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Summary of Exercises

Exercise 1

When massive stars have exhausted their nuclear fuel, i.e., they have fused all the nuclei of lighter
elements, such as hydrogen and helium, into heavier nuclei (a process referred to as stellar nucleosyn-
thesis), an immense explosion (a supernova) follows and under the right circumstances the stellar
core residue forms a very dense neutron star. Some of these stars are spinning around their rotation
axis at very high velocities and are designated pulsars, whereby streams of electromagnetic radiation
are blasted from their magnetic poles at velocities up to 70% of the speed of light. One such pulsar
is the Vela Pulsar (MV = 2.26 Ms), which is located about 959 light years away from us and rotates
around its axis about 11.195 times every second. Suppose now that a subatomic particle, let’s say a
proton (mp), is sitting on the equator of Vela. (1) If you know that the proton has to be accelerated
by a factor of 315 to gain the minimum speed to escape Vela’s gravitational pull, what is the Vela
Pulsar’s radius and the proton’s initial speed vr (viewed from a stationary reference frame)? (2)
Suppose that this same proton left Vela 400 years ago and that 100 years later a proton escapes from
another pulsar called PSR J0437-4715 (MP = 1.44 Ms and rP = 13.6 km) whereby both protons
are on a straight collision course. If you know that the distance between both pulsars is equal to
d = 449.2 light years, in which year will/did the two protons collide? Remember that the univer-
sal gravitational constant G is equal to G = 6.67 × 10−11 m3/(kg· s2), that 1 light year measures
9.46× 1012 km, and that one solar mass is equal to Ms = 1.99× 1030 kg.

Exercise 2

You work at The Escape Game in New York City, the United States, and as you’re designing a new
escape room, you need three 2.50 m long bamboo poles. Luckily, your friend Akira, who works at
the Japanese restaurant Sen Sekana only three blocks up, stores a lot of decoration material in the
basement, including a couple of bamboo poles. You go on foot to pick them up and on your way
back, 10.0 m before getting to the zebra crossing on East 42nd Street, the red hand of the pedestrian
traffic lights starts flashing on and off and you start running. You make it on time to the other side
of the street, but you’ve hit the street name sign “East 42nd St”, which is attached to a metal pole
on the sidewalk, with one of the bamboo poles with a force ~F of a magnitude equal to F = 68.2
N under an angle of φ = 26.6◦ at about one fourth of the sign’s length from the sign’s end. If you
know that the street sign’s mass, length, height, and width are equal to m = 3.74 kg, L = 45.7 cm,
h = 17.8 cm, and w = 4.35 cm, respectively, that the collision lasted t = 0.425 s, and that during
the impact the sign experienced a frictional torque of τf = 10.2 N ·m, by what angle θ (in degrees)
did you cause the street name sign to rotate?

Exercise 3

The University of Sonora in Hermosillo, Mexico, organized a two weeks long science summer camp
for young adolescents between 16 and 18 years to bring them closer into contact with several main
topics in the field of biology, chemistry, and physics. At the end of the two weeks, the students are
asked to present an own project in their field of interest, and Seina has designed an integrated system
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to showcase the physical concept of rotational motion. Her project consists of four systems, which
are all attached onto a thin wooden board. The first system (“System 1”) is a pendulum, whereby
a ball (m1 = 158 g) is attached to a basically massless thin rope of length L1 = 33.4 cm. When
pulling the ball to the right over an angle θ and subsequently releasing it, the ball hits at its lowest
point a hard plastic cube (m2 = 215 g) with an edge of d = 1.00 cm, which is fixed at the top end
of a vertically placed iron rod (M2 = 439 g) with length L2 = 25.6 cm. This rod (“rod 2”) makes up
“System 2” and rotates about its axis located at the middle of the rod. Due to the collision between
the ball and the cube, rod 2 rotates counterclockwise and the plastic cube hits in turn a horizontal
aluminum rod—this “rod 3” constitutes System 3—with a mass of M3 = 312 g and a length equal to
that of rod 2. Upon collision, rod 3 swings counterclockwise about its axis at the left end and when
it has turned 90◦, its right end (now at the bottom) collides with a mini basketball (m4 = 194 g),
which lies unrestrained on a horizontal platform. Upon impact with rod 3, the basketball is kicked to
the left and lands into a small basket, which is installed h = 50.0 cm below the horizontal platform
and ∆x = 85.0 cm to the left. If you assume that the kinetic energy at each collision is completely
transferred from one system to the next, at what angle θ should Seina release the ball of System 1,
so that the mini basketball of System 4 ends up right into the basket?

Exercise 4

Aminah is taking an advanced course in physics at the Rawalpindi Women University in Rawalpindi,
Pakistan, and for her final project she wishes to determine with the help of Lagrangian mechanics
the equation of motion of an elliptical cylinder (with mass M) rolling down an incline. Aminah’s
project is particularly challenging since the elliptical cylinder not only sporadically loses contact
with the surface at higher speeds, but it simultaneously slips and rolls. As Aminah wants to prepare
thoroughly for the first experimental test, whereby she will gather and map the measurements of
the motion of both the center point and the two focus points of one of the sides of the cylinder,
she decides to calculate beforehand the moment of inertia I of an elliptical cylinder. What is the
outcome of Aminah’s calculation?

Exercise 5

Martin and his two best friends, Cristobal and Catalina, are going bowling tonight in the local bowl-
ing center in Antofagasta, Chile, to celebrate the good news that Catalina obtained her official PADI
certification for scuba diving. In the afternoon, they have some spare time, and to warm up for the
evening event they play around at Cristobal’s house with ramps, bowling balls, and bowling pins.
They let a first bowling ball (with mass M1 = 2.54 kg and radius R1 = 10.8 cm) roll down a long
ramp at an incline of θ = 25.2◦ from a starting height h, and when it reaches the bottom it hits
(perfectly elastically) a second bowling ball (with mass M2 = 5.22 kg and radius R2 = 11.6 cm).
Upon collision, the second ball receives an initial velocity with which it is sent up a L = 5.00 m long
second ramp with a slope equal to φ = 14.6◦, whereby the ramp itself is placed loosely on a metal
cylinder, which is fixed to the ground, and whereby the perpendicular bisector of the ramp intersects
with the cylinder’s rotation axis. As soon as the second bowling ball crosses the middle of the ramp,
the ramp tilts and the ball rolls down from the second half of the ramp, eventually hitting a nicely
assembled group of bowling pins. Martin did a too good a job of polishing the first bowling ball,

so that it starts sliding (µk = 0.102) on the first ramp when it reaches a speed equal to vs =
√

5·g
4

.

