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Summary of Exercises

Exercise 1

On a rainy Saturday afternoon, Artem (m = 69.4 kg) is feeling rebellious and climbs the h = 14.0
m-high, egg-shaped main building of the Pysanka Museum in Kolomyia, Ukraine. Once sitting on
top, Artem has difficulties holding on to the wet surface, so he starts to slip and slides down. (1)
If the building is approximately elliptical in shape with an elliptical eccentricity of e = 0.750 and if
Artem loses contact with the side of the egg when the elliptical radius r makes an angle of θ = 78.6◦

west of north, what is the magnitude of his velocity ~v in that moment? (2) If the bottom side of the
egg sits b = 2.50 m below the ground, at what height hp from the pavement does Artem find himself
when he becomes detached from the building? Ignore any kind of friction for this problem.

Exercise 2

During radioactive decay, either the atomic composition of the nucleus of a chemical element is fun-
damentally altered—this is the case for α- and β-decay—or an element lowers its nuclear energy
levels (γ-emission), emitting thereby high-energy radiation. In one of the several nuclear chain re-
actions called the Thorium Series, the unstable element thorium (232

90Th) decays through a series of
events until it is transformed into the stable element lead (208

82Pb). One of the intermediary steps
includes an α-decay of radon’s 220-isotope (220

86Rn) into polonium’s 216-isotope (216
84Po) whereby an

α-particle, i.e., the nucleus of a helium (He) atom, is emitted. Suppose now that two α-particles
(mα = 6.64 × 10−27 kg) elastically collide at a speed of v1,i = 14.2 × 106 m/s and v2,i = 14.8 × 106

m/s, respectively. The velocity ~v1,i of the first particle α1 is initially making an angle of θ1,i = 135◦

with the z-axis, whereby the angle φ1,i, i.e., the angle between the projection onto the xy-plane and
the x-axis, is equal to φ1,i = 65.4◦. Regarding the second particle α2, the respective angles are equal
to θ2,i = 66.0◦ and φ2,i = 153◦. (1) If you know that after the collision the angle with the z-axis is
equal to θ1,f = 49.13◦ and θ2,f = 123.21◦, respectively, what is the final speed of both particles, i.e.,
v1,f and v2,f? (2) In which direction are α1 and α2 now headed?

Exercise 3

You own the private company called Satplans Science Ltd., dedicated to gathering and processing
scientific data from the four innermost planets in our Solar System. As a result of healthy working
capital levels, you are able to install the satellite Suzy 3 (m = 4, 630 kg) in a perfectly circular are-
osynchronous equatorial orbit (AEO) around the planet Mars—an AEO is the Martian equivalent
of a geostationary orbit around Earth—despite the significant orbital station keeping costs due to
the gravitational impact of the planet’s two moons, i.e., Phobos and Deimos. If you consider the
system “Suzy 3”, (1) what is the work done on the satellite? (2) Is linear momentum conserved?
(3) Write a general formula for the work done by the satellite’s engine when changing orbit. (4)
Suppose that Suzy 3 is guided towards a new orbit with a radius 60% of its original. How much
work has Suzy 3’s engine performed? (5) What is the total amount of work done on the system?
Remember that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2) and
the mass, the radius, and the rotation period of Mars to M = 6.417 × 1023 kg, r = 3.396 × 106 m,
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and T = 24h 37min 22.7s, respectively.

Exercise 4

It’s mid-June and Estée is currently taking the final exam of her AP Physics 1 course at the American
School of Madrid in Pozuelo de Alarcón, Spain. The weather is particularly hot today and she has
20 minutes left to answer the final question of her exam. Luckily, as it is one of her most favourite
courses, Estée prepared thoroughly for this exam and with her acute sense of focus she finishes the
question under 10 minutes, despite the oppressive heat. The final question was the following. A
pulley system with three blocks A (mA = 4.75 kg), B (mB = 3.50 kg), and C (mC) is presented in
Fig. 5, whereby mass C is hanging d = 75.4 cm from the top of the incline, whose length is equal to
L = 2.52 m and makes an angle of θ = 64.2◦ with the horizontal. The surface under mass A generates
a kinetic friction coefficient of µk1 = 0.453 with the block, whereas the incline has a rougher surface
and therefore produces a higher kinetic friction coefficient of µk2 = 0.678 with mass B. Initially,
someone is preventing block A from moving and when they release the block, mass C is accelerating
downwards until it hits the ground. If you know that the total work done on block C during its
displacement is equal to W = 5.54 J, (1) determine the mass of block C and (2) its speed when it
hits the ground. What answers did Estée find?

Exercise 5

Duško (mD) is enjoying his winter holidays in the Kamnik-Savinja Alps in the north of Slovenia.
The seasoned skier that he is, Duško loves going off-piste to explore and carve out new paths. At a
certain point, he is standing on top of a hill and notices that further down the ski run is interrupted
by a large gap, after which the path continues. Just before the gap, the slope goes back up and at
the end of the upward slope, at the very edge of the gap, there are three naturally formed ramps,
which make an angle of θ1 = 7·π

36
, θ2 = π

4
, and θ3 = 11·π

36
with the horizontal, respectively. If you know

that the distance between the bottom of the hill and the point where Duško is currently standing is
the minimal height required to gain sufficient speed to cross the gap, which one of the three ramps
should Duško choose to safely reach the other side? Assume that the edges at both sides of the gap
are at the same height and ignore any friction or drag forces for this problem.

Exercise 6

For the past two hours, Chanmony (mC = 74.8 kg) has been guiding her paraglider over the rural
outskirts of the Kampong Chhnang province, Cambodia, enjoying the undulating paddy fields, the
meandering Tonle Sap River, and the hilly landscapes in the west. Meanwhile, Ponnleu (mP = 69.6
kg) is taking up the beautiful scenery from a lower altitude, steering her mountain bike across several
dusty village roads. At one point, Chanmony is descending at a constant velocity with a magnitude
of vC = 7.82 m/s in the southeastern direction (φ = 40.8◦ south of east) under an angle of θ = 15.5◦

with the horizontal, and is about to land near the roadside on the opposite side of a village road that
lies parallel to the east-west axis. However, right at the moment when Chanmony flies over the road,
Ponnleu, who was initially going at a speed of v0 = 4.25 m/s and has been accelerating (a = 0.507
m/s2) for the past ∆x = 200 m, is all caught up in her own world, not paying attention to her
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surroundings, and fails to see Chanmony coming from the northwestern direction. Both collide, but
somehow still manage to hold on to each other and roll entangled for a distance d in the field near
the road until they come to a halt, thanks to the kinetic friction with the grass (µk = 0.439). (1)
What is the velocity of Chanmony and Ponnleu rolling together right after the collision? (2) What
distance do they need to come to a stop?

Exercise 7

Most of the leftover debris from the days when the Solar System was being formed is orbiting in a
large torus-shaped disk either between the planets Mars and Jupiter—called the asteroid belt— or
beyond the outermost planet Neptune—this disk is referred to as the Kuiper belt, whose main region’s
width is about 20 times the distance between the Earth and the Sun. The largest and most massive
object that belongs to the Kuiper belt is the dwarf planet Pluto with a mass of M = 1.30 × 1022

kg and a radius of r = 1.19 × 106 m. Its flimsy gaseous atmosphere mainly consists of nitrogen
(N2), methane (CH4), and carbon monoxide (CO), stretching out at some places as high as 1,600
km. Suppose that a massive rock (m = 2, 750 kg) is knocked out from its orbit within the Kuiper
belt and is headed straight towards Pluto. When it is h = 25.0 km away from Pluto’s surface, the
rock has a velocity of ~v1 = −339 ·~iy m/s, and despite the thin atmosphere, the rock experiences a

drag force, which has the form of ~FD = b · v2 ·~iy. A little over a minute later, the rock hits Pluto’s

surface at a velocity of ~v2 = −368 ·~iy m/s. (1) Use calculus to derive an expression for the work WD

done by the drag force ~FD on the rock. (2) What is the value of WD? Remember that the universal
gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2).

Exercise 8

As her parents had to go and do some errands for about an hour, Semira is babysitting her three-
year-old baby brother Jemal in their home right behind Fiat Tagliero in Asmara, Eritrea. Jemal
loves to play with the colourful rubber toy spring (with a length of L = 45.0 cm) that his sister
bought him for his recent birthday, and Semira wants to show him a new trick. She places the
spring horizontally on the kitchen floor with one end leaning against the plinth of a cupboard and
presses the spring together over a distance ∆x1. Semira then places two small plastic blocks of mass
m1 = 0.15 kg and m2 = 0.35 kg on top of each other (the lightest one goes on top) and puts them in
front of the compressed spring. When Semira lets go of the blocks, the spring shoots them forward
across the kitchen floor to the great amusement of Jemal.

(1) What is the maximum distance that Semira should compress the spring so that the upper block
stays put when being released? (2) What is the total work done on the two blocks combined during
this displacement? (3) When the spring reaches its equilibrium position, the two blocks become
detached from the spring. What is their speed at that moment? (4) How far (∆x2) do the blocks
slide across the kitchen floor? (5) Does the upper block still remain steady during ∆x2? The spring
constant k is equal to k = 10.3 N/m, and assume that the kinetic friction coefficient between the
lower block and the kitchen floor is equal to µk1 = 0.065, and that the kinetic (static) friction coeffi-
cient between the two plastic blocks equals µk2 = 0.115 (µs = 0.225).
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Exercise 9

In Nur-Sultan, the capital city of Kazakhstan, Sarsen (m = 57.5 kg) is trying out the professional
skatepark of the newly created green urban area, which also includes city parks, an outdoor cinema,
a beach area, bike lanes and pedestrian esplanades. One of the skatepark’s main attractions is a
looping installed at the end of a long inclined run-up track, which makes an angle of θ = 12.5◦ with
the ground. As a safety measure, an elastic rubber rope is hanging from the top at both sides of the
looping. If the wheels of the skateboard only create kinetic friction with the track (µk = 0.112)—the
friction with the surface of the looping is negligible—and given an inner radius of the looping equal to
R = 3.55 m, (1) what minimum distance L should Sarsen walk up the track in order to successfully
go through the looping? (2) Suppose that Sarsen did not attain sufficient speed and loses contact
with the surface of the looping when he is a horizontal distance of d = 1.00 m away from the rubber
rope. Luckily, he manages to get hold of the bottom end of the rubber rope, which has a length of
s = 1.00 m and stretches according to the spring force ~Fx = −k · ~x (k = 357 N/m), and falls down
vertically. How far from the ground is Sarsen when the rope is maximally stretched right after his fall?

Exercise 10

Elina is a promising young billiard player who is currently participating in a local tournament in
Brèst, Belarus. She managed to reach the finals and is now in a position where she can win the
tournament. That is, only if Elina is able to pocket the last two billiard balls with just one single
stroke. The (white) cue ball is located near the right edge, whereas the last object ball, i.e., the solid
red number 3, finds itself in front of the top right pocket, i.e., d1 = 7.60 cm from the right edge and
d2 = 27.3 cm from the top edge. The (black) 8 ball is positioned close to the top left pocket, i.e.,
d3 = 5.85 cm from the top edge and d4 = 20.4 cm from the left edge. Elina holds the cue stick in
such a way that it makes an angle θ1 with the right edge and gives the cue ball an initial speed of
vc,i. If Elina first pockets ball number 3 and subsequently the 8 ball with just one shot, (1) what
speed vc,i should she give the cue ball? (2) What angle θ1 does Elina’s cue stick make with the right
edge? Assume that the solid red ball and the 8 ball enter their respective pocket with a speed of
v3,f = 1.25 m/s and v8,f = 0.86 m/s and that the three billiard balls all have the same mass m = 165
g. Ignore any kind of friction.

Exercise 11

In the experimental classroom of the University of Costa Rica in the capital city of San José, Samuel
is putting his knowledge on the laws of physics into practice. One of the experiments consists of two
large, differently shaped, frictionless ramps put right next to each other, whereby two small steel
bearing balls (m = 0.354 kg) are released simultaneously from the top of the slope (one ball for each
ramp). The purpose of this particular experimental design is to demonstrate pratically how the law
of energy conservation is at work. One of the ramps follows a straight path, whereas the other has
an elliptical shape—in fact, it is the bottom left segment of an ellipse when dividing a full ellipse into
four equal parts. Samuel wishes to figure out what the exact position is of each bearing ball when
the speed ve of the ball on the elliptical trajectory is twice that of the ball on the straight path (vs).
If Samuel has already calculated that the ball on the straight trajectory needs t = 1.91 s to reach the
bottom, at which moment it possesses a speed of vs,f = 5.83 m/s, and if he has now installed one of
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the measuring devices next to the straight path at a height of ys = 1.44 m, what coordinates—with
respect to the coordinate system (x,y)—does Samuel find for both bearing balls?

Exercise 12

According to one report of the Ume̊a University in Ume̊a, Sweden, the tenuous atmosphere of the
planet Mercury is mainly composed of oxygen (42%), sodium (29%), hydrogen (22%), helium (6%),
and minor traces of other elements, among which potassium (0.5%). Suppose now that a sodium
atom (mNa = 22.9898 amu) is whizzing through Mercury’s atmosphere relatively close to its surface
with a speed of vNa,i = 1, 252 m/s and under an angle of φ = 65.4◦ with the horizontal. A potas-
sium atom (mK = 39.0983 amu), traveling at a speed vK,i, is right behind the sodium atom and
collides with it, sending the sodium atom straight up. (1) What should be the minimum incoming
speed of the potassium atom so that the sodium atom is able to exit Mercury’s atmosphere? (2)
After the collision, is the kinetic energy of the potassium atom still sufficient to make it out of Mer-
cury’s well of gravitational potential energy? Ignore any solar radiation pressure or drag forces for
this problem and assume that the collision is perfectly elastic. Remember that 1 atomic mass unit
(amu) is equal to 1 amu = 1.661 × 10−24 g, that the universal gravitational constant G is equal to
G = 6.67× 10−11 m3/(kg· s2), and that the mass and radius of Mercury is equal to M = 3.30× 1023

kg and r = 2.44× 106 m, respectively.

Exercise 13

You are sitting at gate 15 of the Shenyang Taoxian International Airport, which is located at the
capital city of Shenyang in the province Liaoning in China, waiting to board your flight CZ3602 to
Guangzhou in the south of China. Being the astute engineer that you are, you immediately spot
that the airplane model is the Airbus A320 Neo and since you have some free time on your hands,
you decide to do some off-hand calculations. The flight attendant mentioned earlier that n = 161
passengers booked a seat, and you estimate that each person weighs about mpas = 75.0 kg and
that they carry mhl = 5.00 kg of hand luggage and checked in a suitcase of msc = 16.5 kg. You
further know that an empty A320 Neo model has a mass of mpl = 44.3 t and that the fuel tanks
contain approximately 27,500 L of jet fuel (with a density of d = 692 g/L). This specific model
is furthermore equipped with two Pratt & Whitney PW1127G engines that each give a thrust of
T = 27, 000 lbf. As it is raining, you estimate that the tires create a slightly lower kinetic friction
(µk = 0.135) with the runway. (1) You’re interested in finding the speed vh of the airplane halfway
the runway, which has a total length of L = 1, 982 m. What value for vh do you write down in
your notebook? (2) If you estimate that the average power of the plane at that moment is equal to
Ph = 3.97 MW and that the plane requires 70.7 % of the total takeoff time t to get to that point,
how much time does it still need to accelerate before taking off? (3) What value do you find for the
speed vf at lift-off? Remember that the pound-force is equal to 1 lbf = 1 lb × g, with g the accel-
eration due to gravity, and you assume that the pilot needs the entire length of the runway to take off.

Exercise 14

At high school, Hilde enjoyed studying mathematics and during her two final years she chose
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the advanced course option whereby she was taught 8 hours of mathematics per week. After
high school, Hilde wanted to combine her interest in mathematics with her fascination for the
natural laws that explain how the physical world works. As a result, she decided to pursue a
master’s degree in physics and astronomy at the Free University of Brussels, in Belgium. Af-
ter a semester of hard work, Hilde is ready to tackle her first exam, which, according to her
schedule, is that of the course “Classical Mechanics”. The opening question consists of three
parts and reads as follows. A particle is undergoing a force ~F (~r), which is equal to ~F (~r) =[
xy2z2

2
· cos(kxyz)

]
· ~ix +

[
x2yz2

2
· cos(kxyz)

]
· ~iy +

[
x2y2z

2
· cos(kxyz)

]
· ~iz, with k a constant equal

to k = 0.453. (1) Show that the force ~F (~r) is conservative. (2) Determine the potential energy
function V (~r), whereby V (~0) = 0. (3) Calculate the work done on the particle by this force as it
moves from ~r1 = (2, 2, 2) to ~r2 = (1,−3, 5). How did Hilde answer this opening question?

Exercise 15

For the past 2 years, Toivo has held the maximum score on the Cyclone pinball machine in the local
pub Kurva Kodu in Rakvere, Estonia. However, last night, his best friend Kaarli broke his record,
and since then Toivo has been trying non-stop to regain his leader position on the Hall of Fame
Scoreboard. The pinball machine has a length of L = 1.25 m and the playfield makes an angle of
θ = 9.65◦ with the horizontal. The top left and top right corners of the playfield are round in shape
and on the right-hand side, there is a long isolated compartment from where the metal ball (with
a mass and radius equal to m = 0.252 kg and r = 0.550 cm) is launched. The compartment has
a width of d = 8.00 cm and its left edge stops at a distance d from the top edge of the pinball
machine. The launch mechanism is a spring (k = 155 N/m), which compresses when being pulled
backwards from outside of the machine. In resting mode, the equilibrium length of the spring is equal
to s = 14.0 cm. Toivo has also figured out that it greatly benefits his game if the ball enters the
playfield when it still “sticks” to the top edge of the pinball machine as it exits the top right rounded
corner. If you know that the metal ball produces kinetic friction (µk = 0.228) with the bottom surface
of the playfield, how far back, at a minimum, should Toivo pull the external handle so that, upon
release, the metal ball enters the playfield with the greatest odds of beating Kaarli’s maximum score?

