99× 1030
= 3.59× 1011 s or 11, 400 years

The dwarf planet Sedna is currently at a distance of r = 1.26 × 1013 m away from the Sun at
an angle of θ = 37.8◦ south of east, and it will reach its perihelion on 9 March 2076 or, according to
other sources, on 18 July 2076. The dwarf planet Eris, on the other hand, will reach its perihelion
on 22 December 2259 (or, some say, 7 December 2257), and it is now located at r = 1.43 × 1013 m
from the Sun at an angle of θ = 12.1◦ south of west. Note that the angles refer to the angle θ of our
coordinate system in Fig. 17.
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Exercise 19

Problem Statement

Figure 18

During this cold and snowy
month of December in
Erzurum, Turkey, Mehmet
(mM = 72.5 kg) has
dressed up as Noel Baba
to bring his little brother
Omer some long-desired
gifts. Mehmet wants to
do it in style, so he takes
his sled (ms = 5.50
kg) and slides down the
incline—which makes an
angle of θ = 16.4◦ with the
horizontal—behind their
house while holding three
gifts (m1 = 3.50 kg, m2 = 2.50 kg, and m3 = 1.50 kg), all stacked on top of each other. (1) If
the kinetic friction coefficient for the sled on snow is equal to µk,s = 0.0455 and the static friction
coefficient for paper on paper to µs = 0.545, how will gift 2 and 3 behave relative to gift 1? (2) What
is the minimum value that µs should have if the gifts have to remain steady? (3) Suppose that µs has
a value of 95% of the minimum value established in part (2) and that the kinetic friction coefficient
µk,2 between gift 1 and 2 is equal to 75% of this minimum value and the coefficient µk,3 between gift
2 and 3 to µk,3 =

µk,2
2

. How do the gifts behave now?

Solution

(1) In a first instance, let us calculate the magnitude of the acceleration ~a of the system “Mehmet
plus sled plus the three gifts” (mtot = mM+ms+m1+m2+m3 = 72.5+5.50+3.50+2.50+1.50 = 85.0
kg) sliding down the incline. Applying Newton’s second law in both the x- and y-direction to this
system, we obtain the following two equations:

x-direction y-direction

FG · sin θ − Fk,1 = mtot · a FN − FG · cos θ = 0

⇔ (mtot · g) · sin θ − µk,s · FN = mtot · a ⇔ FN − (mtot · g) · cos θ = 0

We then find the magnitude of the acceleration ~a as follows:

mtot · a = (mtot · g) · sin θ − µk,s · [(mtot · g) · cos θ]

⇔ a = g · (sin θ − µk,s · cos θ) = 9.81 · [sin(16.4◦)− 0.0455 · cos(16.4◦)] = 2.34 m/s2
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If we now consider gift 2 and 3 from the perspective of the system “Mehmet plus sled plus gift
number 1”, which is an accelerating frame of reference, then they will experience an inertial force
~Fi,2 and ~Fi,3, respectively, pointing in the opposite direction of the acceleration vector ~a. Before we

proceed, let us first determine the magnitude of both the normal force ~FN,3 and ~FN,2 for gift 3 and
2, respectively, by applying Newton’s second law in the y-direction (remember that gift 2 experi-

ences a downwards pointing contact force ~Fc (not drawn) due to gift 3 which is, as per Newton’s

third law, equal in magnitude and opposite in direction to the normal force ~FN,3, so that ~Fc = −~FN,3):

FN,3 −m3 · g + Fi,3 · sin θ = 0

⇔ FN,3 = m3 · g − (m3 · a) · sin θ = 1.50 · 9.81− (1.50 · 2.34) · sin(16.4◦) = 13.7 N

FN,2 − FN,3 −m2 · g + Fi,2 · sin θ = 0

⇔ FN,2 = FN,3 +m2 · g − (m2 · a) · sin θ = 13.7 + 2.50 · 9.81− (2.50 · 2.34) · sin(16.4◦) = 36.6 N

To determine whether gift 2 and 3 will start sliding, we have to compare the magnitude of (the

x-component of) ~Fi,2 and ~Fi,3, respectively, with that of the relevant friction forces (since gift 2 has
physical contact with two other gifts, it experiences two friction forces, i.e., one at the bottom and
one at the top):

Inertial force (Gift 2) Static friction forces (Gift 2)

Fi,2,x = m2 · a · cos θ Fs,2 − Fs,3 = µs · FN,2 − µs · FN,3

= 2.50 · 2.34 · cos(16.4◦) = 0.545 · 36.6− 0.545 · 13.7

= 5.62 N = 12.5 N

Inertial force (Gift 3) Static friction forces (Gift 3)

Fi,3,x = m3 · a · cos θ Fs,3 = µs · FN,3

= 1.50 · 2.34 · cos(16.4◦) = 0.545 · 13.7

= 3.37 N = 7.48 N

Given that the x-component of both the inertial forces ~Fi,2 and ~Fi,3 is unable to overcome the
respective static friction forces, neither gift 2 nor gift 3 will slip and therefore both remain in position
with respect to gift 1.