2



Physics Exercises on Rotational Motion Olivier Loose

What should be the minimum height hmin from which the first bowling ball is released on the first
ramp, so that the second bowling ball is able to tilt the second ramp and hit the pins? Assume that
the second bowling ball does not slip, that the second ramp does not undergo translational motion
when the second bowling ball starts rolling uphill, and that the rotation axis of both bowling balls
does not change direction during their motion.

Exercise 6

In his village Qafmollë in Albania, Agim is known as someone who pretty much always goes against
the grain. At this moment, he is welding a new weathercock to put on the roof of his 18th century
old house, but instead of placing the cock (mc = 4.67 kg) in the middle of the horizontal iron rod
(mr = 1.12 kg), Agim feels that it belongs at one end of the rod, so that it can proudly gaze into
the wind. At the other end of the L = 85.0 cm long rod, Agim attached a copper ball (with mass
mb = 2.15 kg and radius rb = 3.86 cm) as counterweight. After trying out various positions along
the rod, he finds that the weathercock is most agile and receptive to the wind when a second rod,
which acts as the rotation axis, is placed vertically at the center of mass of the first rod. As Agim
wants to fully comprehend why this is the case, he emails his son Spiro, who is pursuing a bachelor’s
degree in physics at the University of Tirana, asking him for a mathematical explanation. Later that
day, Agim receives a response from Spiro. What did the email say?

Exercise 7

Emily has been living her whole life in Vallée de l’Ernz, Luxembourg, where she owns 45 hectares
of farmland on which she has built her house and a large barn, used to store grain and straw bales
(mb = 20.0 kg per bale). The bales are kept in a separate section 6.00 m above the ground and
Emily uses an iron platform (Mpl = 66.3 kg) attached to a large pulley system to lower the bales to
the ground floor. When she puts two bales on the platform, it takes t = 2.55 s for the platform to
reach the ground. Directly above the platform, a large wheel, which has a diameter of dw1 = 91.8
cm and a total mass of mw1 = 21.4 kg, which includes the mass of six steel spokes (ms1 = 1.45
kg per spoke), guides the cable that is holding the platform towards a disk-shaped pulley with a
mass and radius of md = 1.50 kg and rd = 11.6 cm, respectively. The cable then continues straight
downwards, round a second wheel, which has a diameter of dw2 = 63.4 cm, a w = 4.50 cm wide edge,
and a total mass of mw2 = 13.6 kg (this includes the mass ms2 of four iron spokes), and finally back
up vertically where it is attached to the ceiling. Serving as a counterweight of this pulley system,
a granite block (Mgb = 129 kg) is hanging from the center of the second wheel. Emily notices that
one of the iron spokes shows a crack, and she replaces it straight away, otherwise the entire pulley
system can come crashing down. If you know that the frictional torque caused by the bearings of
the first wheel, the disk, and the second wheel are equal to τf1 = 7.23 N·m, τf2 = 2.19 N·m, and
τf3 = 5.41 N·m, respectively, what is the mass of the iron spoke that Emily has just fixed? Assume
that the cable does not slip when the pulley system is in motion and that counterclockwise is the
positive direction of rotation.
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Exercise 8

Gracjan finally put his two kids to bed and is now cleaning up. Earlier this afternoon, Gracjan
threw a creative birthday party for his seven-year-old daughter Joanna and her friends whereby an
art teacher was invited to show them all kinds of neat tricks with coloured cardboard paper. Gracjan
promised Joanna to take her the next day to the beach in Ustka, Poland, which is a two-hour drive
from their home in Szczecinek. When he sees during the cleanup a bunch of cut out isosceles triangles
(with a mass of mt = 24.5 g per piece) he gets the idea of creating a frisbee for Joanna that she
can take with her to the beach tomorrow. Gracjan tapes eight triangles together to form an octagon
(with a combined area of A = 3, 230 cm2) and to ensure stability during its flight, he glues a rubber
band (mrb = 42.0 g) onto the outer edge of each triangle. Gracjan then takes the octagonal frisbee
for a test flight in the backyard and he is pleased with the result. When he grabs the frisbee at one
edge (not at a vertex point), it takes t = 0.620 s to launch it, whereby it is given a frequency of 384

rpm. What is the magnitude of the perpendicular force ~F⊥ due to the friction between his hand and
the frisbee that provides the frisbee with its initial spin?

Exercise 9

In the field of chemistry, organic compounds are defined as compounds that contain the chemical
element carbon (C). Hydrocarbons are an example of organic compounds and only consist of the
elements carbon and hydrogen (H). The hydrocarbons can be further subdivided into the homolo-
gous series alkanes and alkenes, whereby the latter are uniquely characterized by a double carbon
bond (which the alkanes do not possess). An example of an alkane and an alkene is methane (CH4)

and ethene (CH2 CH2 or C2H4), respectively. The methane compound has a tetrahedral structure,
which means that the angle θ = 6 HCH between two H atoms equals θ = 109.47◦. The length LCHm
of the C-H bond in methane is measured to be LCHm = 109.4 pm. The six atoms of the compound
ethene are coplanar and due to the presence of the double carbon bond, the length LCHe of the C-H
bond is slightly shorter relative to methane, i.e., LCHe = 108.7 pm. The angle φ = 6 HCC between
an H atom and the double bond is equal to φ = 121.7◦. If we let the compound ethene rotate about
the axis that runs right through the middle of the double C-C bond and lies within the plane of the
compound and if the methane compound rotates about the axis that connects an H atom with the
central C atom, then the moment of inertia Ie of ethene is larger than that of methane (Im) by a
factor of 5.276. What is then the length LCC of the double carbon bond in the compound ethene?
Remember that 1 picometer is equal to 1 pm = 10−12 m, that the mass of an H and a C atom is
equal to mH = 1.00797 amu and mC = 12.011 amu, respectively, and that 1 atomic mass unit is
equivalent to 1 amu = 1.66054× 10−27 kg.

Exercise 10

Roslyn is strolling about the different shops on Main Street in Ardara, Ireland, until her interest is
suddenly drawn to a mysterious object in the display window of the shop All Kinds of Everything. In
front of the object a label is placed with the words:“Perpetual Motion Machine”. What Roslyn sees
is a round platform with a diameter of d = 9.50 cm positioned at a certain height from the object’s
base, and from a hole in the middle of the platform a metal ball (with mass mb = 375 g and radius
Rb = 9.50 mm) falls down along a slide, which curls back up after touching the base, so that the ball
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eventually gets flung back onto the platform. Roslyn enters the shop, buys the intriguing device, and
heads back home. It doesn’t take Roslyn much time to figure out that a magnet hidden within the
base is providing the required energy (and acceleration) to the ball to reach the platform—otherwise,
the laws of thermodynamics would have been violated. When taking a closer look, Roslyn observes
that the ball undergoes two types of motion on the slide: during the first part, the ball slides and
slips (µk = 0.354) along a L = 20.2 cm long straight segment tilted by φ = 27.4◦ and then follows
a circular-shaped path (with a radius of Rc = 6.50 cm) whereby it now rolls without slipping, until
the ball leaves the slide at the point where the tangent is making an angle of θ = 75.0◦ with the
horizontal. If Roslyn switches off the magnet, how far, in terms of vertical distance, is the ball now
removed from the platform while being at its highest point mid-air, if at all?