Exercise 16

Suppose that 30,000 years ago, at a distance of d = 2.50 light years away from the center of the
Sun, two massive rocks collided. The first rock, with a mass of m1 = 5.95× 105 kg, smashed with a
speed of v1,i = 95, 400 km/h into a heavier second rock (m2 = 1.22 × 106 kg), which was traveling
slower at v2,i = 10, 200 km/h. After the collision, which happened to be perfectly elastic, rock 1
deviated from its original path by an angle of α = 33.2◦ and headed straight towards our Solar
System, which we consider, for practical purposes, to be equal to the system “the Sun plus planet
Earth”. Moreover, as soon as it followed its new course, rock 1 became sensitive to the gravitational
influence of our Solar System (ignore the gravitational pull by rock 2). Today, rock 1 finally reached
our Solar system and is about to hit the surface of the Sun. If you know that at that moment the
Earth is in an orbital position at 90◦ with respect to the line of trajectory of rock 1, what is the rock’s
speed as it crashes into the Sun? Remember that the universal gravitational constant G is equal to
G = 6.67× 10−11 m3/(kg· s2), that the mass and radius of the Sun are equal to Ms = 1.99× 1030 kg
and rs = 6.96×105 km, respectively, that the mass of the Earth is equal to ME = 5.97×1024 kg, and
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that 1 light year measures 9.46× 1012 km. Also take into account that at a distance d the Earth-Sun
distance (rES = 1.496× 108 km) becomes, relatively speaking, very small and can be ignored in the
calculations.

Exercise 17

After spending their entire morning attending classes at the Norbuling Central School in Gelephu,
Bhutan, Sangay (m = 57.4 kg) and her friends Sherab and Kim rush to one of the nearby tributary
streams of the Manas River. On one side of the river bank, a couple of indigenous trees called Ehretia
acuminata are standing tall next to each other and Sangay has attached a rope of length L = 8.55 m
to one of their branches, whereby one end of the rope is a distance ∆y = 1.75 m short from touching
the ground. Sangay runs up to the rope with an initial speed v0, grabs it and subsequently swings
on it until she briefly comes to a halt, at which moment the rope is making an angle of θmax = 28.4◦

with the vertical. After a couple of swings, Sangay feels adventurous and she quickly estimates that
when releasing the rope at an angle θ, whereby θ < θmax, she will make it to the other riverbank.
Sangay is right in her calculations and she indeed just reaches the other side of the stream. (1) If
you know that the tension in the rope right before the moment when Sangay releases it is equal to
T = 565 N, what is the value of the angle θ? (2) How wide is the river? (3) With what speed does
Sangay hit the ground on the other side?

Exercise 18

On 14 December 2007, the Earth surveillance satellite RADARSAT-2 (m = 2, 250 kg) was launched
with the assistance of a Soyuz launch vehicle from the Baikonur Cosmodrome in the south of Kaza-
khstan (45◦58′42.3′′N 63◦17′31.9′′E). The data gathered during its observation is used for research as
well as for developing applications and services in a wide range of areas, including pollution moni-
toring, ice monitoring, agricultural crop monitoring, geological mapping, and disaster management.
RADARSAT-2 has been put in a near polar heliosynchronous orbit with an orbital period roughly
equal to TR = 101 min at an inclination angle of θi = 98.6◦. In a heliosynchronous orbit, a satellite
crosses the equator always at the same local time, which in the case of RADARSAT-2 is about
18:00 hrs (when moving from south to north). The inclination angle θi is the angle between the
equator and the orbital plane of the satellite, whereby 0◦ corresponds to a satellite orbiting along
the equator in the same direction as the Earth’s spin. If you estimate that the average power of
the engines combined was about P = 10.6 MW, how long did it take the Soyuz launch vehicle to
place RADARSAT-2 into orbit? Remember that the universal gravitational constant G is equal to
G = 6.67×10−11 m3/(kg· s2) and that the mass and radius of the Earth are equal to ME = 5.97×1024

kg and rE = 6.38× 103 km, respectively. Assume a circular orbit for the satellite.

Exercise 19

Luan and Annika are spending their Saturday afternoon improving their shooting skills at the Long
Range Shooting Club in Leandra, South Africa. Luan owns a .380 ACP gun, while Annika brought
her .40 Smith & Wesson to the shooting range. Luan’s .380 ACP fires its bullets of 9.0 mm caliber
with a muzzle velocity of ~v01 = v01 ·~ix, whereas the muzzle velocity of the 10.2 mm caliber bullets of
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Annika’s .40 S&W is equal to ~v02 = v02 ·~ix. They are each standing at a distance of d = 45.5 m away
from a small wooden block (M = 2.55 kg), suspended from a rope with length L = 0.750 m. When

firing their gun, aimed at their respective wooden block, a drag force ~FD = −b · v2 ·~ix has slowed
the bullet’s muzzle velocity (in the x-direction) by 5% by the time the bullet hits the block. Upon
impact, the block swings slightly backwards until it reaches a height h (with respect to the top edge
of the block) and makes an angle θ with the vertical. If you know that the muzzle speed v02, the
mass m2 of the .40 S&W’s bullets, and the maximum swinging height h2 of Annika’ wooden block
relative to Luan are equal to 1.122, 1.722, and 3.721, respectively, and that Luan’s block makes a
θ1 = 13.95◦ angle when at its maximum swinging height h1, (1) what is the mass m1 and m2 of the
9.0 mm and 10.2 mm caliber bullets, respectively, expressed in grains, whereby 1 grain = 6.48×10−2

g? (2) What is the magnitude of the muzzle velocity ~v01 (.380 ACP) and ~v02 (.40 S&W)? (3) Which
angle θ2 does Annika’s block make with the vertical at its maximum height h2? Assume that between
the moment when the bullets enter the wooden block and until they come to a halt within the block,
the block is not experiencing any major changes in its motion.

Exercise 20

Last week, Olivia and Adam have been watching a dozen of Youtube videos on how to make your
own water bottle rocket. They even went the extra mile and figured out some of the basics of the
underlying physics of their new project. Earlier this morning, they went to buy all the required
equipment and with the assembled bottle rocket under their arm, Olivia and Adam are now headed
to the nearby Blatherskite Park in Alice Springs, Australia, to try out their first design. Their rocket
consists of three empty 2.00 L plastic soda water bottles (mb = 44.9 g per unit) firmly taped together
and designed in such a way that combined they make one cylindrical container. The rocket is filled
with heated soda water at a temperature of 42.5◦C (for some extra kinetic energy) for a total volume
of a little under one third per bottle (Vb = 0.63 L per unit). Once Olivia and Adam start pumping
air into the rocket, the growing pressure increasingly pushes on the water until at one point the water
will come rushing out of the nozzle at the bottom of the rocket, providing the bottle rocket with
upwards thrust and sending it flying through the air. Olivia and Adam estimate that about 459 g of
soda water will shoot out of the rocket every second at a constant speed of vw = 36.5 m/s, relative

to the rocket. They furthermore take into account an average drag force of ~FD = −25.5 ·~iy N during
the rocket’s ascent. If you know that the density of soda water is equal to ρ = 1.01442 kg/L, (1)
how high will the bottle rocket go? (2) How much time did the rocket spend in the air (ignore air

friction during the rocket’s descent)? (3) What is the total power supplied by the thrust force ~FT of
the bottle rocket, expressed in horsepower (hp)? Remember that 1 hp = 745.7 W.
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Exercise 1

Problem Statement

Figure 1

On a rainy Saturday afternoon, Artem (m = 69.4 kg)
is feeling rebellious and climbs the h = 14.0 m-high,
egg-shaped main building of the Pysanka Museum in
Kolomyia, Ukraine. Once sitting on top, Artem has
difficulties holding on to the wet surface, so he starts
to slip and slides down. (1) If the building is approxi-
mately elliptical in shape with an elliptical eccentric-
ity of e = 0.750 and if Artem loses contact with the
side of the egg when the elliptical radius r makes an
angle of θ = 78.6◦ west of north, what is the mag-
nitude of his velocity ~v in that moment? (2) If the
bottom side of the egg sits b = 2.50 m below the
ground, at what height hp from the pavement does
Artem find himself when he becomes detached from
the building? Ignore any kind of friction for this prob-
lem.

Solution

(1) If we use polar coordinates, then we find the following expressions for the radius r and the focal
length f of an ellipse for the specific choice of our coordinate system (with a and e representing the
semi-major axis and the elliptical eccentricity, respectively):


r =

a · (1− e2)

1 + e · cos θ

f = a · (1− e)

Given that the height of the egg-shaped building is equal to h = 14.0 m, we find that the semi-
major axis a equals a = h

2
= 14.0

2
= 7.00 m. The radius r at the angle of θ = 78.6◦ and the focal

length f then become:


r =

a · (1− e2)

1 + e · cos θ
=

7.00 · (1− 0.7502)

1 + 0.750 · cos(78.6◦)
= 2.76 m

f = a · (1− e) = 7.00 · (1− 0.750) = 1.75 m

9
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Because the only force acting upon Artem, i.e., the gravitational force, is a conservative force—
this means that the work done by such a force between two points is independent of the particular
path followed between those points—we know that the total mechanical energy, i.e., the sum of the
kinetic energy Ek and the potential energy Ep, of a system is conserved. Put differently, the change
in the total mechanical energy for such conservative systems is always equal to zero.

Applied to our problem, the conservation of energy implies that the total mechanical energy of Artem
at the top of the egg-shaped building must be equal to the mechanical energy at the moment when
he loses contact with the side of the egg (at θ = 78.6◦). We then find the magnitude of Artem’s
velocity ~v as follows (with the indices i and f referring to the initial and final position of the system,
respectively):

Ek,i + Ep,i = Ek,f + Ep,f ⇔ 0 +m · g · f =
m · v2

2
+m · g · (r · cos θ)

⇔ v =
√

2 · g · (f − r · cos θ)

=
√

2 · 9.81 · (1.75− 2.76 · cos(78.6◦))

= 4.90 m/s

(2) The height hp from the ground at which Artems becomes detached from the egg-shaped building
is found in the following manner:

hp = h− (f − r · cos θ)− b = 14.0− [1.75− 2.76 · cos(78.6◦)]− 2.50 = 10.3 m

Luckily, his backpack as well as the nearby bushes broke his fall, so that Artem did not sustain
any major injuries.

10
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Exercise 2

Problem Statement

Figure 2

During radioactive decay,
either the atomic compo-
sition of the nucleus of a
chemical element is funda-
mentally altered—this is
the case for α- and β-
decay—or an element low-
ers its nuclear energy lev-
els (γ-emission), emitting
thereby high-energy radi-
ation. In one of the sev-
eral nuclear chain reac-
tions called the Thorium
Series, the unstable ele-
ment thorium (232

90Th) de-
cays through a series of
events until it is transformed into the stable element lead (208

82Pb). One of the intermediary steps
includes an α-decay of radon’s 220-isotope (220

86Rn) into polonium’s 216-isotope (216
84Po) whereby an

α-particle, i.e., the nucleus of a helium (He) atom, is emitted. Suppose now that two α-particles
(mα = 6.64×10−27 kg) elastically collide at a speed of v1,i = 14.2×106 m/s and v2,i = 14.8×106 m/s,
respectively. The velocity vector ~v1,i of the first particle α1 is initially making an angle of θ1,i = 135◦

with the z-axis, whereby the angle φ1,i, i.e., the angle between the projection onto the xy-plane and
the x-axis, is equal to φ1,i = 65.4◦. Regarding the second particle α2, the respective angles are equal
to θ2,i = 66.0◦ and φ2,i = 153◦. (1) If you know that after the collision the angles with the z-axis are
equal to θ1,f = 49.13◦ and θ2,f = 123.21◦, respectively, what is the final speed of both particles, i.e.,
v1,f and v2,f? (2) In which direction are α1 and α2 now headed?

Solution

(1) Using spherical coordinates, the velocity vector ~v takes on the following general form:

~v = (v · sin θ · cosφ) ·~ix + (v · sin θ · sinφ) ·~iy + (v · cos θ) ·~iz

Since in the isolated system “particle α1 plus particle α2” the total linear momentum ~p = m · ~v is
conserved, we can write the following expression for the x-direction:

pi = pf ⇔ (mα · v1,i,x) + (mα · v2,i,x) = (mα · v1,f,x) + (mα · v2,f,x)

⇔ (v1,i · sin θ1,i · cosφ1,i) + (v2,i · sin θ2,i · cosφ2,i) = (v1,f · sin θ1,f · cosφ1,f ) + (v2,f · sin θ2,f · cosφ2,f )

11
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Applying the law of conservation of linear momentum for our isolated system to the y- and z-direction,
we can summarize the three equations as follows:



x : (v1,i · sin θ1,i · cosφ1,i) + (v2,i · sin θ2,i · cosφ2,i) = (v1,f · sin θ1,f · cosφ1,f ) + (v2,f · sin θ2,f · cosφ2,f )

y : (v1,i · sin θ1,i · sinφ1,i) + (v2,i · sin θ2,i · sinφ2,i) = (v1,f · sin θ1,f · sinφ1,f ) + (v2,f · sin θ2,f · sinφ2,f )

z : (v1,i · cos θ1,i) + (v2,i · cos θ2,i) = (v1,f · cos θ1,f ) + (v2,f · cos θ2,f )

Another quantity that is conserved in an isolated system is the total kinetic energy Ek = m·v2
2

,
for which we can write the following expression:

Ek,i = Ek,f ⇔ (
mα·v21,i

2
) + (

mα·v22,i
2

) = (
mα·v21,f

2
) + (

mα·v22,f
2

)

⇔ v2
1,i + v2

2,i = v2
1,f + v2

2,f

To make our further calculations more transparent, let us calculate the left-hand side of the above
four equations and replace them by the letters a to d. With regard to the three equations of the
conservation of linear momentum, we then obtain:



x : a = (v1,i · sin θ1,i · cosφ1,i) + (v2,i · sin θ2,i · cosφ2,i)

= [14.2× 106 · sin(135◦) · cos(65.4◦)] + [14.8× 106 · sin(66.0◦) · cos(153◦)] = −7.87× 106 m/s

y : b = (v1,i · sin θ1,i · sinφ1,i) + (v2,i · sin θ2,i · sinφ2,i)

= [14.2× 106 · sin(135◦) · sin(65.4◦)] + [14.8× 106 · sin(66.0◦) · sin(153◦)] = 15.3× 106 m/s

z : c = (v1,i · cos θ1,i) + (v2,i · cos θ2,i)

= [14.2× 106 · cos(135◦)] + [14.8× 106 · cos(66.0◦)] = −4.02× 106 m/s

Regarding the conservation of kinetic energy, we find the following value:

d = v2
1,i + v2

2,i = (14.2× 106)2 + (14.8× 106)2 = 4.21× 1014 m2/s2

12
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To determine the final velocities of the two α-particles, we will use the equation of the conservation of
linear momentum in the z-direction. Rearranging and squaring the equation and then replacing v2

2,f

by the expression obtained from the conservation of kinetic energy, we obtain the following quadratic
equation:

(v2,f · cos θ2,f )
2 = [c− (v1,f · cos θ1,f )]

2

⇔ v2
2,f · cos2 θ2,f = c2 − 2 · c · (v1,f · cos θ1,f ) + v2

1,f · cos2 θ1,f

⇔ [d− v2
1,f ] · cos2 θ2,f = c2 − 2 · c · (v1,f · cos θ1,f ) + v2

1,f · cos2 θ1,f

⇔ (cos2 θ1,f + cos2 θ2,f ) · v2
1,f − (2 · c · cos θ1,f ) · v1,f + (c2 − d · cos2 θ2,f ) = 0

⇔ [cos2(49.13◦) + cos2(123.21◦)] · v2
1,f − [2 · (−4.02× 106) · cos(49.13◦)] · v1,f +

[(−4.02× 106)2 − 4.21× 1014 · cos2(123.21◦)] = 0

Solving the above quadratic equation provides two solutions, i.e., v1,f = 9.20 × 106 m/s and v1,f =
−16.4 × 106 m/s. For the remainder of this exercise, we will only focus on the first solution. The
equation in the z-direction of the conservation of linear momentum, for instance, then allows us to
find the value of v2,f :

v2,f =
c− v1,f · cos θ1,f

cos θ2,f

=
(−4.02× 106)− 9.20× 106 · cos(49.13◦)

cos(123.21◦)
= 18.3× 106 m/s

(2) To determine the final direction of both particles, we need to find the value of the angles φ1,f

and φ2,f . Let us start with squaring the equation related to the conservation of linear momentum in
the y-direction and subsequently apply the trigonometric identity “cos2 α + sin2 α = 1”:

b2 = (v2
1,f · sin2 θ1,f · sin2 φ1,f ) + (2 · v1,f · v2,f · sin θ1,f · sin θ2,f · sinφ1,f · sinφ2,f ) + (v2

2,f · sin2 θ2,f · sin2 φ2,f )

⇔ b2 = [v2
1,f · sin2 θ1,f · (1− cos2 φ1,f )] + (2 · v1,f · v2,f · sin θ1,f · sin θ2,f · sinφ1,f · sinφ2,f ) + [v2

2,f · sin2 θ2,f · (1− cos2 φ2,f )]

⇔ v2
1,f · sin2 θ1,f · cos2 φ1,f = (v2

1,f · sin2 θ1,f − b2) + (2 · v1,f · v2,f · sin θ1,f · sin θ2,f · sinφ1,f · sinφ2,f ) + [v2
2,f · sin2 θ2,f · (1− cos2 φ2,f )]

In a next step, we square the equation with respect to the conservation of linear momentum in the
x-direction and replace the term “v2