(2) The minimum value for the static friction coefficient µs can be found by applying Newton’s second
law in the x-direction to, for instance, gift 2:
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− Fi,2 · cos θ + Fs,2 − Fs,3 = 0

⇔ − (m2 · a) · cos θ + µs,min · FN,2 − µs,min · FN,3 = 0

⇔ µs,min =
(m2 · a) · cos θ

FN,2 − FN,3
=

(2.50 · 2.34) · cos(16.4◦)

36.6− 13.7
= 0.246

(3) With a new value for µs equal to µs,∗ = 0.95 ·µs,min = 0.95 ·0.246 = 0.233, which is lower than the
minimum value, we know that gift 2 will now start sliding to the left with net acceleration ~a2. Given
that µk,2 = 0.75 ·µs,min = 0.75 · 0.246 = 0.184 and µk,3 =

µk,2
2

= 0.184
2

= 0.0921, we can determine the
magnitude of the acceleration ~a2 (relative to gift number 1) by applying Newton’s second law in the

x-direction to gift 2, whereby ~Fk,2 and ~Fk,3 represent the kinetic friction forces between gift 1 and 2
and gift 2 and 3, respectively:

− Fi,2 · cos θ + Fk,2 − Fk,3 = m2 · a2

⇔ − (m2 · a) · cos θ + µk,2 · FN,2 − µk,3 · FN,3 = m2 · a2

⇔ a2 = −a · cos θ +
µk,2
m2

· FN,2 −
µk,3
m2

· FN,3

= −2.34 · cos(16.4◦) +
0.184

2.50
· 36.6− 0.0921

2.50
· 13.7

= −0.0562 m/s2

Similarly, the net acceleration ~a3 for gift 3 (with respect to gift 1) is found as follows:

− Fi,3 · cos θ + Fk,3 = m3 · a3

⇔ − (m3 · a) · cos θ + µk,3 · FN,3 = m3 · a3

⇔ a3 = −a · cos θ +
µk,3
m3

· FN,3

= −2.34 · cos(16.4◦) +
0.0921

1.50
· 13.7

= −1.40 m/s2

Relative to gift 1, gift 3 moves faster to the left than gift 2, and under this scenario, gift 3 will fall
off of the top of gift 2 quite quickly. If we wish to know the accelerations relative to the ground, we
add the term ax = a · cos θ = 2.34 · cos(16.4◦) = 2.25 m/s2 to the above values, so that we obtain
a2 = 2.19 m/s2 and a3 = 0.842 m/s2.
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Exercise 20

Problem Statement

Figure 19

Amina is doing postdoctoral research at
the Sultan Qaboos University, in Muscat,
Oman, whereby she specializes in binary
star systems, i.e., gravitationally bound
systems in which two stars orbit around
their common center of mass called the
barycenter (xbc). Amina is currently study-
ing data from the Lepus constellation,
which lies at a declination of 20◦ south of
the celestial equator, and has identified a
new binary star system of circular orbits.
Star 1 has a mass ofm1 = 1.45·Mz, withMz

the mass of the star Zeta Leporis and equal
to Mz = 1.46 ·Ms (whereby the mass of the
Sun measuresMs = 1.99×1030 kg), whereas
the mass of star 2 is equal to m2 = 3.20·Mz.
Amina has furthermore calculated that the stars complete one orbit in exactly 166 days. (1) What
distance did Amina measure between both stars? Express your answer in terms of the Earth-Sun
distance res = 1.496× 108 km. (2) What value does Amina find for the orbital velocity of each star?
Remember that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2).

Solution

(1) Let us in a first instance calculate the mass Mz of the star Zeta Leporis:

Mz = 1.46 ·Ms = 1.46 · 1.99× 1030 = 2.91× 1030 kg

In order to determine the radii r1 and r2 of the two stars orbiting around the barycenter, we first
apply the definition of the center of mass with the origin of our coordinate system positioned at the
center of star 1 to locate the barycenter:

xbc =
m1 · x1 +m2 · x2

m1 +m2

=
(1.45 ·Mz) · 0 + (3.20 ·Mz) · d

(1.45 ·Mz + 3.20 ·Mz)

=
3.20

4.65
· d = 0.688 · d

61



Physics Exercises on Applications of Newton’s Laws Olivier Loose

As a result, the orbital radius of star 1 and star 2 is equal to r1 = 0.688 · d and r2 = d − r1 =
d− 0.688 · d = 0.312 · d, respectively.

In a next step, we apply Newton’s second law to star 1 from the perspective of a reference frame
positioned at the barycenter that is rotating along with the two stars. Within such frame, the grav-
itational force between both stars is balanced by an inertial force, i.e., the centrifugal force, so that
we can write:

G · m1 ·m2

d2
=
m1 · v21
r1

⇔ G · (1.45 ·Mz) · (3.20 ·Mz)

d2
=

(1.45 ·Mz) · v21
0.688 · d

If we now insert the expression for the orbital velocity v1 = 2·π·r1
T

into the above equation, we
can calculate the distance d between star 1 and star 2:

G · (1.45 ·Mz) · (3.20 ·Mz)

d2
=

(1.45 ·Mz)

0.688 · d
·
[

2 · π · (0.688 · d)

T

]2

⇔ G · 3.20 ·Mz

d2
=

4 · π2 · (0.688 · d)

T 2

⇔ d =
3

√
3.20 ·G ·Mz · T 2

4 · π2 · 0.688

=
3

√
3.20 · 6.67× 10−11 · 2.91× 1030 · (166 · 24 · 3, 600)2

4 · π2 · 0.688

= 1.67× 1011 m

=
1.67× 1011

res
res =

1.67× 1011

1.496× 1011
res = 1.12 res

(2) The orbital velocities of the stars are calculated as follows:


v1 =

2 · π · r1
T

=
2 · π · (0.688 · 1.67× 1011)

166 · 24 · 3, 600
= 5.05× 104 m/s

v2 =
2 · π · r2

T
=

2 · π · (0.312 · 1.67× 1011)

166 · 24 · 3, 600
= 2.29× 104 m/s

Since the period is the same for both stars, it indeed makes sense that the (heavier) star with
the smaller orbital radius, i.e., star 2, has the lower orbital velocity.
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