Exercise 11

Liam and Robert are having fun with their kids at the Greenview Playground in Edmonton, Canada,
on a chilly, yet sunny day. After three hours of entertainment on the hopping stools, the monkey bars,
the various slides, the chain ladders, the rope webs, the climbing forest, the swings, the spinners,
and the climbing dome, the kids are now resting on the merry-go-round. That is, until their fathers
suggest they go and get an ice-cream. With unprecedented excitement and loud cheering, they dash
off to collect their well-deserved afternoon snack. As they jump off the merry-go-round, which has
a radius of R = 2.55 m, they leave it spinning counterclockwise at a constant angular velocity of
ω = 0.455 rad/s. Because of all the screaming, the squirrel, who was enjoying her own snack up in
the tree, is startled and drops her acorn (ma = 105 g), which lands on the merry-go-round d = 55.0
cm from the edge and it rolls with an initial speed of v0 = 1.24 m/s at an angle of θ = 156◦ with the
radial line segment that intersects with the landing spot of the acorn. (1) How long does the acorn
stay on the merry-go-round before flying off of it? (2) What are the coordinates of the acorn’s point
of exit (as seen from the rotating reference frame)? Ignore any kind of kinetic friction for this problem.

Exercise 12

Two large asteroids (with mass m1 = 2.62×1012 kg and m2) are tumbling through the vast emptiness
of space with a speed of v1 = 88, 394 km/h and v2 = 52, 872 km/h, respectively, whereby asteroid 2
is following a straight path at an angle of θ = 76.5◦ with respect to the straight path of asteroid 1
and both move in the same plane. The shape of both asteroids can be approximated by a cuboid,
i.e., a rectangular prism, with length l1 = 38.1 km, width w1 = 20.6 km, and height h1 = 90.3 km
for asteroid 1 and length l2 = 155 km, width w2 = 53.8 km, and height h2 = 72.4 km for asteroid
2. Asteroid 1 rotates every 6.50 hours clockwise around the z-axis through its center of mass, while
asteroid 2, which spins counterclockwise around an axis that runs parallel to the z-axis and along
one of the four edges, requires 22.3 hours to complete one revolution. Moreover, asteroid 2 has a
hole of cuboidal shape at its center that stretches across the entire height h2 and whereby its length
and width are about one fifth of that of the asteroid. At one point, the two asteroids collide and
merge their mass into one spherical-like object, which has a radius of R = 53, 750 m and rotates
about an axis running through its center of mass. If you know that the consolidated asteroid is
headed into the direction that makes an angle of α = 58.9◦ relative to the original path of the first
asteroid, (1) what was the mass m2 of asteroid 2? (2) At which speed is the newly assembled asteroid
hurtling through space? (3) How long does it take the spherical asteroid to spin just once around
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its rotation axis? Assume that no mass is lost during the collision and transformation of the asteroids.

Exercise 13

Nina is pursuing her PhD in Theoretical Astrophysics at the Lorentz Institute in Leiden, The Nether-
lands, and she is specifically interested in studying binary systems of spinning black holes, a.k.a. Kerr
black holes. A binary system consists of two massive bodies orbiting each other around their common
center of mass called the barycenter. When a spinning object is orbiting around a certain point in
space, its total angular moment ~Ltot is composed of two terms, i.e., the orbital angular momentum
~Lorb = ~r × ~p and the spin angular momentum ~J = I · ~Ω. For her doctoral thesis, Nina is currently
investigating the galaxy NGC 7674, which is located within the Pegasus constellation about 400
million light years away and houses a binary system of supermassive black holes. Nina finds that
the magnitude of the orbital angular momentum ~Lorb is equal to Lorb = M1 ·

√
G · d1 ·M2, with d1

the distance of black hole 1 from the barycenter and M1 and M2 the mass of the black hole 1 and 2,
respectively. How did Nina obtain this result? Make the assumption that the orbits are circular in
nature.

Exercise 14

The sub-Antarctic island of South Georgia, which belongs to the British Overseas Territories, is
home to the world’s largest colony of King Penguins. During the winter, many are often found more
southwards along the coastal regions of the Antarctic continent. On one of the Antarctic islands
called Spert Island, three King Penguins feel particularly playful today and they suddenly notice a
floating piece of ice near the shore. Two of them (mp1 = 12.3 kg and mp2 = 17.6 kg) are quick to
react, make their way towards the ice platform and jump onto it. Right before the third penguin
(mp3 = 23.2 kg) also jumps onto the platform, the ice shelf is rotating slowly in the clockwise di-
rection around its center of mass at a rate of 1 revolution every 1.22 minutes. The shape of the
platform is a square prism (with length l = 2.00 m and height h = 5.00 cm) onto which an isosceles
right-angled triangular prism of corresponding dimensions is attached to one of its sides. When
visualizing the triangular prism at the right-hand side of the square prism, then the two penguins
are standing d1 = 35.5 cm and d2 = 82.7 cm from the top left and bottom left corner under an angle
of θ1 = 50.6◦ and θ2 = 38.2◦ with the horizontal, respectively. If you know that the density of ice is
equal to ρ = 917 kg/m3 and that the third penguin lands right at the center of mass, at what rate is
the ice platform now rotating? Treat the ice shelf as a thin plate and the penguins as solid cylinders
with an internal radius equal to r1 = 16.9 cm, r2 = 19.1 cm, and r3 = 22.3 cm, respectively.

Exercise 15

Laniyan is one of the Cameroonian artists who are invited to exhibit their work at the temporary ex-
position “l’Asymétrie et la Rotation” at the contemporary art center doul’art at Douala, Cameroon.
Laniyan designed his own creative version of a newly discovered, young planetary system of six plan-
ets. Instead of orbiting within a fixed plane, the planets are spatially arranged in a stepwise fashion
whereby their total angular momentum ~Ltot is tilted by an angle of θ = 23.2◦ relative to the axis
of rotation, i.e., the y-axis. Planet 1 (m1 = 6.55 kg), which is the planet in the highest orbit, is
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located at a distance of Dx = 92.2 cm horizontally and Dy = 66.6 cm vertically from the planet in
the lowest orbit, i.e., Planet 6 (m6 = 8.21 kg), at the other end of the planetary system. Planet
2 (m2 = 7.60 kg) is positioned d1 = 42.5 cm to the south of Planet 1, and Planet 3 (m3 = 4.35
kg), which finds itself d2 = 24.4 cm to the east of Planet 2, is the planet closest to the origin of the
coordinate system at a distance of d3 = 15.0 cm, making thereby an angle α with the rotation axis.
Planet 4 (m4) is orbiting at d4 = 26.4 cm to the east of the origin, and d5 = 13.9 cm away from
Planet 4 in the direction east of south at an angle β is the location of the orbit of Planet 5 (m5 = 3.67
kg). Finally, Planet 6 is positioned d6 = 26.7 cm further to the east relative to Planet 5. If you know
that in Laniyan’s planetary system the planets are not spinning and rotate counterclockwise, what
is the mass m4 of Planet 4? Neglect the mass of the connecting rods between the planets and take
clockwise as the positive direction of rotation.