1,f ·sin2 θ1,f ·cos2 φ1,f” with the expression established above, after
which we make use of the angle subtraction theorem “cos(β − α) = cosα · cos β + sinα · sin β”:

a2 = (v2
1,f · sin2 θ1,f · cos2 φ1,f ) + (2 · v1,f · v2,f · sin θ1,f · sin θ2,f · cosφ1,f · cosφ2,f ) + (v2

2,f · sin2 θ2,f · cos2 φ2,f )

13
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=
[
(v2

1,f · sin2 θ1,f − b2) + (2 · v1,f · v2,f · sin θ1,f · sin θ2,f · sinφ1,f · sinφ2,f ) + [v2
2,f · sin2 θ2,f · (1− cos2 φ2,f )]

]
+

(2 · v1,f · v2,f · sin θ1,f · sin θ2,f · cosφ1,f · cosφ2,f ) + (v2
2,f · sin2 θ2,f · cos2 φ2,f )

= (v2
1,f · sin2 θ1,f − b2) + [2 · v1,f · v2,f · sin θ1,f · sin θ2,f · cos(φ2,f − φ1,f )] + v2

2,f · sin2 θ2,f

⇔ cos(φ2,f − φ1,f ) =
(a2+b2)−[v21,f ·sin

2 θ1,f+v22,f ·sin
2 θ2,f ]

2·v1,f ·v2,f ·sin θ1,f ·sin θ2,f

=
[(−7.87×106)2+(15.3×106)2]−[(9.20×106)2·sin2(49.13◦)+(18.3×106)2·sin2(123.21◦)]

2·(9.20×106)·(18.3×106)·sin(49.13◦)·sin(123.21◦)

= 5.32× 10−2

⇔ φ2,f − φ1,f = cos−1 (5.32× 10−2) = 86.9◦

Inserting the above relationship between the two angles into, for instance, the equation related
to the conservation of linear momentum in the x-direction and making use of the angle addition
theorem as well as the fact that the expression “a · cosα + b · sinα” can be replaced by the single
cosine function “c1 · cos(α + δ)”, whereby c1 = sgn(a)

√
a2 + b2 and δ = tan−1(− b

a
), we find the

following expression for the value a:

a = (v1,f · sin θ1,f · cosφ1,f ) + [v2,f · sin θ2,f · cos(φ1,f + 86.9◦)]

= (v1,f · sin θ1,f · cosφ1,f ) + (v2,f · sin θ2,f · [cosφ1,f · cos(86.9◦)− sinφ1,f · sin(86.9◦)])

= [v1,f · sin θ1,f + v2,f · sin θ2,f · cos(86.9◦)] · cosφ1,f − [v2,f · sin θ2,f · sin(86.9◦)] · sinφ1,f

= c1 · cos(φ1,f + δ)

whereby c1 and δ are equal to:

c1 =
√

[v1,f · sin θ1,f + v2,f · sin θ2,f · cos(86.9◦)]2 + [−v2,f · sin θ2,f · sin(86.9◦)]2

=
√

[9.20× 106 · sin(49.13◦) + 18.3× 106 · sin(123.21◦) · cos(86.9◦)]2 + [−18.3× 106 · sin(123.21◦) · sin(86.9◦)]2

= 17.2× 106 m/s

δ = tan−1

[
− −v2,f · sin θ2,f · sin(86.9◦)

v1,f · sin θ1,f + v2,f · sin θ2,f · cos(86.9◦)

]
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= tan−1

[
− −18.3× 106 · sin(123.21◦) · sin(86.9◦)

9.20× 106 · sin(49.13◦) + 18.3× 106 · sin(123.21◦) · cos(86.9◦)

]

= 63.1◦

Plugging these values back into the expression for a, we can calculate the angle φ1,f :

a = c1 · cos(φ1,f + δ) ⇔ φ1,f = cos−1

(
a

c1

)
− δ

= cos−1

(
−7.87× 106

17.2× 106

)
− 63.1◦

= 54.2◦

The angle φ2,f is then equal to φ2,f = φ1,f + 86.9◦ = 54.2◦ + 86.9◦ = 141◦.

Figure 3

Fig. 3 provides a 3D view of the col-
lision between particle α1 and α2.
The second particle hits the first
particle, which is initially following
a downward trajectory (θ1,i = 135◦),
from below and pushes the first par-
ticle upwards (θ1,f = 49.13◦). Due
to the collision, the second particle’s
initial upwards trajectory (θ2,i =
66.0◦) is converted into a downward
path (θ2,f = 123.21◦).
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Exercise 3

Problem Statement

Figure 4

You own the private company called Satplans Science
Ltd., dedicated to gathering and processing scientific
data from the four innermost planets in our Solar Sys-
tem. As a result of healthy working capital levels, you
are able to install the satellite Suzy 3 (m = 4, 630 kg)
in a perfectly circular areosynchronous equatorial or-
bit (AEO) around the planet Mars—an AEO is the
Martian equivalent of a geostationary orbit around
Earth—despite the significant orbital station keeping
costs due to the gravitational impact of the planet’s
two moons, i.e., Phobos and Deimos. If you consider
the system “Suzy 3”, (1) what is the work done on
the satellite? (2) Is linear momentum conserved? (3)
Write a general formula for the work done by the
satellite’s engine when changing orbit. (4) Suppose
that Suzy 3 is guided towards a new orbit with a ra-
dius 60% of its original. How much work has Suzy 3’s engine performed? (5) What is the total
amount of work done on the system? Remember that the universal gravitational constant G is
equal to G = 6.67× 10−11 m3/(kg· s2) and the mass, the radius, and the rotation period of Mars to
M = 6.417× 1023 kg, r = 3.396× 106 m, and T = 24h 37min 22.7s, respectively.

Solution

(1) In the circular AEO whereby Suzy 3 is traveling at a constant orbital speed v, there is no net force
in the tangential direction. As a result, no work (W) is being done on Suzy 3. If we consider the radial

direction, even though Suzy 3 experiences a net force equal to the gravitational force ~FG (viewed
from the stationary reference frame at the center of Mars), this force is oriented perpendicular to
the satellite’s direction of motion, so that, according to the expression “W = F · ∆x · cos θ”, the
work done by gravity on Suzy 3 is zero. Put another way still, since there is no displacement of the
satellite in the radial direction, the gravitational force is not performing any work.

(2) If the linear momentum ~p = m · ~v is conserved, i.e., m1 · v1 = m2 · v2, then as per Newton’s

first law, i.e., ~Fnet = ∆~p
∆t

= ~0, the net force within the system under consideration must be equal
to zero. If we consider the system “Mars plus Suzy 3”, the total net force is equal to zero, since
the gravitational force experienced by Suzy 3 due to Mars is equal in magnitude and opposite in
direction to the gravitational force experienced by Mars due to the satellite (as stated by Newton’s
third law). Both forces cancel each other out, so the linear momentum for the system is conserved.
However, if we only take into account the satellite, i.e., the subsystem “Suzy 3”, then there actually
is a net force within this subsystem, i.e., ~FG, so that the linear momentum is not conserved.

(3) As gravity is not doing any work on a satellite traveling in a circular orbit, it cannot cause the
satellite to change its orbit, as long as the satellite maintains the same orbital speed. As a result,
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any change in orbit must be brought about by an external force ~Fext, which in this case is provided
by the satellite’s boosters.

Before proceeding, let us express the orbital speed v only in terms of the variables G, M , and r. We
know that the gravitational force ~FG gives rise to the centripetal force ~Fcp = m·v2

r
·~ir, so that we can

write the following equation for an object in a circular orbit, whereby the axis of rotation coincides
with the center of mass, and derive from it an expression for the orbital speed v:

FG = Fcp ⇔
G ·m ·M

r2
=
m · v2

r

v =

√
G ·M
r

Next, we insert the above expression into the definition of total mechanical energy Eme:

Eme = Ek + Ep ⇔ Eme =
m · v2

2
− G ·m ·M

r

=
m ·
(√

G·M
r

)2

2
− G ·m ·M

r

=
G ·m ·M

2 · r
− G ·m ·M

r

= −G ·m ·M
2 · r

As an external force ~Fext (provided by the boosters of the satellite) has to do work on the system
“Suzy 3” in order to change its orbit, the total mechanical energy of the satellite in its new orbit
(Eme,f ) is now equal to the total mechanical energy in its initial orbit (Eme,i) plus the work performed
by the boosters (Wext). Based on this information, we can write a general formula for Wext (with r1

(r2) the radius of the initial (final) orbit):

Eme,i +Wext = Eme,f ⇔ Wext = Eme,f − Eme,i

= −G ·m ·M
2 · r2

−
(
−G ·m ·M

2 · r1

)

= −G ·m ·M
2

(
1

r2

− 1

r1

)

= −G ·m ·M
2

(
r1 − r2

r1 · r2

)
17
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(4) Using Kepler’s third law, we first calculate the orbital radius of Suzy 3’s AEO:

T 2 =
4 · π2

G ·M
· r3

1 ⇔ r1 =
3

√
G ·M · T 2

4 · π2

=
3

√
6.67× 10−11 · 6.417× 1023 · (24 · 3, 600 + 37 · 60 + 22.7)2

4 · π2

= 20, 400 km

The new orbit lies at a distance from Mars’ center whose value corresponds to 60% of its original
radius. The new orbital radius is therefore equal to r2 = 0.60 · r1 = 0.60 · 2.04 × 104=12,300 km.
Using the formula derived in part (3), the work performed by Suzy 3’s engine during its approach
towards an orbit closer to Mars is calculated as follows:

Wext = −G ·m ·M
2

(
r1 − r2

r1 · r2

)
= −6.67× 10−11 · 4, 630 · 6.417× 1023

2

(
2.04× 107 − 1.23× 107

2.04× 107 · 1.23× 107

)

= −3.23× 109 J

(5) The work done by the satellite’s engine is negative because the system is losing energy in the
form of gravitational potential energy. That is, as Suzy travels towards a smaller orbit around Mars,
the gravitational potential energy is being reduced, i.e., it becomes more negative. On the other
hand, given that the gravitational force ~FG points into the same direction as the displacement of the
satellite, gravity is performing positive work, as it converts gravitational potential energy into kinetic
energy. To see what the net value is of the total work Wtot done by these two forces on Suzy, we
perform the following calculation (with Wc representing the work done by the conservative force ~FG):

Wtot = Wext +Wc = Wext + (−∆Ep) = Wext +

[
−
(
−G ·m ·M

r2

)
+

(
−G ·m ·M

r1

)]

⇔ Wtot = Wext +G ·m ·M ·
(
r1 − r2

r1 · r2

)

= −3.23× 109 + 6.67× 10−11 · 4, 630 · 6.417× 1023 ·
(

2.04× 107 − 1.23× 107

2.04× 107 · 1.23× 107

)

= 3.23× 109 J

Given that Wtot = ∆Ek > 0, we expect that Suzy 3’s orbital speed in the lower orbit is greater with
respect to its original orbit, i.e., the AEO. Based on the expression for the orbital speed derived in
part (3), we indeed find that v2 = 1.87× 103 m/s > v1 = 1.45× 103 m/s.
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Exercise 4

Problem Statement

Figure 5

It’s mid-June and Estée is currently
taking the final exam of her AP
Physics 1 course at the American
School of Madrid in Pozuelo de
Alarcón, Spain. The weather is partic-
ularly hot today and she has 20 min-
utes left to answer the final question of
her exam. Luckily, as it is one of her
most favourite courses, Estée prepared
thoroughly for this exam and with her
acute sense of focus she finishes the
question under 10 minutes, despite the
oppressive heat. The final question
was the following. A pulley system
with three blocks A (mA = 4.75 kg),
B (mB = 3.50 kg), and C (mC) is pre-
sented in Fig. 5, whereby mass C is hanging d = 75.4 cm from the top of the incline, whose length is
equal to L = 2.52 m and makes an angle of θ = 64.2◦ with the horizontal. The surface under mass
A generates a kinetic friction coefficient of µk1 = 0.453 with the block, whereas the incline has a
rougher surface and therefore produces a higher kinetic friction coefficient of µk2 = 0.678 with mass
B. Initially, someone is preventing block A from moving and when they release the block, mass C is
accelerating downwards until it hits the ground. If you know that the total work done on block C
during its displacement is equal to W = 5.54 J, (1) determine the mass of block C and (2) its speed
when it hits the ground. What answers did Estée find?

Solution

In a first step, we calculate the displacement ∆x of block C:

∆x = L · sin θ − d = 2.52 · sin(64.2◦)− 0.754 = 1.51 m

Next, based on the definition of work, we find an expression for the acceleration a of mass C:

W = F ·∆x = (mC · a) ·∆x ⇔ a =
W

mC ·∆x

Since the three blocks are connected via the pulley system, the acceleration of each of the blocks is
equal to a. Applying Newton’s second law to the three masses, we find the following equations (with
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the magnitude of the kinetic friction force ~Fk equal to Fk = µk · FN):



A : −µk1 · (mA · g) + T1 = mA · a

B : −T1 − µk2 · (mB · g · cos θ)− (mB · g · sin θ) + T2 = mB · a

C : −T2 +mC · g = mC · a

If we insert both the expression for T1 of equation A and that for T2 of equation C into the equation
B, we obtain the following expression:

− [µk1 · (mA · g) +mA · a]− µk2 · (mB · g · cos θ)− (mB · g · sin θ) + [mC · g −mC · a] = mB · a

⇔ − µk1 ·mA · g − (µk2 · cos θ + sin θ) ·mB · g +mC · g −mC · a = (mA +mB) · a

Using the above derived expression for the acceleration a, we find the following quadratic equa-
tion:

−µk1 ·mA · g − (µk2 · cos θ + sin θ) ·mB · g +mC · g −mC ·
[

W
mC ·∆x

]
= (mA +mB) ·

[
W

mC ·∆x

]

⇔ g ·m2
C −

[
(µk1 ·mA + (µk2 · cos θ + sin θ) ·mB) · g +

W

∆x

]
·mC − (mA +mB) · W

∆x
= 0

⇔ 9.81 ·m2
C −

[
(0.453 · 4.75 + [0.678 · cos(64.2◦) + sin(64.2◦)] · 3.50) · 9.81 + 5.54

1.51

]
·mC − (4.75 + 3.50) · 5.54

1.51
= 0

Solving the above quadratic equation produces one physically sensible solution (mC > 0): mC = 7.14
kg.

(2) The speed with which block C reaches the ground can be calculated as follows:

v2 − v2
0 = 2 · a ·∆x ⇔ v2 − 02 = 2 ·

[
W

mC ·∆x

]
·∆x

⇔ v =

√
2 ·W
mC

=

√
2 · 5.54

7.14

= 1.25 m/s
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Exercise 5

Problem Statement

Figure 6

Duško (mD) is enjoying
his winter holidays in the
Kamnik-Savinja Alps in
the north of Slovenia. The
seasoned skier that he is,
Duško loves going off-piste
to explore and carve out
new paths. At a cer-
tain point, he is stand-
ing on top of a hill and
notices that further down
the ski run is interrupted
by a large gap, after which
the path continues. Just
before the gap, the slope
goes back up and at the
end of the upward slope, at the very edge of the gap, there are three naturally formed ramps, which
make an angle of θ1 = 7·π

36
, θ2 = π

4
, and θ3 = 11·π

36
with the horizontal, respectively. If you know

that the distance between the bottom of the hill and the point where Duško is currently standing is
the minimal height required to gain sufficient speed to cross the gap, which one of the three ramps
should Duško choose to safely reach the other side? Assume that the edges at both sides of the gap
are at the same height and ignore any friction or drag forces for this problem.

Solution

Since the only force present in the system “Duško” is the gravitational force ~FG, which is a conser-
vative force, we know that his total mechanical energy remains constant. In a first instance, let us
determine the magnitude of the velocity ~v with which Duško reaches one of the ramps, using the fact
that the energy is constant (whereby E1 and E2 represent the total energy at his initial position and
at the edge of the gap, respectively):

E1 = E2 ⇔ Ek1 + Ep1 = Ek2 + Ep2 ⇔ mD · v2
0

2
+mD · g · h1 =

mD · v2

2
+mD · g · h2

⇔ mD · 02

2
+mD · g · h1 =

mD · v2

2
+mD · g · h2

⇔ v =
√

2 · g · (h1 − h2)

In a next step, we need to find the time that Duško spends in the air while crossing the gap.
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Given that the two edges at both sides of the gap are at the same height, the highest point during his
parabolic trajectory coincides with the point in the middle of the gap. Considering the y-direction,
the time t1/2 it takes to reach the highest point is equal to:

vf,y = vi,y + ay · t1/2 ⇔ 0 = (v · sin θ)− g · t1/2 ⇔ t1/2 =
v

g
· sin θ

The total time t to cross the gap is then equal to t = 2 · t1/2 = 2·v
g
· sin θ. If we now look at

the x-direction, we obtain the following expression for the horizontal distance ∆x:

∆x = vx · t = (v · cos θ) · t = (v · cos θ) ·
[

2 · v
g
· sin θ

]
=
v2

g
· sin(2θ)

If we now insert the earlier derived expression for the speed v in the above equation, we find a
formula for the height h1 in terms of the angle θ:

∆x =
[
√

2 · g · (h1 − h2)]2

g
· sin(2θ) ⇔ ∆x = 2 · sin(2θ) · (h1 − h2)

⇔ h1 = h2 +
∆x

2 · sin(2θ)

To find the angle θ that gives the minimum required height h1 we take the derivative of h1 with
respect to θ and equate the expression to zero:

dh1

dθ
= −∆x · cos(2θ)

sin2(2θ)
= 0 ⇔ cos(2θ) = 0

⇔ 2θ =
π

2

⇔ θ =
π

4

If Duško wishes to safely reach the other side of the gap, he is strongly advised to take the middle
ramp, i.e., ramp 2, which makes an angle of θ2 = π

4
with the horizontal.
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Exercise 6

Problem Statement

Figure 7

For the past two hours,
Chanmony (mC = 74.8
kg) has been guiding her
paraglider over the ru-
ral outskirts of the Kam-
pong Chhnang province,
Cambodia, enjoying the
undulating paddy fields,
the meandering Tonle Sap
River, and the hilly land-
scapes in the west. Mean-
while, Ponnleu (mP =
69.6 kg) is taking up
the beautiful scenery from
a lower altitude, steering
her mountain bike across
several dusty village roads. At one point, Chanmony is descending at a constant velocity with a
magnitude of vC = 7.82 m/s in the southeastern direction (φ = 40.8◦ south of east) under an angle of
θ = 15.5◦ with the horizontal, and is about to land near the roadside on the opposite side of a village
road that lies parallel to the east-west axis. However, right at the moment when Chanmony flies over
the road, Ponnleu, who was initially going at a speed of v0 = 4.25 m/s and has been accelerating
(a = 0.507 m/s2) for the past ∆x = 200 m, is all caught up in her own world, not paying attention to
her surroundings, and fails to see Chanmony coming from the northwestern direction. Both collide,
but somehow still manage to hold on to each other and roll entangled for a distance d in the field
near the road until they come to a halt, thanks to the kinetic friction with the grass (µk = 0.439).
(1) What is the velocity of Chanmony and Ponnleu rolling together right after the collision? (2)
What distance do they need to come to a stop?

Solution

(1) Since the entangled motion of Chanmony and Ponnleu after the collision occurs entirely within
the xz-plane, let us determine the magnitude of their incoming velocities ~vC,i and ~vP,i both in the x-
and z-direction:

Chanmony


x : vC,i,x = (vC · cos θ) · cosφ = [7.82 · cos(15.5◦)] · cos(40.8◦) = 5.70 m/s

z : vC,i,z = (vC · cos θ) · sinφ = [7.82 · cos(15.5◦)] · sin(40.8◦) = 4.92 m/s

Ponnleu


x : vP,i,x =

√
v2

0 + 2 · a ·∆x =
√

4.252 + 2 · 0.507 · 200 = 14.9 m/s

z : vP,i,z = 0 m/s
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The type of collision we are dealing with in this problem is a perfectly inelastic collision, given that
the two colliding objects continue as one object right after the collision rather than bouncing off of
each other, each in a separate direction. This means that their mechanical energy is not conserved—
some of the kinetic energy is transformed into heat (due to internal friction) and sound. However,
the total linear momentum ~p = m · ~v of the system “Chanmony plus Ponnleu” remains constant,
because the magnitude of the net force of this system is equal to zero (the kinetic friction with the
grass only comes into the picture a moment later).

With respect to the x-direction, we can therefore calculate the magnitude of final velocity ~vf,x as
follows:

pC,i,x + pP,i,x = ptot,f,x ⇔ mC · vC,i,x +mP · vP,i,x = mtot · vf,x = (mC +mP ) · vf,x

⇔ vf,x =
mC · vC,i,x +mP · vP,i,x

mC +mP

=
74.8 · 5.70 + 69.6 · 14.9

74.8 + 69.6
= 10.1 m/s

Regarding the z-direction, the magnitude of final velocity ~vf,z is equal to:

pC,i,z + pP,i,z = ptot,f,z ⇔ mC · vC,i,z +mP · vP,i,z = (mC +mP ) · vf,z

⇔ vf,z =
mC · vC,i,z +mP · vP,i,z

mC +mP

=
74.8 · 4.92 + 69.6 · 0

74.8 + 69.6
= 2.55 m/s

The magnitude of the final velocity ~vf is therefore equal to vf =
√
v2
f,x + v2

f,z =
√

10.12 + 2.552 = 10.4

m/s at an angle of β = tan−1
(
vf,z
vf,x

)
= tan−1

(
2.55
10.1

)
= 14.1◦ south of east.

(2) To find the distance d, we first have to determine the magnitude of the deceleration ~as of Chan-
mony and Ponnleu. Applying Newton’s second law to the two of them combined in their direction
of motion, we obtain:

−µk · (mC +mP ) · g = (mC +mP ) · as ⇔ as = −µk · g = −0.439 · 9.81 = −4.31 m/s2

The distance d that Chanmony and Ponnleu roll together until they come to a halt is then calculated
in the following way:

v2 − v2
f = 2 · as · d ⇔ d =

v2 − v2
f

2 · as
=

02 − 10.42

2 · (−4.31)
= 12.6 m
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Exercise 7

Problem Statement

Figure 8

Most of the leftover debris from the days when the Solar Sys-
tem was being formed is orbiting in a large torus-shaped disk
either between the planets Mars and Jupiter—called the aster-
oid belt— or beyond the outermost planet Neptune—this disk
is referred to as the Kuiper belt, whose main region’s width
is about 20 times the distance between the Earth and the Sun.
The largest and most massive object that belongs to the Kuiper
belt is the dwarf planet Pluto with a mass of M = 1.30×1022 kg
and a radius of r = 1.19×106 m. Its flimsy gaseous atmosphere
mainly consists of nitrogen (N2), methane (CH4), and carbon
monoxide (CO), stretching out at some places as high as 1,600
km. Suppose that a massive rock (m = 2, 750 kg) is knocked
out from its orbit within the Kuiper belt and is headed straight
towards Pluto. When it is h = 25.0 km away from Pluto’s sur-
face, the rock has a velocity of ~v1 = −339 ·~iy m/s, and despite
the thin atmosphere, the rock experiences a drag force, which
has the form of ~FD = b · v2 ·~iy. A little over a minute later, the rock hits Pluto’s surface at a velocity

of ~v2 = −368 ·~iy m/s. (1) Use calculus to derive an expression for the work WD done by the drag

force ~FD on the rock. (2) What is the value of WD? Remember that the universal gravitational
constant G is equal to G = 6.67× 10−11 m3/(kg· s2).

Solution

(1) Let us start with writing the definition of work done by the force ~FD:

WD =

∫ y2

y1

FD · dy′ =
∫ y2

y1

b · v2 · dy′

Since we have no information about the value of the drag coefficient b, let us rewrite the above
integral by applying Newton’s second law to the rock (in the y-direction), which gives the following
equation:

FD − FG = m · a ⇔ b · v2 − G ·m ·M
y2

= m · a

⇔ b · v2 =
G ·m ·M

y2
+m · a

25



Physics Exercises on Work, Energy, and Momentum Olivier Loose

Inserting this last expression into the above integral, we can then write:

WD =

∫ y2

y1

(
G ·m ·M

y′2
+m · a

)
· dy′ =

∫ y2

y1

(
G ·m ·M

y′2

)
· dy′ +

∫ y2

y1

m · a · dy′

The first integral can be solved as follow:

∫ y2

y1

(
G ·m ·M

y′2

)
· dy′ = G ·m ·M ·

∫ y2

y1

(
1

y′2

)
· dy′ = −G ·m ·M ·

[ (
1

y

)∣∣∣∣y2=r

y1=r+h

]

= −G ·m ·M ·
[

1

r
− 1

r + h

]

Next, using the fact that the acceleration is equal to the second derivate of the position with respect
to time and transforming the limits of integration from position-based variables into time-based vari-
ables, we can write the second integral as follows:

∫ y2

y1

m · a · dy′ =
∫ y2

y1

m · d
2y′

dt2
· dy′ =

∫ t2

t1

m · d
2y

dt′2
· dy
dt′
· dt′

Now, based on the Leibniz rule, we can write the following expression:

d

dt′

(
dy

dt′

)2

= 2 · dy
dt′
· d

2y

dt′2
⇔ 1

2
· d
dt′

(
dy

dt′

)2

=
dy

dt′
· d

2y

dt′2

If we insert this last expression into our second integral, we can solve the second integral in the
following way:

∫ t2

t1

m ·

[
1

2
· d
dt′

(
dy

dt′

)2
]
· dt′ = m

2
·
∫ t2

t1

d

(
dy

dt′

)2

=
m

2
·

[ (
dy

dt

)2
∣∣∣∣∣
t2

t1

]

=
m

2
·

[ (
dy

dt2

)2

−
(
dy

dt1

)2
]

=
m

2
· (v2

2 − v2
1)
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In a final step, we insert the solutions for the two integrals into the initial definition of the work WD

performed by the drag force ~FD, so that we obtain the following expression:

WD = −G ·m ·M ·
[

1

r
− 1

r + h

]
+
m

2
· (v2

2 − v2
1)

This is precisely equal to the work-energy relationship “Wtot = Wext +Wc ⇔ Wext = Wtot−Wc =
∆Ek + ∆Ep”, with Wtot the total work done on the rock, Wext the work done by external forces, i.e.,

the drag force WD, Wc the work done by conservative forces, i.e., the gravitational force ~FG, and
∆Ek (∆Ep) the difference in kinetic (potential) energy of the rock, whereby:


Wtot = ∆Ek =

m

2
· (v2

2 − v2
1)

−Wc = ∆Ep =

[(
−G ·m ·M

r

)
−
(
−G ·m ·M

r + h

)]

(2) The work WD performed by the drag force ~FD on the rock that is approaching the dwarf planet
Pluto can be calculated as follows:

WD = −G ·m ·M ·
[

1

r
− 1

r + h

]
+
m

2
· (v2

2 − v2
1)

= −6.67× 10−11 · 2, 750 · 1.30× 1022 ·
[

1
1.19×106

− 1
1.19×106+25.0×103

]
+ 2,750

2
· [(−368)2 − (−339)2]

= −41.2× 106 J + 28.2× 106 J

= −13.0× 106 J

The work WD done by the drag force ~FD on the rock is negative since the force points into the
opposite direction of the rock’s motion, i.e., it tries to slow the rock down. The work Wc done
by gravity is positive (Wc = 41.2 × 106 J) as the gravitational force ~FG pumps energy into the
rock by converting gravitational potential energy into kinetic energy, i.e., the rock gains speed as it
approaches Pluto.
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Exercise 8

Problem Statement

Figure 9

As her parents had to go and do
some errands for about an hour, Semira
is babysitting her three-year-old baby
brother Jemal in their home right be-
hind Fiat Tagliero in Asmara, Eritrea.
Jemal loves to play with the colourful
rubber toy spring (with a length of L =
45.0 cm) that his sister bought him for
his recent birthday, and Semira wants
to show him a new trick. She places the
spring horizontally on the kitchen floor
with one end leaning against the plinth
of a cupboard and presses the spring to-
gether over a distance ∆x1. Semira then
places two small plastic blocks of mass
m1 = 0.15 kg and m2 = 0.35 kg on top of each other (the lightest one goes on top) and puts them in
front of the compressed spring. When Semira lets go of the blocks, the spring shoots them forward
across the kitchen floor to the great amusement of Jemal.

(1) What is the maximum distance that Semira should compress the spring so that the upper block
stays put when being released? (2) What is the total work done on the two blocks combined during
this displacement? (3) When the spring reaches its equilibrium position, the two blocks become
detached from the spring. What is their speed at that moment? (4) How far (∆x2) do the blocks
slide across the kitchen floor? (5) Does the upper block still remain steady during ∆x2? The spring
constant k is equal to k = 10.3 N/m, and assume that the kinetic friction coefficient between the
lower block and the kitchen floor is equal to µk1 = 0.065, and that the kinetic (static) friction coeffi-
cient between the two plastic blocks equals µk2 = 0.115 (µs = 0.225).

Solution

(1) Given that we want the upper block to remain stationary, let us in a first instance determine the
magnitude of the acceleration ~a1 of the two blocks combined at the moment when Semira releases
them. Applying Newton’s second law in the x-direction provides us with the following equation
(whereby ~Fx = −k · ∆~x and ~Fk1 represent the restoring spring force and the kinetic friction force,
respectively):

−Fk1 + Fx = (m1 +m2) · a1 ⇔ − µk1 · (m1 +m2) · g − k ·∆x = (m1 +m2) · a1

⇔ a1 = − k ·∆x
(m1 +m2)

− µk1 · g
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Since the upper block m1 is positioned within an accelerating frame of reference, i.e., block m2, it
experiences an inertial force ~Fi1 opposite to the direction of motion of the reference frame, i.e., to-
wards the negative x-direction. The only other force in the x-direction that is able to counterbalance
this inertial force is the static friction force ~Fs, so that the requirement that the upper block remain
stationary can be translated in mathematical terms in the following way:

Fi1 = Fs ⇔ m1 · a1 = µs ·m1 · g ⇔ m1 ·
[
− k ·∆x

(m1 +m2)
− µk1 · g

]
= µs ·m1 · g

⇔ ∆x = −g
k
· (µk1 + µs) · (m1 +m2)

= −9.81

10.3
· (0.065 + 0.225) · (0.15 + 0.35)

= −13.8 cm

Given that the equilibrium position of the spring is located at the origin of our coordinate system,
the maximum distance ∆x1 that Semira should compress the spring is equal to ∆x1 = 0 − ∆x =
0− (−13.8) = 13.8 cm.

(2) Given that the total work Wtot done on the two blocks is equal to the work Wext done by external

forces, i.e., the friction force ~Fk1, plus the work Wc done by conservative forces, i.e., the restoring
spring force ~Fx, we can calculate Wtot as follows:

Wtot = Wext +Wc =

∫ x1

x0

Fk1 · dx′ +
∫ x1

x0

Fx · dx′

=

∫ x1

x0

[−µk1 · (m1 +m2) · g] · dx′ +
∫ x1

x0

(−k · x′) · dx′

= [−µk1 · (m1 +m2) · g] ·
∫ x1

x0

dx′ − k ·
∫ x1

x0

x′ · dx′

= [−µk1 · (m1 +m2) · g] ·
[

(x)|x1=0
x0=−0.138

]
− k ·

[ (
x2

2

)∣∣∣∣x1=0

x0=−0.138

]

= [−0.065 · (0.15 + 0.35) · 9.81] · [0− (−0.138)]− 10.3 ·
[
0− (−0.138)2

2

]

= 5.42× 10−2 J
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(3) The net work Wtot done on the blocks during the displacement ∆x1 is equal to the difference
in kinetic energy ∆Ek, so that we can calculate the speed of the two blocks combined at the origin
of the coordinate system—which is the point at which the spring is at its equilibrium position and
whereby the blocks lose contact with the spring—as follows:

Wtot = ∆Ek =
(m1 +m2) · v2

2

2
− (m1 +m2) · v2

1

2
⇔ v2 =

√
2 ·Wtot

(m1 +m2)
+ v2

1

=

√
2 · 5.42× 10−2

(0.15 + 0.35)
+ 02

= 0.466 m/s

(4) To determine the distance ∆x2, we have to know the magnitude of the deceleration ~a2 of the
two blocks combined from the moment they become detached from the spring until they come to a
halt. The only force acting on the blocks in the x-direction is the kinetic friction force ~Fk1, so that
applying Newton’s second law gives us the following deceleration:

−µk1 · (m1 +m2) · g = (m1 +m2) · a2 ⇔ a2 = −µk1 · g = −0.065 · 9.81 = −0.638 m/s2

The distance ∆x2 is then calculated as follows:

v2
f − v2

i = 2 · a2 ·∆x2 ⇔ ∆x2 =
v2
f − v2

i

2 · a2

=
02 − 0.4662

2 · (−0.638)
= 17.0 cm

(5) The upper block remains stationary during the displacement ∆x2 if the static friction force
~Fs, which points into the negative x-direction, is able to overcome the inertial force ~Fi2, which is the
result of the upper block being positioned within an accelerating frame of reference (the lower block)
and is directed towards the positive x-direction:

Fs ≥ Fi2 ⇔ µs ·m1 · g ≥ m1 · |a2|

⇔ 0.225 · 0.15 · 9.81 ≥ 0.15 · 0.638

⇔ 0.331 N ≥ 9.56× 10−2 N

Since the static friction is greater than the inertial force acting on the upper block, the block m2

remains steady also during the displacement ∆x2.
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Exercise 9

Problem Statement

Figure 10

In Nur-Sultan, the capital city of
Kazakhstan, Sarsen (m = 63.5 kg) is
trying out the professional skatepark
of the newly created green urban area,
which also includes city parks, an out-
door cinema, a beach area, bike lanes
and pedestrian esplanades. One of the
skatepark’s main attractions is a loop-
ing installed at the end of a long in-
clined run-up track, which makes an
angle of θ = 12.5◦ with the ground.
As a safety measure, an elastic rubber
rope is hanging from the top at both
sides of the looping. If the wheels of
the skateboard only create kinetic friction with the track (µk = 0.112)—the friction with the surface
of the looping is negligible—and given an inner radius of the looping equal to R = 3.55 m, (1)
what minimum distance L should Sarsen walk up the track in order to successfully go through the
looping? (2) Suppose that Sarsen did not attain sufficient speed and loses contact with the surface
of the looping when he is a horizontal distance of d = 1.00 m away from the rubber rope. Luckily,
he manages to get hold of the bottom end of the rubber rope, which has a length of s = 1.00 m and
stretches according to the spring force ~Fx = −k · ~x (k = 357 N/m), and falls down vertically. How
far from the ground is Sarsen when the rope is maximally stretched right after his fall?