Exercise 16

Neylan is trekking with her friend Eldar through the national park Bozdaǧ Milli Parkı, which is
located east of Konya, Turkey, and they just made a stop since Neylan wishes to practice her Robin
Hood archery skills. Eldar finds a thin wooden board of length L = 82.5 cm and mass mb = 855 g,
balances it upright on two fingers, and throws it up in the air. The board spins in a counterclockwise
direction around the axis perpendicular to its length and parallel to its width at 210 rpm, whereby
the angular velocity vector points southwards. From a distance of ∆x = 55.0 m away, Neylan shoots
an arrow of length d = 61.6 cm and mass ma = 40.6 g with an initial speed of v = 89.3 m/s eastwards
towards the spinning board. When the arrow is at its highest point during its trajectory, it hits the
uppermost end of the board, which is at that precise moment vertically oriented, right in the middle.
If you know that the arrow remains stuck after hitting the wooden board, at what rate does the
combined object now spin and in which direction? Treat the arrow as a long rod.

Exercise 17

When stars exhaust their nuclear fuel at the end of their lifetime, they shed off their outer layers, of-
ten accompanied by a supernova explosion, and the stellar core remnant converts, broadly speaking,
into a white dwarf, a neutron star, or a black hole. About 2.6 billion years ago, this process created
a rapidly spinning neutron star—called a pulsar—which goes by the name PSR J0348+0432. (1) If
we suppose that the original star had a mass, diameter, and rotational period of Mi = 4.68 ·Ms,
di = 2.56× 104 km, and Ti = 1.05 days, respectively, that during the formation of the pulsar a total
of 57% of its mass was lost (without dissipating any angular momentum) and that the star’s diameter
shrunk by 99.9%, at what rate is the pulsar now spinning? (2) Suppose that a rock (mr = 1.87× 104

kg) is following a synchronous, circular orbit around the pulsar PSR J0348+0432 and is suddenly
hit by an asteroid from outer space along the radial direction of the rock’s orbit. As a result of the
collision, the rock is sent straight down towards the pulsar’s surface at a velocity of ~v0 = −15.5 ·~iy
km/s. If you know that the rock at the moment of impact is positioned above the pulsar’s southern
hemisphere at a latitude of 51◦18′4.04′′S, by how much is the rock deflected due to the Coriolis effect
when it hits the pulsar’s surface? Use the average value of the gravitational field strength g between
the orbital height and the pulsar’s surface, and remember that the universal gravitational constant
G is equal to G = 6.67× 10−11 m3/(kg· s2) and that one solar mass measures Ms = 1.99× 1030 kg.
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Exercise 18

Tarif is living in the one house that stands somewhat isolated from the rest of the houses in his
village Al-Mani’a in Algeria. Everywhere in and around his house Tarif has spinning objects hanging
from the ceiling or from the roof of his veranda, since he believes that rotating objects produce
powerful vortices of spiritual energy and attract benevolent spirits. In the Saharan cypress tree in
his backyard, Tarif has tied two ropes to a branch, whereby two rods of length D = 62.0 cm are each
attached to the free end of a rope. Towards the free end of each rod a spherical-like object is mounted
that is able to spin around the rod. The object consists of two copper rings welded together in such
a way so that the rod passes through the center of one ring and makes up the central diameter of
the other ring. The rings of object 1 are w1 = 9.30 cm wide and the left side of the object is located
at a distance of d1 = 7.50 cm from the rod’s free end. Object 2 is d2 = 15.2 cm away from its rod’s
free end and its rings have a width of w2 = 8.60 cm. When holding the free end of the rod, Tarif
gives object 1 a clockwise initial spin of 12 rps, whereas object 2 receives an anti-clockwise initial
spin of 960 rpm. When he subsequently lets go of the respective rod, both objects start to precess.
As Tarif is fascinated by periodic relations, he wants the first object to precess at half the rate of the
second object. He achieves this configuration by gently touching a metal ring with a stick for about
t = 3.50 s, producing thereby an angular deceleration of α = 16.7 rad/s2. (1) When looking from
above, what is the direction of precession of both objects? (2) If you know that object 1 precesses
initially at a higher rate, to which object does Tarif has to apply his angular deceleration technique?
(3) If you know that the radius R1 of the two metal rings of object 1 measures R1 = 14.2 cm, what
is the radius R2 of the two metal rings of object 2?

Exercise 19

Yulissa decided to take her five-year-old nieces Camila (m1 = 20.6 kg) and Sofia (m2 = 18.3 kg) to
the playground in the Parque Central Juan Pablo Duarte in Nagua, The Dominican Republic, so
that their parents could celebrate their eighth wedding anniversary during a lunch at the seafood
restaurant Junior Natura. The first attraction to which Camila and Sofia run off when they arrive
at the Parque Central is the seesaw, which has a length and mass of L = 4.50 m and M = 12.5 kg,
respectively, and makes an angle of θ = 9.50◦ with the horizontal when one side touches the ground.
After only 10 minutes, Camila, who is the cheekiest of the two sisters, gets bored and climbs on the
nearby Disney tower. From up there, she sees that Sofia is still sitting on the seesaw and without
hesitation Camila jumps from a height of h = 2.25 m onto her empty seat. To Camila’s great delight
(and also Sofia’s), Sofia is being ejected out of her seat for just a brief moment in time. (1) Where
exactly does Sofia land? (2) How high did she go? Assume that the average force of impact that
Camila exerts upon her empty seat is about twice her kinetic energy (per unit length) right before
landing on the seesaw.