Solution

(1) To determine the speed v1 at the end of the run-up track, we could either use Newton’s second law
or the work-energy relationship. If we go for the latter option, let us write out the three components of
work done on the system “Sarsen”, i.e., the net work done Wto, the work Wext done by external forces,
i.e., the friction force ~Fk, and the work Wc done by conservative forces, i.e., the gravitational force ~FG:



Wtot = ∆Ek =
m · v2

1

2
− m · v2

0

2
=
m · v2

1

2
− m · 02

2
=
m · v2

1

2

Wext = −Fk · L = −µk · FN · L = −µk · (m · g · cos θ) · L

Wc = FG,x · L = m · g · sin θ · L

We then find the following expression for the speed v2
1 at the end of the track:
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Wtot = Wext +Wc ⇔
m · v2

1

2
= −µk · (m · g · cos θ) · L+m · g · sin θ · L

⇔ v2
1 = 2 · g · L · (sin θ − µk · cos θ)

In a next step, we know that the looping is basically frictionless, so that only conservative forces are
at play. As a result, the total mechanical energy remains constant and we can use this fact to find
an expression for the velocity v2

2 at the top of the looping. Comparing the position at the bottom
when Sarsen enters the looping with that at the top provides us with the following equation:

Ebottom = Etop ⇔ Ek,b + Ep,b = Ek,t + Ep,t ⇔
m · v2

1

2
+ 0 =

m · v2
2

2
+m · g · (2 ·R)

⇔ v2
2 = v2

1 − 4 · g ·R

There is another constraint that must be taken into account and it is related to the circular motion
within the looping. In order to go through the looping successfully, the centripetal force ~Fcp must

overcome the gravitational force ~FG at the top of the looping. At a minimum, they must be equal
in magnitude, which gives us the following constraint:

m · v2
2

R
= m · g ⇔ v2

2 = g ·R

Using this expression for v2
2 in the above energy condition, we find the following expression for

v2
1:

[g ·R] = v2
1 − 4 · g ·R ⇔ v2

1 = 5 · g ·R

If we equate the above expression for v2
1 to that found earlier with respect to the work-energy

relationship, we can calculate the minimum required distance L that Sarsen must ride on the track
to go successfully through the looping:

5 · g ·R = 2 · g · L · (sin θ − µk · cos θ) ⇔ L =
5 ·R

2 · (sin θ − µk · cos θ)

=
5 · 3.55

2 · [sin(12.5◦)− 0.112 · cos(12.5◦)]

= 82.9 m
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(2) When Sarsen loses contact with the surface of the looping, he starts free-falling due to the gravita-

tional force ~FG. Therefore, when grabbing the bottom end of the rubber rope, he will have obtained
an initial speed vy. The vertical distance ∆y of free fall is equal to the difference in height between
the red dot in Fig. 10 and the bottom end of the rubber rope. To calculate the distance ∆y, we first
have to find the angle φ:

d = R · sinφ ⇔ φ = sin−1

(
d

R

)
= sin−1

(
1.00

3.55

)
= 16.4◦

The distance ∆y is now found as follows:

R− s+ ∆y = R · cosφ ⇔ ∆y = s−R · (1− cosφ) = 1.00− 3.55 · [1− cos(16.4◦)] = 85.6 cm

The speed vy when Sarsen grabs the bottom end of the rubber rope is then equal to (note that
although the distance ∆y is positive, the displacement ∆yd is negative (∆yd = −∆y)):

v2
y − 02 = 2 · (−g) ·∆yd ⇔ v2

y = 2 · (−g) ·∆yd = 2 · g ·∆y

Between the moment when Sarsen holds on to the rubber rope and when the rope becomes maxi-
mally stretched over a distance ∆ymax, only conservative forces, i.e., the gravitational force ~FG and
the spring force ~Fx, are present, so that the total mechanical energy of Sarsen at both moments is
equal (whereby the above expression for v2

y is used):

E1 = E2 ⇔
m · v2

y

2
+m · g · (R− s) =

k · (∆ymax)2

2
+m · g · (−[∆ymax − (R− s)])

⇔ k · (∆ymax)2

2
−m · g ·∆ymax −

m · v2
y

2
= 0

⇔ k · (∆ymax)2

2
−m · g ·∆ymax −

m · [2 · g ·∆y]

2
= 0

⇔ 357 · (∆ymax)2

2
− 63.5 · 9.81 ·∆ymax − 63.5 · 9.81 · 0.856 = 0

The above quadratic equation provides a physically sensible solution (∆ymax ≥ 0) equal to ∆ymax =
4.20 m. The distance ∆yground above the ground then becomes:

∆yground = 2 ·R− s−∆ymax = 2 · 3.55− 1.00− 4.20 = 1.90 m
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Exercise 10

Problem Statement

Figure 11

Elina is a promising young billiard
player who is currently participat-
ing in a local tournament in Brèst,
Belarus. She managed to reach the
finals and is now in a position where
she can win the tournament. That
is, only if Elina is able to pocket
the last two billiard balls with just
one single stroke. The (white) cue
ball is located near the right edge,
whereas the last object ball, i.e.,
the solid red number 3, finds it-
self in front of the top right pocket,
i.e., d1 = 7.60 cm from the right
edge and d2 = 27.3 cm from the
top edge. The (black) 8 ball is po-
sitioned close to the top left pocket, i.e., d3 = 5.85 cm from the top edge and d4 = 20.4 cm from the
left edge. Elina holds the cue stick in such a way that it makes an angle θ1 with the right edge and
gives the cue ball an initial speed of vc,i. If Elina first pockets ball number 3 and subsequently the
8 ball with just one shot, (1) what speed vc,i should she give the cue ball? (2) What angle θ1 does
Elina’s cue stick make with the right edge? Assume that the solid red ball and the 8 ball enter their
respective pocket with a speed of v3,f = 1.25 m/s and v8,f = 0.86 m/s and that the three billiard
balls all have the same mass m = 165 g. Ignore any kind of friction.

Solution

(1) Let us refer to the collision between the cue ball and the solid red ball as system 1, whereas
system 2 refers to the subsequent collision between the cue ball and the 8 ball. Both systems are
considered isolated systems, so that the total linear momentum ~p = m · ~v is conserved. Moreover,
since we are dealing with perfectly elastic collisions, also the total kinetic energy Ek = m·v2

2
remains

constant. As a result, we can write the following three equations for system 1 (as the mass of the
three balls is the same, it is canceled in the three equations):



x : vc,i · sin θ1 = vc,f1 · cos θ3 − v3,f · cos θ2

y : vc,i · cos θ1 = vc,f1 · sin θ3 + v3,f · sin θ2

v2
c,i = v2

c,f1 + v2
3,f
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Similarly, we have the following three equations for system 2:



x : vc,f1 · cos θ3 = vc,f2 · sin θ5 + v8,f · sin θ4

y : vc,f1 · sin θ3 = −vc,f2 · cos θ5 + v8,f · cos θ4

v2
c,f = v2

c,f2 + v2
8,f

Based on trigonometry, Fig. 11 tells us that the angles θ2 and θ4 are equal to:


θ2 = tan−1

(
d2

d1

)
= tan−1

(
27.3

7.60

)
= 74.4◦

θ4 = tan−1

(
d4

d3

)
= tan−1

(
20.4

5.85

)
= 74.0◦

To determine the angle θ3, we first square the equation of the conservation of linear momentum
in both the x- and y-direction with respect to system 1 and subsequently add them together. In a
next step, we make use of the angle addition theorem “cos(α+ β) = cosα · cos β − sinα · sin β” and
the trigonometric identity “cos2 α + sin2 α = 1”. Finally, we apply the equation of conservation of
kinetic energy so that some terms cancel out:


x : v2

c,i · sin2 θ1 = v2
c,f1 · cos2 θ3 − 2 · vc,f1 · v3,f · cos θ2 · cos θ3 + v2

3,f · cos2 θ2

y : v2
c,i · cos2 θ1 = v2

c,f1 · sin2 θ3 + 2 · vc,f1 · v3,f · sin θ2 · sin θ3 + v2
3,f · sin2 θ2

⇒ v2
c,i · (cos2 θ1 + sin2 θ1) = v2

c,f1 · (cos2 θ3 + sin2 θ3)− 2 · vc,f1 · v3,f · (cos θ2 · cos θ3 − sin θ2 · sin θ3)

+ v2
3,f · (cos2 θ2 + sin2 θ2)

⇔ v2
c,i = v2

c,f1 − 2 · vc,f1 · v3,f · cos(θ2 + θ3) + v2
3,f

⇔ [v2
c,f1 + v2

3,f ] = v2
c,f1 − 2 · vc,f1 · v3,f · cos(θ2 + θ3) + v2

3,f

⇔ 0 = −2 · vc,f1 · v3,f · cos(θ2 + θ3)

⇔ θ2 + θ3 = 90◦

⇔ θ3 = 90◦ − θ2 = 90◦ − 74.4◦ = 15.6◦

35



Physics Exercises on Work, Energy, and Momentum Olivier Loose

If we apply the above procedure to system 2, we obtain the following value for the angle θ5:
x : v2

c,f · cos2 θ3 = v2
c,f2 · sin2 θ5 + 2 · vc,f2 · v8,f · sin θ4 · sin θ5 + v2

8,f · sin2 θ4

y : v2
c,f · sin2 θ3 = v2

c,f2 · cos2 θ5 − 2 · vc,f2 · v8,f · cos θ4 · cos θ5 + v2
8,f · cos2 θ4

⇒ v2
c,f = v2

c,f2 − 2 · vc,f2 · v8,f · cos(θ4 + θ5) + v2
8,f

⇔ [v2
c,f2 + v2

8,f ] = v2
c,f2 − 2 · vc,f2 · v8,f · cos(θ4 + θ5) + v2

8,f

⇔ 0 = −2 · vc,f2 · v8,f · cos(θ4 + θ5)

⇔ θ4 + θ5 = 90◦

⇔ θ5 = 90◦ − θ4 = 90◦ − 74.0◦ = 16.0◦

To obtain the value for the speed vc,f1 we formulate an expression for vc,f2 based on the equa-
tion of conservation of linear momentum in the y-direction (system 2) and insert it into the equation
in the x-direction:

vc,f2 = v8,f ·
cos θ4

cos θ5

− vc,f1 ·
sin θ3

cos θ5

⇒ vc,f1 · cos θ3 = [v8,f ·
cos θ4

cos θ5

− vc,f1 ·
sin θ3

cos θ5

] · sin θ5 + v8,f · sin θ4

⇔ vc,f1 · (cos θ3 + tan θ5 · sin θ3) = v8,f · (sin θ4 + tan θ5 · cos θ4)

⇔ vc,f1 = v8,f ·
[

sin θ4 + tan θ5 · cos θ4

cos θ3 + tan θ5 · sin θ3

]

= 0.86 ·
[

sin(74.0◦) + tan(16.0◦) · cos(74.0◦)

cos(15.6◦) + tan(16.0◦) · sin(15.6◦)

]

= 0.86 m/s

Finally, based on the equation of conservation of kinetic energy (system 1), we find the value for vc,i:

vc,i =
√
v2
c,f1 + v2

3,f =
√

0.862 + 1.252 = 1.52 m/s

(2) The angle θ1 can be found by using, for instance, the equation of conservation of linear momentum
in the x-direction (system 1):

θ1 = sin−1

[
vc,f1

vc,i
· cos θ3 −

v3,f

vc,i
· cos θ2

]
= sin−1

[
0.86

1.52
· cos(15.6◦)− 1.25

1.52
· cos(74.4◦)

]
= 19.0◦
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Exercise 11

Problem Statement

Figure 12

In the experimental class-
room of the University of
Costa Rica in the capital
city of San José, Samuel
is putting his knowledge on
the laws of physics into prac-
tice. One of the experiments
consists of two large, dif-
ferently shaped, frictionless
ramps put right next to each
other, whereby two small
steel bearing balls (m =
0.354 kg) are released simul-
taneously from the top of the slope (one ball for each ramp). The purpose of this particular exper-
imental design is to demonstrate pratically how the law of energy conservation is at work. One of
the ramps follows a straight path, whereas the other has an elliptical shape—in fact, it is the bottom
left segment of an ellipse when dividing a full ellipse into four equal parts. Samuel wishes to figure
out what the exact position is of each bearing ball when the speed ve of the ball on the elliptical
trajectory is twice that of the ball on the straight path (vs). If Samuel has already calculated that
the ball on the straight trajectory needs t = 1.91 s to reach the bottom, at which moment it possesses
a speed of vs,f = 5.83 m/s, and if he has now installed one of the measuring devices next to the
straight path at a height of ys = 1.44 m, what coordinates—with respect to the coordinate system
(x,y)—does Samuel find for both bearing balls?

Solution

Given that only conservative forces (gravity) are acting on the bearing balls, we know that the to-
tal mechanical energy is conserved. If ys and ye are the respective heights for which the condition
ve = 2 · vs is valid, we can apply the law of energy conservation to each of the bearing balls at those
positions with respect to their starting position (at t = 0 s, we have that y = h, x = 0 m, and v = 0
m/s):


Straight path: m · g · h =

m · v2
s

2
+m · g · ys ⇔ g · h =

v2
s

2
+ g · ys

Elliptical path: m · g · h =
m · v2

e

2
+m · g · ye ⇔ g · h =

v2
e

2
+ g · ye

Setting the two equations equal to each other and making use of the condition that ve = 2 · vs,
we find the following expression for vs:
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v2
s

2
+ g · ys =

v2
e

2
+ g · ye ⇔

v2
s

2
+ g · ys =

[2 · vs]2

2
+ g · ye

⇔ v2
s =

2

3
· g · (ys − ye)

If we insert the above expression for v2
s into the equation of energy conservation for the straight

path, we obtain the following expression for the height ye:

g · h =
[2
3
· g · (ys − ye)]

2
+ g · ys ⇔ h =

1

3
· (ys − ye) + ys

⇔ ye = 4 · ys − 3 · h

Before we can calculate the y-coordinate ye, we need to find the height h. Given that the ball
on the straight trajectory needs t = 1.91 s to reach a speed of vs,f = 5.83 m/s at the bottom of the
slope, we find that its acceleration over the length L of this path is equal to:

vs,f = v0 + as · t ⇔ as =
vs,f − v0

t
=

5.83− 0

1.91
= 3.05 m/s2

As a result, the straight path has the following length L:

v2
s,f − v2

0 = 2 · as · L ⇔ L =
v2
s,f − v2

0

2 · as
=

5.832 − 02

2 · 3.05
= 5.57 m

In a next step, applying Newton’s second law to the ball on the straight path (in the direction
of motion) allows us to determine the angle θ of the incline:

m · g · sin θ = m · as ⇔ θ = sin−1

(
as
g

)
= 18.1◦

Finally, the height h of both the ramps is then equal to:

h = L · sin θ = 5.57 · sin(18.1◦) = 1.73 m

We can now calculate the y-coordinate of the bearing ball on the elliptical trajectory:
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ye = 4 · ys − 3 · h = 4 · 1.44− 3 · 1.73 = 56.3 cm

Let us now focus on finding the x-coordinates of both the positions. With regard to the ball on
the straight path, we find the x-coordinate with the assistance of trigonometry:

xs =
(h− ys)

tan θ
=

(1.73− 1.44)

tan(18.1◦)
= 89.3 cm

Regarding the bearing ball on the elliptical path, we have to switch for a moment to the coordi-
nate system (x’,y’), whose origin sits at the center of the ellipse. Given that the semi-major axis a
and the semi-minor axis b are equal to a = L · cos θ = 5.57 · cos(18.1◦) = 5.29 m and b = h = 1.73 m,
respectively, we can calculate the x-position of the bearing ball with respect to the coordinate system
(x’,y’) as follows (remember that we are dealing with the bottom left segment of the ellipse):

x2

a2
+
y2

b2
= 1 ⇔ x

′2
e

a2
+

(hy)
2

b2
= 1 ⇔ x

′2
e

a2
+

(b− ye)2

b2
= 1

x′e = −a ·
√

1− (b− ye)2

b2

= −5.29 ·
√

1− (1.73− 0.563)2

1.732

= −3.90 m

With respect to the coordinate system (x,y), we find the following x-coordinate of the bearing ball
on the elliptical path:

xe = a− (0− x′e) = 5.29− [0− (−3.90)] = 1.39 m

The coordinates for both bearing balls are (0.893, 1.44) for the straight path and (1.39, 0.563) for
the elliptical trajectory under the condition that ve = 2 · vs for the given height ys.
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Exercise 12

Problem Statement

Figure 13

According to one report of the Ume̊a University in
Ume̊a, Sweden, the tenuous atmosphere of the planet
Mercury is mainly composed of oxygen (42%), sodium
(29%), hydrogen (22%), helium (6%), and minor
traces of other elements, among which potassium
(0.5%). Suppose now that a sodium atom (mNa =
22.9898 amu) is whizzing through Mercury’s atmo-
sphere relatively close to its surface with a speed of
vNa,i = 1, 252 m/s and under an angle of φ = 65.4◦

with the horizontal. A potassium atom (mK =
39.0983 amu), traveling at a speed vK,i, is right be-
hind the sodium atom and collides with it, sending
the sodium atom straight up. (1) What should be
the minimum incoming speed of the potassium atom
so that the sodium atom is able to exit Mercury’s
atmosphere? (2) After the collision, is the kinetic en-
ergy of the potassium atom still sufficient to make it out of Mercury’s well of gravitational potential
energy? Ignore any solar radiation pressure or drag forces for this problem and assume that the colli-
sion is perfectly elastic. Remember that 1 atomic mass unit (amu) is equal to 1 amu = 1.661×10−24

g, that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2), and that the
mass and radius of Mercury is equal to M = 3.30× 1023 kg and r = 2.44× 106 m, respectively.

Solution

(1) For our isolated system “sodium atom plus potassium atom” in which the collision occurs per-
fectly elastically we know that both the total linear momentum ~p = m ·~v (for such small masses, the
gravitational force becomes negligible) and the total kinetic energy Ek,tot are conserved quantities.
Therefore, we can write the following three equations:

x : (mK · vK,i) + (mNa · vNa,i) = (mK · vK,f · cos θ1) + (mNa · vNa,f · cos θ2)

y : 0 = −(mK · vK,f · sin θ1) + (mNa · vNa,f · sin θ2)

(mK · v2
K,i) + (mNa · v2

Na,i) = (mK · v2
K,f ) + (mNa · v2

Na,f )

Let us first have a look at what information we already have. The mass of the two atoms is equal to:
mK = 39.0983 · 1.661× 10−27 = 6.49× 10−26 kg

mNa = 22.9898 · 1.661× 10−27 = 3.82× 10−26 kg
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We can also already determine the angle θ2, since the angles θ2 and φ are complementary angles. As
a result, θ2 = 90◦ − φ = 90◦ − 65.4◦ = 24.6◦.

Next, there is the condition that the speed vNa,f of the sodium atom after the collision should be
such that the atom is able to escape Mercury’s gravitational pull and disappear into space. Ob-
jects that stay in an orbit around a planet are gravitationally bound to the planet. In that case,
their total mechanical energy is negative, because their gravitational potential energy, which has a
negative value, dominates. However, as soon as the mechanical energy becomes zero or greater (pos-
itive), it means that the object is no longer gravitationally bound and can follow a trajectory away
from its original orbit around that planet. In other words, its kinetic energy is now the dominant
term. The minimum speed vNa,f is then found when Etot = 0 J (as the collision occurs relatively close
to Mercury’s surface, we can use the radius r in the expression for the gravitational potential energy):

Etot = 0 ⇔
mNa · v2

Na,f

2
− G ·mNa ·M

r
= 0 ⇔ vNa,f =

√
2 ·G ·M

r

=

√
2 · 6.67× 10−11 · 3.30× 1023

2.44× 106

= 4.25× 103 m/s

With three unknown variables left, we can now determine the initial speed vK,i of the potassium
atom. In a first step, we rearrange and square the two equations related to the conservation of linear
momentum and subsequently add them together (whereby we make use of the trigonometric identity
“cos2 α + sin2 α = 1”):


x : [(mK · vK,i) + (mNa · vNa,i)− (mNa · vNa,f · cos θ2)]2 = m2

K · v2
K,f · cos2 θ1

y : m2
Na · v2

Na,f · sin2 θ2 = m2
K · v2

K,f · sin2 θ1

⇒ m2
K · v2

K,i + 2 ·mK ·mNa · vNa,i · vK,i +m2
Na · v2

Na,i +m2
Na · v2

Na,f − 2 ·mK ·mNa · vNa,f · cos θ2 · vK,i

− 2 ·m2
Na · vNa,i · vNa,f · cos θ2 = m2

K · v2
K,f

To write the above expression only in terms of the unknown variable vK,i, we want to eliminate
the unknown variable vK,f . Using the equation of conservation of kinetic energy, we find the follow-
ing expression for the term mK · v2

K,f :

mK · v2
K,f = (mK · v2

K,i) + (mNa · v2
Na,i)− (mNa · v2

Na,f )

Inserting the above expression into our first equation, we can calculate the value of vK,i:
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m2
K · v2

K,i + 2 ·mK ·mNa · vNa,i · vK,i +m2
Na · v2

Na,i +m2
Na · v2

Na,f − 2 ·mK ·mNa · vNa,f · cos θ2 · vK,i

− 2 ·m2
Na · vNa,i · vNa,f · cos θ2 = mK · [(mK · v2

K,i) + (mNa · v2
Na,i)− (mNa · v2

Na,f )]

⇔ 2 ·mK · (vNa,i − vNa,f · cos θ2) · vK,i = (mK −mNa) · v2
Na,i − (mK +mNa) · v2

Na,f + 2 ·mNa · vNa,i · vNa,f · cos θ2

⇔ vK,i =
(mK−mNa)·v2Na,i−(mK+mNa)·v2Na,f+2·mNa·vNa,i·vNa,f ·cos θ2

2·mK ·(vNa,i−vNa,f ·cos θ2)

= (6.49×10−26−3.82×10−26)·1,2522−(6.49×10−26+3.82×10−26)·(4.25×103)2+2·3.82×10−26·1,252·4.25×103·cos(24.6◦)
2·6.49×10−26·[1,252−4.25×103·cos(24.6◦)]

= 4.28× 103 m/s

(2) To find the kinetic energy Ek,K,f of the potassium atom after the collision, we use the equa-
tion related to the conservation of kinetic energy:

Ek,K,f =
mK · v2

K,f

2
=
mK · v2

K,i

2
+
mNa · v2

Na,i

2
−
mNa · v2

Na,f

2

=
mK · v2

K,i

2
+
mNa

2
· (v2

Na,i − v2
Na,f )

=
6.49× 10−26 · (4.28× 103)2

2
+

3.82× 10−26

2
· [1, 2522 − (4.25× 103)2]

= 2.79× 10−19 J

If we compare the kinetic energy against the gravitational potential energy Ep,K of the potassium
atom, which is equal to:

Ep,K = −G ·mK ·M
r

= −6.67× 10−11 · 6.49× 10−26 · 3.30× 1023

2.44× 106
= −5.86× 10−19 J

it follows that the potential energy dominates, resulting in a negative value for the total mechanical
energy. In other words, the potassium atom will not be able to escape Mercury’s gravitational pull.
Note, however, that if the potassium atom did not collide with the sodium atom, it would have
escaped into space, since its initial speed (vK,i = 4.28 × 103 m/s) exceeded the magnitude of the
escape velocity (vesc = vNa,f = 4.25× 103 m/s).
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Exercise 13

Problem Statement

Figure 14

You are sitting at gate 15 of the Shenyang
Taoxian International Airport, which is lo-
cated at the capital city of Shenyang in
the province Liaoning in China, waiting to
board your flight CZ3602 to Guangzhou in
the south of China. Being the astute en-
gineer that you are, you immediately spot
that the airplane model is the Airbus A320
Neo and since you have some free time on
your hands, you decide to do some off-hand
calculations. The flight attendant men-
tioned earlier that n = 161 passengers booked a seat, and you estimate that each person weighs
about mpas = 75.0 kg and that they carry mhl = 5.00 kg of hand luggage and checked in a suitcase
of msc = 16.5 kg. You further know that an empty A320 Neo model has a mass of mpl = 44.3 t and
that the fuel tanks contain approximately 27,500 L of jet fuel (with a density of d = 692 g/L). This
specific model is furthermore equipped with two Pratt & Whitney PW1127G engines that each give
a thrust of T = 27, 000 lbf. As it is raining, you estimate that the tires create a slightly lower kinetic
friction (µk = 0.135) with the runway. (1) You’re interested in finding the speed vh of the airplane
halfway the runway, which has a total length of L = 1, 982 m. What value for vh do you write down
in your notebook? (2) If you estimate that the average power of the plane at that moment is equal
to Ph = 3.97 MW and that the plane requires 70.7 % of the total takeoff time t to get to that point,
how much time does it still need to accelerate before taking off? (3) What value do you find for the
speed vf at lift-off? Remember that the pound-force is equal to 1 lbf = 1 lb × g, with g the accel-
eration due to gravity, and you assume that the pilot needs the entire length of the runway to take off.

Solution

(1) Let us in a first instance determine the total mass m of the airplane at the moment when it
is about to start accelerating at the beginning of the taxiway. The total mass of the passengers,
including their luggage, is equal to:

mtot,p = n · (mpass +mhl +msc) = 161 · (75.0 + 5.00 + 16.5) = 1.55× 104 kg

Given that the mass of the empty airplane is equal to mpl = 4.43 × 104 kg and that of the jet
fuel to mf = 27, 500× 0.692 = 1.90× 104 kg, we find the following total mass m:

m = mtot,p +mpl +mf = 1.55× 104 + 4.43× 104 + 1.90× 104 = 7.89× 104 kg
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To determine the speed vh, let us look at the work done on the system “Airbus A320 Neo”. Given
that the motion of the airplane is perpendicular to the gravitational force ~FG, we know that conser-
vative forces are not performing any work on the system. Therefore, the total work Wtot,h done is

equal to the work Wext done by external forces, i.e., the thrust force ~Feng generated by the engines

and the kinetic friction force ~Fk. The magnitude of the total thrust force ~Feng delivered by the two
engines is equal to (remember that 1 lb = 0.4536 kg):

Feng = 2 · (T · 0.4536 · g) = 2 · (27, 000 · 0.4536 · 9.81) = 2.40× 105 N

The magnitude of the friction force ~Fk is equal to:

Fk = µk · FN = µk · (m · g) = 0.135 · (7.89× 104 · 9.81) = 1.04× 105 N

The speed vh halfway the runway is then calculated as follows, whereby we make use of the work-
energy relation:

Wtot,h = Wext ⇔ ∆Ek = Wk +Weng ⇔
m · v2

h

2
− m · v2

0

2
= (−Fk + Feng) ·

L

2

⇔ vh =

√
v2

0 + (−Fk + Feng) ·
L

m

=

√
02 + (−1.04× 105 + 2.40× 105) · 1, 982

7.89× 104

= 58.4 m/s or 210 km/h

(2) Applying the definition of average power to the position halfway the runway allows us to find the
respective amount of time th:

Ph =
Wtot,h

th
=

(−Fk + Feng) · L2
th

⇔ th =
(−Fk + Feng) · L2

Ph

=
(−1.04× 105 + 2.40× 105) · 1,982

2

3.97× 106

= 33.9 s
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Given that the time th required to reach the midpoint of the taxiway is equal to th = 0.707 · t,
we find the remaining amount of time trem until the airplane reaches lift-off as follows:

trem = t− th =
th

0.707
− th = th ·

(
1− 0.707

0.707

)
= 33.9 ·

(
1− 0.707

0.707

)
= 14.1 s

(3) Since the total work Wtot done on the system “Airbus A320 Neo” by the end of the runway
is twice that at the midpoint position—the external forces are performing work over twice the same
distance L

2
—we can find the lift-off speed vf as follows:

Wtot = 2 ·Wtot,h ⇔
m · v2

f

2
= 2 ·Wtot,h ⇔ vf =

√
4 ·Wtot,h

m
=

√
4 · (−Fk + Feng) · L2

m

=
√

2 ·
√

(−Fk + Feng) ·
L

m

=
√

2 · vh

=
√

2 · 58.4

= 82.6 m/s or 297 km/h
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Exercise 14

Problem Statement

At high school, Hilde enjoyed studying mathematics and during her two final years she chose
the advanced course option whereby she was taught 8 hours of mathematics per week. After
high school, Hilde wanted to combine her interest in mathematics with her fascination for the
natural laws that explain how the physical world works. As a result, she decided to pursue a
master’s degree in physics and astronomy at the Free University of Brussels, in Belgium. Af-
ter a semester of hard work, Hilde is ready to tackle her first exam, which, according to her
schedule, is that of the course “Classical Mechanics”. The opening question consists of three
parts and reads as follows. A particle is undergoing a force ~F (~r), which is equal to ~F (~r) =[
xy2z2

2
· cos(kxyz)

]
· ~ix +

[
x2yz2

2
· cos(kxyz)

]
· ~iy +

[
x2y2z

2
· cos(kxyz)

]
· ~iz, with k a constant equal

to k = 0.453. (1) Show that the force ~F (~r) is conservative. (2) Determine the potential energy
function V (~r), whereby V (~0) = 0. (3) Calculate the work done on the particle by this force as it
moves from ~r1 = (2, 2, 2) to ~r2 = (1,−3, 5). How did Hilde answer this opening question?

Solution

(1) A conservative force is a force for which the net (total) work performed by this force to move
a particle from one point in space to another is independent of the path taken between those two
points. As a result, the net work done by a conservative force on a particle with respect to a closed
path is always equal to zero. In mathematical language, this means that the line integral of that
force over the closed path must be zero. The question of whether a force is conservative can be
addressed relying on a mathematical theorem called Stokes’ theorem, which relates this line integral
to the amount of circular movement that this force sends through the surface enclosed by the closed
path—in more technical terms, we say that the line integral is equal to the flux of the curl of this
force. Mathematically, this reads as follows:

∮
C

~F (~r) · d~r =

∫∫
S

(
~∇× ~F (~r)

)
· ~n · dS

If the line integral of a conservative force over a closed path is zero, then the curl of that force,
which is equal to the cross (vector) product between the nabla operator ~∇ and the force ~F (~r), must
be equal to the null vector ~0. In other words:

~∇× ~F (~r) = ~0 ⇔
[
∂

∂x
·~ix +

∂

∂y
·~iy +

∂

∂z
·~iz
]
×
[
Fx ·~ix + Fy ·~iy + Fz ·~iz

]
= ~0

⇔
(
∂Fz
∂y
− ∂Fy

∂z

)
·~ix +

(
∂Fx
∂z
− ∂Fz

∂x

)
·~iy +

(
∂Fy
∂x
− ∂Fx

∂y

)
·~iz = ~0
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At the component level, this means that a force is conservative if the following three conditions
are satisfied simultaneously :



x :
∂Fz
∂y
− ∂Fy

∂z
= 0 ⇔ ∂Fz

∂y
=
∂Fy
∂z

y :
∂Fx
∂z
− ∂Fz

∂x
= 0 ⇔ ∂Fx

∂z
=
∂Fz
∂x

z :
∂Fy
∂x
− ∂Fx

∂y
= 0 ⇔ ∂Fy

∂x
=
∂Fx
∂y

We are now ready to apply this criterion to the force ~F (~r) of Hilde’s exam question. Let us take the
left-hand side of the first equation:

∂Fz
∂y

=
∂

∂y

[
x2y2z

2
· cos(kxyz)

]
= x2yz · cos(kxyz)− kx3y2z2

2
· sin(kxyz)

The right-hand side of the first equation is equal to:

∂Fy
∂z

=
∂

∂z

[
x2yz2

2
· cos(kxyz)

]
= x2yz · cos(kxyz)− kx3y2z2

2
· sin(kxyz)

The above two partial derivates are equal to each other so that the condition with respect to the
x-component is satisfied. Similarly, for the y-and z-component, we find the following:

y :


∂Fx
∂z

= ∂
∂z

[
xy2z2

2
· cos(kxyz)

]
= xy2z · cos(kxyz)− kx2y3z2

2
· sin(kxyz)

∂Fz
∂x

= ∂
∂x

[
x2y2z

2
· cos(kxyz)

]
= xy2z · cos(kxyz)− kx2y3z2

2
· sin(kxyz)

z :


∂Fy
∂x

= ∂
∂x

[
x2yz2

2
· cos(kxyz)

]
= xyz2 · cos(kxyz)− kx2y2z3

2
· sin(kxyz)

∂Fx
∂y

= ∂
∂y

[
xy2z2

2
· cos(kxyz)

]
= xyz2 · cos(kxyz)− kx2y2z3

2
· sin(kxyz)

Since the condition of each of the three components is satisfied, we can conclude that the force
~F (~r) is conservative.

(2) Let us start with writing the definition of the work W done by the force ~F (~r), whereby we
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transform the initial integral with respect to the position into an integral expressed in terms of the
time variable:

W =

∫ ~r2

~r1

~F (~r) · d~r =

∫ ~r2

~r1

~F (~r) · d~r · dt
dt

=

∫ t2

t1

~F (~r) · d~r
dt
· dt

We also know that the work done by conservative forces between two points is equal to minus
the difference of the potential energy at these two points. If we choose the origin (~0) as our first
point and a random position vector ~r as our second point, and given our initial condition of V (~0) = 0,
we can write the following:

W = −∆V = −
[
V (~r)− V (~0)

]
= − [V (~r)− 0] = −V (~r)

Combining the above two equations for the work W, we obtain the following expression for a conser-
vative force ~F (~r), whereby we make use of the product between two vectors, i.e., the dot product:

∫ t2

t1

~F (~r) · d~r
dt
· dt = −V (~r) ⇔ d

dt

[∫ t2

t1

~F (~r) · d~r
dt
· dt
]

=
d

dt
[−V (~r)]

⇔ ~F (~r) · d~r
dt

= −dV (~r)

dt

= −
[
∂V (~r)

∂x
· dx
dt

+
∂V (~r)

∂y
· dy
dt

+
∂V (~r)

∂z
· dz
dt

]

= −
[
~∇V (~r) · d~r

dt

]

⇔ ~F (~r) = −~∇V (~r)

The three components of this expression are then equal to:

Fx = −∂V (~r)

∂x
Fy = −∂V (~r)

∂y
Fz = −∂V (~r)

∂z

Returning now to Hilde’s exam, if we take, for instance, the x-direction, the potential energy function
V (~r) can be obtained as follows:

−∂V (~r)

∂x
= Fx ⇔ dV (~r) = −Fx · dx ⇔

∫
dV (~r) =

∫
−Fx · dx ⇔ V (~r) = −

∫
Fx · dx
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⇔ V (~r) = −
∫ [

xy2z2

2
· cos(kxyz)

]
· dx

= −y
2z2

2
·
∫
x · cos(kxyz) · dx

= −y
2z2

2
·
[

1

k2y2z2
· cos(kxyz) +

x

kyz
· sin(kxyz)

]
+ c

= − 1

2k2
· [cos(kxyz) + kxyz · sin(kxyz)] + c

The integration constant c can be found by implementing the initial condition V (~0) = 0:

V (~0) = 0 = − 1

2k2
· [cos(0) + 0 · sin(0)] + c ⇔ c =

1

2k2

The potential energy function V (~r) then becomes:

V (~r) = − 1

2k2
· [cos(kxyz) + kxyz · sin(kxyz)] +

1

2k2

= − 1

2k2
· [cos(kxyz) + kxyz · sin(kxyz)− 1]

(3) The work done by the force ~F (~r) to move the particle from ~r1 = (2, 2, 2) to ~r2 = (1,−3, 5)
is calculated as follows:

W = − [V (~r2)− V (~r1)]

= −
[
− 1

2k2
· [cos(kx2y2z2) + kx2y2z2 · sin(kx2y2z2)− 1] + 1

2k2
· [cos(kx1y1z1) + kx1y1z1 · sin(kx1y1z1)− 1]

]

= −
[
− 1

2 · 0.4532
· [cos(0.453 · 1 · (−3) · 5) + (0.453 · 1 · (−3) · 5) · sin(0.453 · 1 · (−3) · 5)− 1] +

]
[

1

2 · 0.4532
· [cos(0.453 · 2 · 2 · 2) + 0.453 · 2 · 2 · 2 · sin(0.453 · 2 · 2 · 2)− 1]

]

= −(−1.94 + 0.553)

= 1.39 J
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Exercise 15

Problem Statement

Figure 15

For the past 2 years,
Toivo has held the max-
imum score on the Cy-
clone pinball machine in
the local pub Kurva
Kodu in Rakvere, Esto-
nia. However, last night,
his best friend Kaarli
broke his record, and
since then Toivo has been
trying non-stop to regain
his leader position on the
Hall of Fame Scoreboard.
The pinball machine has
a length of L = 1.25 m
and the playfield makes
an angle of θ = 9.65◦ with the horizontal. The top left and top right corners of the playfield are round
in shape and on the right-hand side, there is a long isolated compartment from where the metal ball
(with a mass and radius equal to m = 0.252 kg and r = 0.550 cm) is launched. The compartment
has a width of d = 8.00 cm and its left edge stops at a distance d from the top edge of the pinball
machine. The launch mechanism is a spring (k = 155 N/m), which compresses when being pulled
backwards from outside of the machine. In resting mode, the equilibrium length of the spring is equal
to s = 14.0 cm. Toivo has also figured out that it greatly benefits his game if the ball enters the
playfield when it still “sticks” to the top edge of the pinball machine as it exits the top right rounded
corner. If you know that the metal ball produces kinetic friction (µk = 0.228) with the bottom surface
of the playfield, how far back, at a minimum, should Toivo pull the external handle so that, upon
release, the metal ball enters the playfield with the greatest odds of beating Kaarli’s maximum score?