Exercise 20

The local council of the city of Bruges in Belgium is calling tenders for the construction of a new
pedestrian drawbridge over one of the city’s many canals. The bridge has to be Lb = 12.0 m long and
two galvanized steel cables will have to do the important job of safely drawing up the bridge. Two
large iron disk-shaped pulleys with a radius and mass of R = 57.5 cm and Mp = 165 kg, respectively,
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are rolling up the cables as the bridge is being lifted. Bart is one of the engineers responsible for
listing the technical details for one of the tenders. According to his conservative calculations, the
cables combined could lift a bridge of no more than M = 4, 250 kg. When the bridge is down the
cables make an angle of θ = 42.0◦ with the horizontal, and Bart estimates that the small boats could
easily pass under the bridge when it is drawn up at an angle of φup = 65.0◦ with the horizontal.
Bart furthermore assesses that the motor that rotates the pulleys can comfortably provide a torque
of ~τ0 = 8, 985 ·~iz N·m at the initial moment when the bridge is being lifted (position 0), whereas at
an angle of φ = 45.0◦ (position 1)—that is, when the process of drawing up the bridge is slowing
down—a minimum torque of 54.5% of its initial value is required. (1) What angle do the cables make
with the bridge when it is in position 1? (2) What is the length of the visible part of the cables at

that moment? (3) What is the magnitude of the tension forces ~T0 and ~T1 in the cables when the
bridge is in position 0 and 1, respectively? (4) What is the average amount of time needed for the
bridge to reach position 1?

9
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Exercise 1

Problem Statement

Figure 1

When massive stars have ex-
hausted their nuclear fuel, i.e.,
they have fused all the nuclei of
lighter elements, such as hydro-
gen and helium, into heavier nu-
clei (a process referred to as stel-
lar nucleosynthesis), an immense
explosion (a supernova) follows
and under the right circum-
stances the stellar core residue
forms a very dense neutron star.
Some of these stars are spinning
around their rotation axis at very
high velocities and are designated
pulsars, whereby streams of electromagnetic radiation are blasted from their magnetic poles at ve-
locities up to 70% of the speed of light. One such pulsar is the Vela Pulsar (MV = 2.26 Ms), which is
located about 959 light years away from us and rotates around its axis about 11.195 times every sec-
ond. Suppose now that a subatomic particle, let’s say a proton (mp), is sitting on the equator of Vela.
(1) If you know that the proton has to be accelerated by a factor of 315 to gain the minimum speed
to escape Vela’s gravitational pull, what is the Vela Pulsar’s radius and the proton’s initial speed vr
(viewed from a stationary reference frame)? (2) Suppose that this same proton left Vela 400 years
ago and that 100 years later a proton escapes from another pulsar called PSR J0437-4715 (MP = 1.44
Ms and rP = 13.6 km) whereby both protons are on a straight collision course. If you know that the
distance between both pulsars is equal to d = 449.2 light years, in which year will/did the two protons
collide? Remember that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg·
s2), that 1 light year measures 9.46×1012 km, and that one solar mass is equal to Ms = 1.99×1030 kg.

Solution

(1) For a particle that wants to become gravitationally unbound by a massive body, its total me-
chanical energy Etot has to be at least zero (or greater). For the proton trying to get away from the
Vela Pulsar’s gravitational pull, we can write (with rV the pulsar’s radius and vV the magnitude of
the escape velocity ~vV ):

Etot = Ek + Ep = 0 ⇔ mp · v2
V

2
− G ·mp ·MV

rV
= 0 ⇔ v2

V =
2 ·G ·MV

rV

When the proton is located at the equator of Vela, it is rotating at a tangential speed vr (viewed
from a stationary reference frame) due to the pulsar’s rotation. We know that the proton has to be
accelerated (by some unknown mechanism) by a factor of 315 so that its speed vr is boosted to the

10
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value of the escape speed vV . In other words, vV = 315 · vr. Moreover, as Vela’s frequency is equal
to f = 11.195, we know that its angular velocity ~ω has a value of ω = 2π · f = 2π · 11.195 = 70.3
rad/s. Finally, given that vr = ω · rV and inserting this expression into our above equation, we can
find the radius of the Vela Pulsar as follows:

[315 · (ω · rV )]2 =
2 ·G ·MV

rV
⇔ rV = 3

√
2 ·G ·MV

(315 · ω)2

= 3

√
2 · 6.67× 10−11 · (2.26 · 1.99× 1030)

(315 · 70.3)2

= 10.7 km

The proton’s initial (tangential) speed vr is then equal to vr = ω · rV = 70.3 · 10.7× 103 = 752 km/s.

(2) The magnitude of the proton’s escape velocity ~vV is equal to vV = 315 · vr = 315 · 7.52 × 105 =
237, 000 km/s. Over a time period of t0 = 100 years at a speed vV , the proton will have covered a
distance ∆a of:

∆a = vV · t0 = 2.37× 108 · (100 · 365 · 86, 400) = 7.48× 1017 m or 79.0 light years

At that moment, proton number 2 escapes from the pulsar PSR J0437-4715 at a speed equal to:

vP =

√
2 ·G ·MV

rV
=

√
2 · 6.67× 10−11 · (1.44 · 1.99× 1030)

13.6× 103
= 168, 000 km/s

Both protons will collide when the time t1 needed by proton 1 to cover the displacement xc − ∆a
is equal to the time t2 proton 2 needs to travel across the displacement xc − d. The value of the
position xc at which the collision occurs is calculated as follows (bear in mind that proton 2 moves
into the opposite direction of the x-axis):

t1 = t2 ⇔ xc −∆a

vV
=
xc − d
−vP

⇔ xc =
∆a · vP + d · vV

vP + vV
=

79.0 · 1.68× 108 + 449.2 · 2.37× 108

1.68× 108 + 2.37× 108

= 296 light years

Starting from the position ∆a, the time for proton 1 to get to the location of collision is equal to

t1 = xc−∆a
vV

= (296−79.0)·9.46×1015

2.37×108
= 274 years. As proton 1 left the Vela Pulsar 400 years ago and

given that the collision occurred 100 + 274 = 374 years later, we know that the collision took place
400−374 = 25.6 years ago, i.e., in the year 1996 (given that we are currently living in the year 2022).

11
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Exercise 2

Problem Statement

Figure 2

You work at The Escape
Game in New York City,
the United States, and as
you’re designing a new es-
cape room, you need three
2.50 m long bamboo poles.
Luckily, your friend Akira,
who works at the Japanese
restaurant Sen Sekana only
three blocks up, stores a lot
of decoration material in the
basement, including a cou-
ple of bamboo poles. You
go on foot to pick them up
and on your way back, 10.0
m before getting to the ze-
bra crossing on East 42nd Street, the red hand of the pedestrian traffic lights starts flashing on and
off and you start running. You make it on time to the other side of the street, but you’ve hit the
street name sign “East 42nd St”, which is attached to a metal pole on the sidewalk, with one of the
bamboo poles with a force ~F of a magnitude equal to F = 68.2 N under an angle of φ = 26.6◦ at
about one fourth of the sign’s length from the sign’s end. If you know that the street sign’s mass,
length, height, and width are equal to m = 3.74 kg, L = 45.7 cm, h = 17.8 cm, and w = 4.35 cm,
respectively, that the collision lasted t = 0.425 s, and that during the impact the sign experienced a
frictional torque of τf = 10.2 N ·m, by what angle θ (in degrees) did you cause the street name sign
to rotate?