Solution

Given that a kinetic friction force ~Fk acts on the metal ball (opposite to its direction of motion), the
total mechanical energy of the ball is not conserved. What has to be taken into account is the work
Wext done by ~Fk. The work-energy relation is then written as follows, whereby Ek and Ep represent
the kinetic and potential energy, respectively:

Ek,1 + Ep,1 +Wext,1 = Ek,2 + Ep,2

Suppose that we consider the mechanical energy E1 as the energy of the ball at its position whereby
the spring is compressed by the distance yc, whereas the mechanical energy E2 is the energy of the
ball right before it enters the rounded top right corner at a distance L − s − d. The work-energy
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relation then obtains the following form (note that Ek,1 = 0 J):

Ep,1 +Wext = Ek,2 + Ep,2

⇔
[
k·y2c

2
−m · g · sin θ · yc

]
+ [−µk ·m · g · cos θ · (L− s− d+ yc)] =

[
m·v2

2

]
+ [m · g · sin θ · (L− s− d)]

⇔ k · y2
c

2
− [m · g · (sin θ + µk · cos θ)] · yc −m · g · (L− s− d) · (sin θ + µk · cos θ) =

m · v2

2

What we know want to do is the find an expression for the kinetic energy Ek,2 = m·v2
2

which we
can insert into the above work-energy equation. In a next step, let us go through the same exercise
as above considering now the energy E2 and the energy E3, which is the energy of the ball when
it exits the top right corner, whereby we demand that it follows a path maximally outwards when
going through the corner. As the ball has a radius of r = 0.550 cm, the radius rc of the circular
trajectory followed by the ball through the corner is then equal to rc = d− r = 8.00− 0.550 = 7.45
cm. The work-energy equation then states:

Ek,2 + Ep,2 +Wext,2 = Ek,3 + Ep,3

⇔
[
m · v2

2

]
+ [m · g · sin θ · (L− s− d)] +

[
−µk ·m · g · cos θ · (rc ·

π

2
)
]

=

[
m · v2

f

2

]
+

[m · g · sin θ · (L− s− r)]

The requirement that the metal ball sticks to the top edge of the pinball machine leads to an-
other constraint, which we can use to replace the expression v2

f in the above work-energy equation.
When the ball exits the top right corner, the centripetal force exerted on the ball must be, at a
minimum, equal to the gravitational force. Therefore, we can write:

m · v2
f

rc
= m · g sin θ ⇔ v2

f = rc · g sin θ

Plugging this expression for v2
f back into our second work-energy equation, we obtain the follow-

ing expression for the kinetic energy Ek,2 = m·v2
2

:

[
m · v2

2

]
+ [m · g · sin θ · (L− s− d)] +

[
−µk ·m · g · cos θ · (rc ·

π

2
)
]

=

[
m · (rc · g · sin θ)

2

]
+

[m · g · sin θ · (L− s− r)]

⇔ m · v2

2
=
m · g

2
· [(2d− 2r + rc) · sin θ + µk · π · rc · cos θ]
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Inserting the above expression into our first work-energy equation, we obtain the following quadratic
equation:

k · y2
c

2
− [m · g · (sin θ + µk · cos θ)] · yc −m · g · (L− s− d) · (sin θ + µk · cos θ) =

m · g
2
· [(2d− 2r + rc) · sin θ + µk · π · rc · cos θ]

⇔ k · y2
c

2
− [m · g · (sin θ + µk · cos θ)] · yc −m · g ·

[
(L− s− r +

rc
2

) · sin θ +
]

[
µk · (L− s− d+

π · rc
2

) · cos θ
]

= 0

⇔ 155
2
· y2

c − [0.252 · 9.81 · [sin(9.65◦) + 0.228 · cos(9.65◦)]] · yc −

0.252 · 9.81 ·
[(

1.25− 0.14− 0.00550 + 0.0745
2

)
· sin(9.65◦) + 0.228 ·

(
1.25− 0.14− 0.08 + π·0.0745

2

)
· cos(9.65◦)

]
= 0

Solving the above quadratic equation gives a physically sensible solution (yc ≥ 0 since we treated it
as a distance) equal to yc = 12.6 cm. When Toivo pulls back the external handle by a distance of
12.6 cm, then the metal ball will “stick” to the upper edge of the pinball machine when exiting the
top right corner, maximizing his chances of beating the top score of his best friend Kaarli.

Note furthermore that we took an extra step in the above solution, i.e., we considered the mechanical
energy E2 of the metal ball right before entering the top right corner. A more efficient approach
would have been to only consider the mechanical energy E1 and E3, which should give the same
result.

52



Physics Exercises on Work, Energy, and Momentum Olivier Loose

Exercise 16

Problem Statement

Figure 16

Suppose that 30,000 years ago,
at a distance of d = 2.50 light
years away from the center of
the Sun, two massive rocks
collided. The first rock, with
a mass of m1 = 5.95× 105 kg,
smashed with a speed of v1,i =
95, 400 km/h into a heavier
second rock (m2 = 1.22 ×
106 kg), which was traveling
slower at v2,i = 10, 200 km/h.
After the collision, which hap-
pened to be perfectly elastic,
rock 1 deviated from its orig-
inal path by an angle of α =
33.2◦ and headed straight towards our Solar System, which we consider, for practical purposes, to
be equal to the system “the Sun plus planet Earth”. Moreover, as soon as it followed its new course,
rock 1 became sensitive to the gravitational influence of our Solar System (ignore the gravitational
pull by rock 2). Today, rock 1 finally reached our Solar system and is about to hit the surface of
the Sun. If you know that at that moment the Earth is in an orbital position at 90◦ with respect to
the line of trajectory of rock 1, what is the rock’s speed as it crashes into the Sun? Remember that
the universal gravitational constant G is equal to G = 6.67 × 10−11 m3/(kg· s2), that the mass and
radius of the Sun are equal to Ms = 1.99 × 1030 kg and rs = 6.96 × 105 km, respectively, that the
mass of the Earth is equal to ME = 5.97 × 1024 kg, and that 1 light year measures 9.46 × 1012 km.
Also take into account that at a distance d the Earth-Sun distance (rES = 1.496× 108 km) becomes,
relatively speaking, very small and can be ignored in the calculations.

Solution

As the gravitational influence of our Solar System only becomes noticeable after the collision, we
can assume that the collision occurred in an isolated system. Therefore, the total linear momentum
~p = m · ~v is conserved, and given that both rocks collided in a perfectly elastically fashion, the total
kinetic energy Ek,tot is equally constant. We can then write the following three equations:



x : (m1 · v1,i) + (m2 · v2,i) = (m1 · v1,f · cosα) + (m2 · v2,f · cos β)

y : 0 = −(m1 · v1,f · sinα) + (m2 · v2,f · sin β)

(m1 · v2
1,i) + (m2 · v2

2,i) = (m1 · v2
1,f ) + (m2 · v2

2,f )

53



Physics Exercises on Work, Energy, and Momentum Olivier Loose

Rearranging and squaring both the x- and y-equation and subsequently adding them together and
making use of the trigonometric identity “sin2 θ + cos2 θ = 1” as well as the equation related to the
conservation of kinetic energy, we obtain the following quadratic equation:


x : [(m1 · v1,i +m2 · v2,i)− (m1 · v1,f · cosα)]2 = m2

2 · v2
2,f · cos2 β

y : m2
1 · v2

1,f · sin2 α = m2
2 · v2

2,f · sin2 β

⇒ (m1 · v1,i +m2 · v2,i)
2 − 2 ·m1 · v1,f · (m1 · v1,i +m2 · v2,i) · cosα +m2

1 · v2
1,f = m2

2 · v2
2,f

⇔ (m1 · v1,i +m2 · v2,i)
2 − 2 ·m1 · v1,f · (m1 · v1,i +m2 · v2,i) · cosα +m2

1 · v2
1,f =

m2 · [m1 · v2
1,i +m2 · v2

2,i −m1 · v2
1,f ]

⇔ (m1 +m2) · v2
1,f − 2 · cosα · (m1 · v1,i +m2 · v2,i) · v1,f + [(m1 −m2) · v1,i + 2 ·m2 · v2,i] · v1,i = 0

⇔ (5.95× 105 + 1.22× 106) · v2
1,f − 2 · cos(33.2◦) · (5.95× 105 · 2.65× 104 + 1.22× 106 · 2.83× 103) · v1,f +

[(5.95× 105 − 1.22× 106) · 2.65× 104 + 2 · 1.22× 106 · 2.83× 103] · 2.65× 104 = 0

The above quadratic equation provides two solutions, i.e., v1,f = 2.37×104 m/s and v1,f = −5.95×103

m/s. For the remainder of this exercise, we will work with the first solution.

Now that rock 1 has changed its course and is headed towards our Solar System with a speed v1,f ,
we know that it becomes sensitive to the gravitational pull of our Solar System. With regard to the
system “rock 1 plus our Solar System”, the total mechanical energy of the rock is conserved given
that only conservative forces are at play. We choose to compare its mechanical energy right after
the collision (Etot,i) with that as it is about to hit the Sun (Etot,f ). Regarding Etot,i, although the
gravitational force of both the Sun and the Earth is acting upon the rock, given that the Earth-Sun
distance rES becomes very small, relatively speaking, we can assume that there is just one mass, i.e.,
Ms +ME, at a distance d exerting its gravitational influence upon the rock.

When it comes to Etot,f , since we know that the orbital position of the Earth around the Sun makes
an angle of 90◦ with the trajectory line of rock 1, the distance rr,E between the rock and the Earth

is equal to rr,E =
√
r2
s + r2

ES. The final speed vf with which rock 1 strikes against the Sun is then
calculated as follows:

Etot,i = Etot,f ⇔
m1 · v2

1,f

2
− G ·m1 · (Ms +ME)

d
=
m1 · v2

f

2
− G ·m1 ·Ms

rs
− G ·m1 ·ME√

r2
s + r2

ES

⇔ vf =

√√√√v2
1,f + 2 ·G ·

[
Ms

rs
+

ME√
r2
s + r2

ES

− (Ms +ME)

d

]
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=

√
(2.37× 104)2 + 2 · 6.67× 10−11 ·

[
1.99×1030

6.96×108
+ 5.97×1024√

(6.96×108)2+(1.496×1011)2
− (1.99×1030+5.97×1024)

2.50·9.46×1015

]

= 6.18× 105 m/s or 2.22× 106 km/h
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Exercise 17

Problem Statement

Figure 17

After spending their entire morn-
ing attending classes at the Nor-
buling Central School in Gelephu,
Bhutan, Sangay (m = 57.4 kg) and
her friends Sherab and Kim rush to
one of the nearby tributary streams
of the Manas River. On one side of
the river bank, a couple of indige-
nous trees called Ehretia acuminata
are standing tall next to each other
and Sangay has attached a rope of
length L = 8.55 m to one of their
branches, whereby one end of the
rope is a distance ∆y = 1.75 m short
from touching the ground. Sangay
runs up to the rope with an initial
speed v0, grabs it and subsequently swings on it until she briefly comes to a halt, at which moment
the rope is making an angle of θmax = 28.4◦ with the vertical. After a couple of swings, Sangay
feels adventurous and she quickly estimates that when releasing the rope at an angle θ, whereby
θ < θmax, she will make it to the other riverbank. Sangay is right in her calculations and she indeed
just reaches the other side of the stream. (1) If you know that the tension in the rope right before
the moment when Sangay releases it is equal to T = 565 N, what is the value of the angle θ? (2)
How wide is the river? (3) With what speed does Sangay hit the ground on the other side?

Solution

(1) As the upwards pointing tension force ~T is perpendicular to Sangay’s direction of motion along an
arc-shaped path, it is not performing any work on the system “Sangay”, so that her total mechanical
energy is conserved at all times. In a first instance, let us compare the mechanical energy E1 at the
moment Sangay grabs the rope with the energy E2 when the rope makes an angle θ with the vertical:

E1 = E2 ⇔ m · v2
0

2
=
m · v2

1

2
+m · g · L · (1− cos θ)

Since we do not know the values for either v0 or v1, we will find expressions for both of them. Re-
garding v0, we can apply the law of energy conservation to Sangay’s initial position (E1) and the
moment when she comes briefly to a stop at an angle θmax (Emax):

E1 = Emax ⇔ m · v2
0

2
= m · g · L · (1− cos θmax)
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With respect to v1, when applying Newton’s second law to Sangay, we obtain the following equation:

T −m · g · cos θ =
m · v2

1

L
⇔ m · v2

1 = L · T − L ·m · g · cos θ

Inserting the two above expression back into our first equation, we can calculate the angle θ:

[m · g · L · (1− cos θmax)] =
[L · T − L ·m · g · cos θ]

2
+m · g · L · (1− cos θ)

⇔ −m · g · cos θmax =
T

2
− 3

2
·m · g cos θ

⇔ θ = cos−1

(
T

3 ·m · g
+

2

3
· cos θmax

)
= cos−1

[
565

3 · 57.4 · 9.81
+

2

3
· cos(28.4◦)

]
= 22.9◦

(2) To find the width W of the river, we first have to determine the speed v1 as well as the time t
Sangay spends in the air during her free fall. The speed v1 can be calculated by using the expression
obtained through Newton’s second law in part (1):

m · v2
1 = L · T − L ·m · g · cos θ ⇔ v1 =

√
L

m
· (T −m · g · cos θ)

=

√
8.55

57.4
· [565− 57.4 · 9.81 · cos(22.9◦)]

= 2.63 m/s

To determine the time t during the free fall, we write the following equation of motion in the y-
direction:

y = y0 + v0 · t+
ay
2
· t2 ⇔ −∆y = L · (1− cos θ) + v1 · sin θ · t−

g

2
· t2

− 1.75 = 8.55 · [1− cos(22.9◦)] + 2.63 · sin(22.9◦) · t− 9.81

2
· t2

The above quadratic equation provides a physically sensible solution (i.e., t > 0) equal to t = 0.816
s. The width W of the river can now be calculated as follow:

W = (L · sin θ) + (v1 · cos θ · t) = [8.55 · sin(22.9◦)] + [2.63 · cos(22.9◦) · 0.816] = 5.31 m

57



Physics Exercises on Work, Energy, and Momentum Olivier Loose

(3) We can obtain the speed v2 by comparing, for instance, the energy of Sangay at the moment
when she lets go of the rope (E2) with that right before she lands on the opposite riverbank (E3):

E2 = E3 ⇔ m · v2
1

2
+m · g · L · (1− cos θ) =

m · v2
2

2
+m · g · (−∆y)

⇔ v2 =
√
v2

1 + 2 · g · [L · (1− cos θ) + ∆y]

=
√

2.632 + 2 · 9.81 · [8.55 · [1− cos(22.9◦)] + 1.75]

= 7.38 m/s
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Exercise 18

Problem Statement

Figure 18

On 14 December 2007, the
Earth surveillance satellite RA-
DARSAT-2 (m = 2, 250 kg)
was launched with the as-
sistance of a Soyuz launch
vehicle from the Baikonur
Cosmodrome in the south
of Kazakhstan (45◦58′42.3′′N
63◦17′31.9′′E). The data gath-
ered during its observation is
used for research as well as for
developing applications and
services in a wide range of ar-
eas, including pollution mon-
itoring, ice monitoring, agri-
cultural crop monitoring, geological mapping, and disaster management. RADARSAT-2 has been
put in a near polar heliosynchronous orbit with an orbital period roughly equal to TR = 101 min at
an inclination angle of θi = 98.6◦. In a heliosynchronous orbit, a satellite crosses the equator always
at the same local time, which in the case of RADARSAT-2 is about 18:00 hrs (when moving from
south to north). The inclination angle θi is the angle between the equator and the orbital plane of
the satellite, whereby 0◦ corresponds to a satellite orbiting along the equator in the same direction as
the Earth’s spin. If you estimate that the average power of the engines combined was about P = 10.6
MW, how long did it take the Soyuz launch vehicle to place RADARSAT-2 into orbit? Remember
that the universal gravitational constant G is equal to G = 6.67 × 10−11 m3/(kg· s2) and that the
mass and radius of the Earth are equal to ME = 5.97×1024 kg and rE = 6.38×103 km, respectively.
Assume a circular orbit for the satellite.