Solution

In order to determine the angular displacement θ, we need to find the value of the angular accelera-
tion α during the collision, which we can calculate as soon as we have figured out the value of both
the net torque τn and the sign’s moment of inertia I. Let us start with calculating the latter, for
which we have to solve the following integral (with R the magnitude of the position vector ~R starting
in the coordinate system’s origin to a random point on the road sign):

I =

∫
R2 · dm

As the street name sign rotates about the y-axis, the dimensions that influence the moment of inertia
are the x- and z-directions (note that the x-axis runs right through the middle of the width of the
sign). Therefore, the sign’s surface density ρs is equal to ρs = dm

dA
, whereby dA = dx · dz, and the

value of R is equal to R =
√
x2 + z2. Plugging these expressions into the above integral allows us to
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find the sign’s moment of inertia:

I =

∫
R2 · dm =

∫ x2

x1

∫ z2

z1

[
√
x′2 + z′2]2 · [ρs · dx′ · dz′] = ρs ·

∫ x2

x1

∫ z2

z1

(x
′2 + z

′2) · dx′ · dz′

= ρs ·
∫ x2

x1

[(
x
′2 · z +

z3

3

)∣∣∣∣z2=w
2

z1=−w
2

]
· dx′

= ρs ·
∫ x2

x1

(
x
′2 · w +

w3

12

)
· dx′

= ρs ·

[(
x3

3
· w +

w3

12
· x
)∣∣∣∣x2=L

x1=0

]

= ρs ·
(
L3

3
· w +

w3

12
· L
)

=
[ m

L · w

]
·
(
L3

3
· w +

w3

12
· L
)

=
m

12
·
(
4 · L2 + w2

)

=
3.74

12
·
(
4 · 0.4572 + 0.04352

)
= 0.261 kg·m2

Next, we need to determine the value of the net torque τn. The torque τb facilitated by your
bamboo pole hitting the street name sign at a distance R0 = 0.75 · L from the rotation axis is equal
to τb = (F · sinφ) · (0.75 · L) = [68.2 · sin(26.6◦)] · (0.75 · 0.457) = 10.5 N·m. Given that there is a
large frictional torque τf = 10.2 N·m, the net torque is then τn = τb− τf = 10.5− 10.2 = 0.267 N·m.

Based on Newton’s second law for rotation, we can now calculate the angular acceleration α:

α =
τn
I

=
0.267

0.261
= 1.02 rad/s2

In a final step, we determine the value of the street name sign’s angular displacement θ:

θ =
α

2
· t2 =

1.02

2
· 0.4252 = 9.23× 10−2 rad or 5.29◦

13
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Exercise 3

Problem Statement

Figure 3

The University of Sonora in Hermosillo,
Mexico, organized a two weeks long science
summer camp for young adolescents be-
tween 16 and 18 years to bring them closer
into contact with several main topics in the
field of biology, chemistry, and physics. At
the end of the two weeks, the students are
asked to present an own project in their
field of interest, and Seina has designed an
integrated system to showcase the physical
concept of rotational motion. Her project
consists of four systems, which are all at-
tached onto a thin wooden board. The
first system (“System 1”) is a pendulum,
whereby a ball (m1 = 158 g) is attached
to a basically massless thin rope of length
L1 = 33.4 cm. When pulling the ball to the right over an angle θ and subsequently releasing it, the
ball hits at its lowest point a hard plastic cube (m2 = 215 g) with an edge of d = 1.00 cm, which is
fixed at the top end of a vertically placed iron rod (M2 = 439 g) with length L2 = 25.6 cm. This rod
(“rod 2”) makes up “System 2” and rotates about its axis located at the middle of the rod. Due to
the collision between the ball and the cube, rod 2 rotates counterclockwise and the plastic cube hits
in turn a horizontal aluminum rod—this “rod 3” constitutes System 3—with a mass of M3 = 312
g and a length equal to that of rod 2. Upon collision, rod 3 swings counterclockwise about its axis
at the left end and when it has turned 90◦, its right end (now at the bottom) collides with a mini
basketball (m4 = 194 g), which lies unrestrained on a horizontal platform. Upon impact with rod
3, the basketball is kicked to the left and lands into a small basket, which is installed h = 50.0 cm
below the horizontal platform and ∆x = 85.0 cm to the left. If you assume that the kinetic energy
at each collision is completely transferred from one system to the next, at what angle θ should Seina
release the ball of System 1, so that the mini basketball of System 4 ends up right into the basket?

Solution

Given that only conservative forces, i.e., gravity, are at work across the four systems, we know that
the total mechanical energy within each of them is conserved. Regarding System 1, we can therefore
write that the total work Wtot,1 done on the ball as it swings from its initial position at an angle θ
to its lowest point is equal to the work Wc,1 performed by the conservative forces. As a result, we
find the following expression for the ball’s speed v1 at its lowest point:

Wtot,1 = Wc,1 ⇔ ∆Ek,1 = −∆Ep,1 ⇔ m1 · v2
1

2
= m1 · g · L1 · (1− cos θ)

⇔ v1 =
√

2 · g · L1 · (1− cos θ)

14



Physics Exercises on Rotational Motion Olivier Loose

Upon hitting the cube on top of rod 2, the ball entirely transfers its kinetic energy to System 2,
which consists of a rotating system, so that the initial rotational kinetic energy Ek,2,i of System 2
equals the final kinetic energy Ek,1 of System 1:

Ek,2,i = Ek,1 ⇔
I2 · ω2

2,i

2
=
m1 · v2

1

2

Let us in a first instance determine the moment of inertia I2 of rod 2. The moment of inertia

of rod 2 without the cube is equal to Ir =
M2·L2

2

12
and that of a cube that rotates around an axis at

its center of mass to Ic,c = m·r2
6

(with r the length of one edge). Given that the cube in System 2 is
located at a distance Rc = L2

2
+ d

2
from the axis of rotation, we can apply the parallel-axis theorem

to find the total moment of inertia I2 of rod 2:

I2 = Ir + (Ic,c +m2 ·R2
c) =

M2 · L2
2

12
+

[
m2 · d2

6
+m2 ·

(
L2

2
+
d

2

)2
]

=
L2

2

12
· (M2 + 3 ·m2) +

m2 · d
12

· (5 · d+ 6 · L2)

Also, since there is only one cube attached to rod 2, the rod’s center of mass xc does not corre-
spond to the position of the axis of rotation. In fact, xc should be located a little bit above the rod’s
midpoint. Based on the definition of the center of mass, we can find the distance h∗ between xc and
the rod’s midpoint as follows:

h∗ =
(L2+d)