Solution

Given that the thrust force of the engines is a non-conservative force, we know that the total me-
chanical energy of the system “RADARSAT-2” is not conserved, so that the total mechanical energy
of the satellite within its near polar orbit (E2) will be equal to the mechanical energy at the moment
of its launch (E1) plus the total energy of the engines needed to put the satellite into orbit (Eeng).

In Exercise 3, we have seen that the total mechanical energy of an object orbiting around a massive
body at a distance r from its center is equal to Etot = −G·m·M

2·r . Therefore, in the case of the satellite
RADARSAT-2, the total mechanical energy equation can be written in the following way:

E1 + Eeng = E2 ⇔
[
m · v2

1

2
− G ·m ·ME

rE

]
+ Eeng =

[
−G ·m ·ME

2 · (rE + r)

]
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The reason that the kinetic energy term at the moment of the satellite’s launch is not zero is because,
viewed from the center of the Earth, an object positioned on the Earth’s surface at a non-zero angle
with the Earth’s rotation axis is undergoing rotational motion due to the Earth’s spin. Let us now,
in a first instance, determine the distance d between the satellite’s position at the Baikonur Cosmod-
rome and the Earth’s rotation axis. Given an angle of latitude θL equal to θL = 45+ 58

60
+ 42.3

60
= 46.0◦,

the distance d becomes:

d = rE · cos θL = 6.38× 106 · cos(46.0◦) = 4.43× 106 m

The speed v1 due to the rotation of the Earth at the location of the Baikonur Cosmodrome is then
equal to (with TE the period of the Earth’s rotation):

v1 =
2 · π
TE
· d =

2 · π
86, 400

· 4.43× 106 = 322 m/s

Before returning to our initial energy equation, we still need to determine the height r above the
Earth’s surface of RADARSAT-2’s near polar heliosynchronous (circular) orbit, which is found with
the help of Kepler’s third law:

r =

(
3

√
T 2
R

4 · π2
·G ·ME

)
− rE =

(
3

√
(101 · 60)2

4 · π2
· 6.67× 10−11 · 5.97× 1024

)
− 6.38× 106 = 802 km

Going back to our initial energy equation, we now have all the information available to calculate the
combined energy Eeng of the engines:

Eeng = G ·m ·ME ·
[

rE + 2 · r
2 · rE · (rE + r)

]
− m · v2

1

2

= 6.67× 10−11 · 2, 250 · 5.97× 1024 ·
[

6.38× 106 + 2 · 8.02× 105

2 · 6.38× 106 · (6.38× 106 + 8.02× 105)

]
− 2, 250 · 3222

2

= 7.79× 1010 J

The time t it took the Soyuz launch vehicle to place RADARSAT-2 into its orbit is then found
as follows:

P =
Eeng
t

⇔ t =
Eeng
P

=
7.79× 1010

10.6× 106
= 7.35× 103 s or 2.04 hours
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Exercise 19

Problem Statement

Figure 19

Luan and Annika are spend-
ing their Saturday after-
noon improving their shoot-
ing skills at the Long Range
Shooting Club in Leandra,
South Africa. Luan owns
a .380 ACP gun, while An-
nika brought her .40 Smith
& Wesson to the shooting
range. Luan’s .380 ACP
fires its bullets of 9.0 mm
caliber with a muzzle veloc-
ity of ~v01 = v01 ·~ix, whereas
the muzzle velocity of the
10.2 mm caliber bullets of
Annika’s .40 S&W is equal
to ~v02 = v02 ·~ix. They are each standing at a distance of d = 45.5 m away from a small wooden
block (M = 2.55 kg), suspended from a rope with length L = 0.750 m. When firing their gun,

aimed at their respective wooden block, a drag force ~FD = −b · v2 ·~ix has slowed the bullet’s muzzle
velocity (in the x-direction) by 5% by the time the bullet hits the block. Upon impact, the block
swings slightly backwards until it reaches a height h (with respect to the top edge of the block) and
makes an angle θ with the vertical. If you know that the muzzle speed v02, the mass m2 of the
.40 S&W’s bullets, and the maximum swinging height h2 of Annika’ wooden block relative to Luan
are equal to 1.122, 1.722, and 3.721, respectively, and that Luan’s block makes a θ1 = 13.95◦ angle
when at its maximum swinging height h1, (1) what is the mass m1 and m2 of the 9.0 mm and 10.2
mm caliber bullets, respectively, expressed in grains, whereby 1 grain = 6.48× 10−2 g? (2) What is
the magnitude of the muzzle velocity ~v01 (.380 ACP) and ~v02 (.40 S&W)? (3) Which angle θ2 does
Annika’s block make with the vertical at its maximum height h2? Assume that between the moment
when the bullets enter the wooden block and until they come to a halt within the block, the block
is not experiencing any major changes in its motion.

Solution

(1) Given that the bullet does not cause significant motion of the block during the deceleration of
the bullet as it penetrates the wooden block, the system “bullet plus wooden block” has a net force
equal to zero, so that the linear momentum is conserved during this perfectly inelastic collision—if
the block would start swinging during this moment of deceleration, the system would experience a
net force due to gravity and the total linear momentum would not remain constant.

As a result of to the 5% loss in velocity due to the drag force ~FD, the incoming speeds v11 and
v12 of the 9.0 mm caliber and 10.2 mm caliber bullet right before hitting the block are equal to
v11 = 0.95 · v01 and v12 = 0.95 · v02, respectively. The conservation of the total linear momentum
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therefore provides us with the following two equations, with v1f and v2f the speed of the block and
the bullet combined right after the collision:


m1 · v11 = (m1 +M) · v1f

m2 · v12 = (m2 +M) · v2f

For both Luan and Annika, the block will start swinging after the collision, and at that moment
the only force doing work on the combined system “bullet and block” is the gravitational force. We
therefore know that the system’s total mechanical energy is conserved and we can write the following
two equations, whereby E1i (with i ∈ {1, 2}) the mechanical energy at the block’s lowest point and
E2i that at the height hi:


E11 = E21 ⇔

(m1 +M) · v2
1f

2
= (m1 +M) · g · h1 ⇔ v1f =

√
2 · g · h1

E12 = E22 ⇔
(m2 +M) · v2

2f

2
= (m2 +M) · g · h2 ⇔ v2f =

√
2 · g · h2

Plugging the above two expression for v1f and v2f into the two equations related to the conservation
of linear momentum, we obtain the following two expressions:


m1 · v11 = (m1 +M) ·

√
2 · g · h1

m2 · v12 = (m2 +M) ·
√

2 · g · h2

Since we know that v12 = 0.95 · v02 = 0.95 · (1.122 · v01) = 1.122 · (0.95 · v01) = 1.122 · v11, that
m2 = 1.722 ·m1, and that h2 = 3.721 · h1, we can reformulate the second equation as follows:

[1.722 ·m1] · [1.122 · v11] = ([1.722 ·m1] +M) ·
√

2 · g · [3.721 · h1] ⇔
√

2 · g · h1 = 1.722·1.122·m1·v11√
3.721·(1.722·m1+M)

Inserting this final expression back into the first equation, we can calculate the mass m1 of the .380
ACP’s 9.0 mm caliber bullets:

m1 · v11 = (m1 +M) ·
[

1.722 · 1.122 ·m1 · v11√
3.721 · (1.722 ·m1 +M)

]
⇔ m1 =

(
1.722 · 1.122−

√
3.721

)
1.722 ·

(√
3.721− 1.122

) ·M

=

(
1.722 · 1.122−

√
3.721

)
1.722 ·

(√
3.721− 1.122

) · 2.55

= 5.68 g or 87.6 grains
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The mass m2 of the .40 S&W’s 10.2 mm caliber bullets is then equal to m2 = 1.722·m1 = 1.722·5.68 =
9.78 g or 151 grains.

(2) Given that the height hi of the wooden block at its maximum angle θi (when the block briefly
comes to a halt) is equal to hi = L · (1− cos θi), the value of h1 is found as follows:

h1 = L · (1− cos θ1) = 0.750 · [1− cos(13.95◦)] = 2.21 cm

The height h2 is then equal to h2 = 3.721 · h1 = 3.721 · 2.21 = 8.23 cm, and the magnitude of the
velocities v11 and v12 is calculated in the following way:


v11 =

(
1 +

M

m1

)
·
√

2 · g · h1 =

(
1 +

2.55

0.00568

)
·
√

2 · 9.81 · 0.0221 = 296 m/s

v12 =

(
1 +

M

m2

)
·
√

2 · g · h2 =

(
1 +

2.55

0.00978

)
·
√

2 · 9.81 · 0.0823 = 333 m/s

Finally, the muzzle speeds v01 and v02 of the .380 ACP and .40 S&W, respectively, are then equal to
v01 = v11

0.95
= 296

0.95
= 312 m/s and v02 = v12

0.95
= 333

0.95
= 350 m/s.

(3) The angle θ2 that Annika’s wooden block makes with the vertical when the block is at its
maximum height h2 is found as follows:

h2 = L · (1− cos θ2) ⇔ θ2 = cos−1

(
1− h2

L

)
= cos−1

(
1− 0.0823

0.750

)
= 27.1◦

Since the .40 S&W’s muzzle speed is higher than that of the .380 ACP (v02 = 350 m/s > v01 = 312
m/s), it indeed makes sense that θ2 = 27.1◦ > θ1 = 13.95◦ due to a greater impact at the moment of
the collision between the bullet and the wooden block.
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Exercise 20

Problem Statement

Figure 20

Last week, Olivia and Adam have been watching a dozen of
Youtube videos on how to make your own water bottle rocket.
They even went the extra mile and figured out some of the
basics of the underlying physics of their new project. Ear-
lier this morning, they went to buy all the required equipment
and with the assembled bottle rocket under their arm, Olivia
and Adam are now headed to the nearby Blatherskite Park in
Alice Springs, Australia, to try out their first design. Their
rocket consists of three empty 2.00 L plastic soda water bottles
(mb = 44.9 g per unit) firmly taped together and designed in
such a way that combined they make one cylindrical container.
The rocket is filled with heated soda water at a temperature of
42.5◦C (for some extra kinetic energy) for a total volume of a
little under one third per bottle (Vb = 0.63 L per unit). Once
Olivia and Adam start pumping air into the rocket, the growing
pressure increasingly pushes on the water until at one point the
water will come rushing out of the nozzle at the bottom of the rocket, providing the bottle rocket
with upwards thrust and sending it flying through the air. Olivia and Adam estimate that about
459 g of soda water will shoot out of the rocket every second at a constant speed of vw = 36.5 m/s,

relative to the rocket. They furthermore take into account an average drag force of ~FD = −25.5 ·~iy
N during the rocket’s ascent. If you know that the density of soda water is equal to ρ = 1.01442
kg/L, (1) how high will the bottle rocket go? (2) How much time did the rocket spend in the air
(ignore air friction during the rocket’s descent)? (3) What is the total power supplied by the thrust

force ~FT of the bottle rocket, expressed in horsepower (hp)? Remember that 1 hp = 745.7 W.

Solution

(1) Let us in a first instance determine the total mass mtot of the bottle rocket and the water together:

mtot = mb · 3 + (Vb · ρ) · 3 = 0.0449 · 3 + (0.63 · 1.01442) · 3 = 2.05 kg

As the rocket shoots up, it is transferring its linear momentum ~pr = mtot · ~v to that of the wa-
ter (~pw = mtot ·~v

′
w) since the rocket’s mass gradually reduces, whereby the velocity ~v

′
w is the velocity

of the water with respect to an inertial frame of reference, i.e., an observer standing on the ground,
and is therefore equal to ~v

′
w = ~v + ~vw.

Without any net force acting on the system “bottle rocket plus water”, the change in the total linear
momentum ~ptot = ~pr + ~pw would be zero and we would write:
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d~Ptot
dt

=
d~Pr
dt

+
d~Pw
dt

= 0

However, as the combination of the gravitational force ~FG and the drag force ~FD exert a net force
on the system during its ascent, the above equation becomes:

d~Ptot
dt

=
d~Pr
dt

+
d~Pw
dt

= ~FG + ~FD

As we consider a one-dimensional system, we will omit the vector notation from now on. The
two terms on the left-hand side of the equation are equal to:


dPr
dt

=
d(mtot · v)

dt
= mtot ·

dv

dt
+ v · dmtot

dt

dPw
dt

= −d(mtot · v
′
w)

dt
= −v ′w ·

dmtot

dt

Regarding the term dPw
dt

, we introduced a minus sign in front of the fraction, because the momentum

of the water is increasing while the rocket is losing mass, i.e., the term d(mtot)
dt

is negative. Also, the

speed v
′
w with which the water is being pushed out of the rocket is assumed constant, so that it

can be brought outside of the differential. Putting the above two expressions back into our original
equation of the change in total linear momentum, we obtain the following equation:

dPr
dt

+
dPw
dt

= −FG − FD ⇔
[
mtot ·

dv

dt
+ v · dmtot

dt

]
+

[
−v ′w ·

dmtot

dt

]
= −(mtot · g)− FD

⇔
[
mtot ·

dv

dt
+ v · dmtot

dt

]
+

[
−(v − vw) · dmtot

dt

]
= −(mtot · g)− FD

⇔ dv

dt
= −

(
vw
mtot

· dmtot

dt

)
− g − FD

mtot

To express the height in terms of the time variable t, let us integrate the above equation:

dv

dt
= −

(
vw
mtot

· dmtot

dt

)
− g − FD

mtot

⇔ dv = −
(
vw
mtot

· dmtot

)
−
(
g +

FD
mtot

)
· dt

⇔
∫ v(t)

v0

dv′ = −vw ·
∫ mf

mi

dm′tot
m′tot

−
(
g +

FD
mtot

)
·
∫ t

0

dt′
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⇔ v(t)− v0 = −vw ·
[
ln(mtot)|mf=3·mb

mi=mtot

]
−
(
g +

FD
mtot

)
· t

⇔ v(t) = v0 − vw · ln
(

3 ·mb

mtot

)
−
(
g +

FD
mtot

)
· t

⇔ dy(t)

dt
= v0 − vw · ln

(
3 ·mb

mtot

)
−
(
g +

FD
mtot

)
· t

⇔ dy(t) =

[
v0 − vw · ln

(
3 ·mb

mtot

)]
· dt−

(
g +

FD
mtot

)
· t · dt

⇔
∫ y(t)

y0

dy′(t) =

[
v0 − vw · ln

(
3 ·mb

mtot

)]
·
∫ t

0

dt′ −
(
g +

FD
mtot

)
·
∫ t

0

t′ · dt′

⇔ y(t) = y0 +

[
v0 − vw · ln

(
3 ·mb

mtot

)]
· t−

(
g +

FD
mtot

)
· t

2

2

As the bottle rocket leaves from the ground, we have that y0 = 0 m and given that its initial
speed is zero we can also write that v0 = 0 m/s. The final equation of motion is then formulated as
follows:

y(t) =

[
−vw · ln

(
3 ·mb

mtot

)]
· t−

(
g +

FD
mtot

)
· t

2

2

Since the speed briefly becomes zero at the rocket’s maximum height, we calculate the time tmax for
the rocket to reach that height in the following way:

v(tmax) = 0 ⇔ v(tmax) = −vw · ln
(

3 ·mb

mtot

)
−
(
g +

FD
mtot

)
· tmax = 0

⇔ tmax =

[
−vw · ln

(
3·mb
mtot

)]
[
g + FD

mtot

] =

[
−36.5 · ln

(
3·0.0449

2.05

)][
9.81 + 25.5

2.05

] = 4.47 s

Plugging this value for tmax into our equation of motion gives us the maximum height ymax of
the bottle rocket:

y(tmax) =

[
−vw · ln

(
3 ·mb

mtot

)]
· tmax −

(
g +

FD
mtot

)
· t

2
max

2
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=

[
−36.5 · ln

(
3 · 0.0449

2.05

)]
· 4.47−

(
9.81 +

25.5

2.05

)
· 4.472

2

= 222 m

(2) Since the bottle rocket loses its water fuel at a constant rate of 0.459 kg/s, it will have expelled all
of its fuel in a time window of tempty = mtot−3·mb

[− dmtotdt ]
= 2.05−3·0.0449

[−(−0.459)]
= 4.18 s, i.e., slightly less than the time

it takes the rocket to reach its maximum height ymax. The altitude of the rocket at the moment of
tempty is equal to yempty = 221 m (calculated with the expression derived in part (1)). In other words,
right after the rocket loses all of its water fuel, it climbs another ymax − yempty = 222 − 221 = 95.7
cm before reaching its maximum height.

At the maximum height of ymax = 222 m, the three bottles combined are empty and now start their
free fall. The respective time tfree is equal to (remember that the speed at ymax is equal to zero, so
that v0 = 0 m/s, and we ignore any drag force):

y(tfree) = y0 + v0 · tfree +
ay
2
· t2free ⇔ 0 = ymax + 0 · tfree −

g

2
· t2free

⇔ tfree =

√
2 · ymax

g
=

√
2 · 222

9.81
= 6.73 s

The total time ttot that the bottle rocket spends in the air is then equal to ttot = tmax + tfree =
4.47 + 6.73 = 11.2 s.

(3) From the equation of the change in the total linear momentum derived in part (1), we find

that the term corresponding to the magnitude of the thrust force ~FT is the term “−vw · dmtotdt
”. Sim-

ilarly, from the expression obtained for the velocity v(t), the term that contributes to the velocity

due to the thrust force is equal to “vT = −vw · ln
(

3·mb
mtot

)
”.

The total power delivered by the thrust force then becomes:

P = FT · vT =

[
−vw ·

dmtot

dt

]
·
[
−vw · ln

(
3 ·mb

mtot

)]

= [−36.5 · (−0.459)] ·
[
−36.5 · ln

(
3 · 0.0449

2.05

)]

= 1.67× 103 J or 2.23 hp
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