2
·m2

M2 +m2

=
(0.256+0.01)

2
· 0.215

0.439 + 0.215
= 4.37 cm

Therefore, when the ball of System 1 hits the cube of System 2, also gravity will act upon rod
2 as it rotates counterclockwise towards System 3. Using all the above information, when comparing
the initial upright position of rod 2 to its final horizontal position, the work-energy relation gives
us the following expression for the final angular velocity ω2,f of rod 2 right before colliding with rod 3 :

Wtot,2 = Wc,2 ⇔ ∆Ek,2 = −∆Ep,2 ⇔
I2 · ω2

2,f

2
−
I2 · ω2

2,i

2
= (m2 +M2) · g · h∗

⇔
I2 · ω2

2,f

2
− m1 · v2

1

2
= (m2 +M2) · g · h∗

⇔ ω2,f =

√
2

I2

·
[
(m2 +M2) · g · h∗ +

m1 · v2
1

2

]

15
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Applying the work-energy relation to System 3, whereby the moment of inertia I3 of rod 3 equals

I3 =
M3·L2

3

3
and whereby gravity exerts a force on the rod’s center of mass, i.e., at its midpoint, and

furthermore keeping in mind that the kinetic energy is being completely transferred, we find the
following expression for the final angular velocity ω3,f of rod 3 when it is positioned vertically and
right before hitting the mini basketball:

Wtot,3 = Wc,3 ⇔ ∆Ek,3 = −∆Ep,3 ⇔
I3 · ω2

3,f

2
−
I3 · ω2

3,i

2
= M3 · g ·

L3

2

⇔
I3 · ω2

3,f

2
−
I2 · ω2

2,f

2
= M3 · g ·

L3

2

⇔ ω3,f =

√
M3 · g · L3 + I2 · ω2

2,f

I3

With respect to System 4, the equation related to the transfer of kinetic energy provides us with the
speed v4 with which the mini basketball is being kicked to the left:

I3 · ω2
3,f

2
=
m4 · v2

4

2
⇔ v4 =

√
I3

m4

· ω3,f

The time t the mini basketball spends in the air is calculated as follows:

y = y0 −
g

2
· t2 ⇔ 0 = 0.5− g

2
· t2 ⇔ t =

√
1

g

The requirement that the mini basketball end up in the basket is mathematically translated as:

∆x = v4 · t = v4 ·
√

1

g

To find the angle θ at which Seina should release the ball of System 1, we take the above re-
quirement as starting position and insert step by step all of the above expressions into the equation
until we, as in a sort of Matryoshka doll approach, come to the point where we rediscover the angle θ:

∆x = v4 ·
√

1

g
=

[√
I3

m4

· ω3,f

]
·
√

1

g
=

√
I3

m4 · g
· ω3,f

16
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=

√
I3

m4 · g
·

√M3 · g · L3 + I2 · ω2
2,f

I3

 =

√
M3 · g · L3 + I2 · ω2

2,f

m4 · g

=

√√√√M3 · g · L3 + I2 ·
[

2
I2
·
[
(m2 +M2) · g · h∗ +

m1·v21
2

]]
m4 · g

=

√
M3 · g · L3 + 2 · (m2 +M2) · g · h∗ +m1 · v2

1

m4 · g

=

√
M3 · g · L3 + 2 · (m2 +M2) · g · h∗ +m1 · [2 · g · L1 · (1− cos θ)]

m4 · g

⇔ cos θ = 1− [(∆x)2 ·m4 −M3 · L3 − 2 · (m2 +M2) · h∗]
2 ·m1 · L1

⇔ θ = cos−1

(
1− [(∆x)2 ·m4 −M3 · L3 − 2 · (m2 +M2) · h∗]

2 ·m1 · L1

)

= cos−1

(
1− [0.8502 · 0.194− 0.312 · 0.256− 2 · (0.215 + 0.439) · 0.0437]

2 · 0.158 · 0.334

)

= 13.9◦

If Seina releases the ball of the pendulum at the moment when the rope makes an angle of θ = 13.9◦

with the vertical, then the mini basketball will eventually end up within the basket, under the as-
sumption, however, that the kinetic energy of the final state of a system is completely transferred to
the next system.
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Exercise 4

Problem Statement

Figure 4

Aminah is taking an ad-
vanced course in physics at
the Rawalpindi Women Uni-
versity in Rawalpindi, Pak-
istan, and for her final project
she wishes to determine with
the help of Lagrangian me-
chanics the equation of mo-
tion of an elliptical cylinder
(with mass M) rolling down an
incline. Aminah’s project is
particularly challenging since
the elliptical cylinder not only
sporadically loses contact with
the surface at higher speeds,
but it simultaneously slips and rolls. As Aminah wants to prepare thoroughly for the first experi-
mental test, whereby she will gather and map the measurements of the motion of both the center
point and the two focus points of one of the sides of the cylinder, she decides to calculate beforehand
the moment of inertia I of an elliptical cylinder. What is the outcome of Aminah’s calculation?

Solution

When rolling down the incline, the elliptical cylinder rotates about the z-axis, which is coming out
of your screen with respect to the chosen coordinate system as depicted in Fig. 4 (right-hand side).
The general integral for the moment of inertia I is equal to:

I =

∫
R2 · dm

The mass element dm can be reformulated as dm = ρ · dV , with ρ the volume density of the
element and dV the volume element, which is equal to dV = dx · dy · dz. The distance R represents
the magnitude of the position vector ~R, which indicates the position of the mass element dm and
makes an angle of 90◦ with the axis of rotation, i.e., the z-axis. In other words, the vector ~R lies in
the xy-plane and its magnitude is equal to R =

√
x2 + y2. Inserting this information back into our

above equation, we obtain the following triple integral:

I =

∫∫∫ (
x
′2 + y

′2
)
· ρ · dx′ · dy′ · dz′

18
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Regarding the limits of this integral, if we let the limits of the x- and y-direction run from -a to
a and from -b to b, respectively, and integrate this double integral, we would obtain the area of a
rectangle with length 2a and height 2b, which is not what we want as the area of an ellipse is equal
to π ·a · b and not 4 ·a · b. Therefore, if we let, for instance, the limit of the x-direction run from -a to
a, we then have to let the limit of the y-direction run from -y to y, whereby we obtain an expression
for y from the equation of an ellipse:

x2

a2
+
y2

b2
= 1 ⇔ y = ± b ·

√
1− x2

a2

Given that the limit of the z-direction runs from 0 to the cylinder’s height h, we can write the triple
integral as follows:

I = ρ ·
∫ h

0

dz′ ·
∫ a

−a
dx′ ·

∫ b·
√

1−x2
a2

−b·
√

1−x2
a2

(
x
′2 + y

′2
)
· dy′

We can further simplify this integral by observing in Fig. 4 (right-hand side) that the area of an
ellipse can be divided in four equal parts, whereby the upper right part is constrained by the line
segment [0,a] in the x-direction and [0,b] in the y-direction. The area of the ellipse can then be found
by calculating the area of the upper right part and multiplying that by a factor of 4. The integral
then becomes:

I = 4 · ρ ·
∫ h

0

dz′ ·
∫ a

0

dx′ ·
∫ b·

√
1−x2

a2

0

(
x
′2 + y

′2
)
· dy′

We can now start solving the integral:

I = 4 · ρ ·
[
z|h0
]
·
∫ a

0

dx′ ·
∫ b·

√
1−x2

a2

0

(x
′2 + y

′2) · dy′

= 4 · ρ · h ·
∫ a

0

dx′ ·
∫ b·

√
1−x2

a2

0

(x
′2 + y

′2) · dy′

= 4 · ρ · h ·
∫ a

0

dx′ ·

 (x′2 · y +
y3

3

)∣∣∣∣b·
√

1−x2
a2

0



= 4 · ρ · h ·
∫ a

0

dx′ ·

[
x
′2 · b ·

√
1− x′2

a2
+
b3

3
·
(

1− x
′2

a2

) 3
2

]

= 4 · ρ · h · b ·
∫ a

0

[
x
′2 ·
√

1− x′2

a2
+
b2

3
·
(

1− x
′2

a2

) 3
2

]
· dx′
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At this point, we make the substitution x′ = a · sin θ′, whereby dx′ = a · cos θ′ · dθ′. The limits
of integration thereby change from 0 → a to 0 → π

2
. In addition, we will apply the trigonometric

identity “cos2 α + sin2 α = 1”. The integral then becomes:

I = 4 · ρ · h · b ·
∫ π

2

0

[
a2 · sin2 θ′ ·

√
1− a2 · sin2 θ′

a2
+
b2

3
·
(

1− a2 · sin2 θ′

a2

) 3
2

]
· a · cos θ′ · dθ′

= 4 · ρ · h · a · b ·
∫ π

2

0

[
a2 · sin2 θ′ · cos θ′ +

b2

3
· cos3 θ′

]
· cos θ′ · dθ′

= 4 · ρ · h · a · b ·
∫ π

2

0

[
a2 · sin2 θ′ · cos2 θ′ +

b2

3
· cos4 θ′

]
· dθ′

In the following lines, we make use of the trigonometric identity mentioned earlier, as well as two
more identity relations, i.e., cos2 α = 1+cos(2α)

2
and cos4 α = 3+4·cos(2α)+cos(4α)

8
, so that we eventually

find the expression for the moment of inertia I of an elliptical cylinder:

I = 4 · ρ · h · a · b ·
∫ π

2

0

[
a2 · (1− cos2 θ′) · cos2 θ′ +

b2

3
· cos4 θ′

]
· dθ′

= 4 · ρ · h · a · b ·
∫ π

2

0

[
a2 · cos2 θ′ +

(
b2

3
− a2

)
· cos4 θ′

]
· dθ′

= 4 · ρ · h · a · b ·
∫ π

2

0

[
a2 ·

(
1 + cos(2θ′)

2

)
+

(
b2

3
− a2

)
·
(

3 + 4 · cos(2θ′) + cos(4θ′)

8

) ]
· dθ′

= 2 · ρ · h · a · b ·
∫ π

2

0

[
1

4
· (a2 + b2) +

b2

3
· cos(2θ′) +

1

4
·
(
b2

3
− a2

)
· cos(4θ′)

]
· dθ′

= 2 · ρ · h · a · b ·
[

1

4
· (a2 + b2) ·

[
θ|

π
2
0

]
+
b2

6
·
[

sin(2θ)|
π
2
0

]
+

1

16
·
(
b2

3
− a2

)
·
[

sin(4θ)|
π
2
0

] ]

= 2 · ρ · h · a · b ·
[

1

4
· (a2 + b2) · π

2
+ 0 + 0

]

= 2 ·
[

M

π · a · b · h

]
· h · a · b ·

[
1

4
· (a2 + b2) · π

2

]

=
M

4
· (a2 + b2)
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Exercise 5

Problem Statement

Figure 5

Martin and his two best
friends, Cristobal and Catalina,
are going bowling tonight in
the local bowling center in
Antofagasta, Chile, to cel-
ebrate the good news that
Catalina obtained her official
PADI certification for scuba
diving. In the afternoon, they
have some spare time, and to
warm up for the evening event
they play around at Cristobal’s house with ramps, bowling balls, and bowling pins. They let a first
bowling ball (with mass M1 = 2.54 kg and radius R1 = 10.8 cm) roll down a long ramp at an incline
of θ = 25.2◦ from a starting height h, and when it reaches the bottom it hits (perfectly elastically) a
second bowling ball (with mass M2 = 5.22 kg and radius R2 = 11.6 cm). Upon collision, the second
ball receives an initial velocity with which it is sent up a L = 5.00 m long second ramp with a slope
equal to φ = 14.6◦, whereby the ramp itself is placed loosely on a metal cylinder, which is fixed
to the ground, and whereby the perpendicular bisector of the ramp intersects with the cylinder’s
rotation axis. As soon as the second bowling ball crosses the middle of the ramp, the ramp tilts and
the ball rolls down from the second half of the ramp, eventually hitting a nicely assembled group
of bowling pins. Martin did a too good a job of polishing the first bowling ball, so that it starts

sliding (µk = 0.102) on the first ramp when it reaches a speed equal to vs =
√

5·g
4

. What should

be the minimum height hmin from which the first bowling ball is released on the first ramp, so that
the second bowling ball is able to tilt the second ramp and hit the pins? Assume that the second
bowling ball does not slip, that the second ramp does not undergo translational motion when the
second bowling ball starts rolling uphill, and that the rotation axis of both bowling balls does not
change direction during their motion.

Solution

Until the first bowling ball reaches the speed vs, it rolls down ramp 1 without slipping. This means
that the tangential acceleration of the rotating ball is equal to its translational acceleration down
the slope. To determine the value of the acceleration a, we apply in a first instance Newton’s second
law to bowling ball 1 (whereby ~Ff represents a friction force smaller or equal to the static friction
force and which is responsible for the torque exerted upon the ball):

−Ff +M1 · g · sin θ = M1 · a

As we assumed that the direction of the ball’s rotation axis does not change while rolling down the
slope, Newton’s second law for rotation is valid, so that we obtain the following expression for the
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magnitude of the friction force ~Ff (remember that the moment of inertia I of a ball is equal to
I = 2

5
·M ·R2):

τ = I · α ⇔ [Ff ·R1] =

[
2

5
·M1 ·R2

1

]
·
[
a

R1

]
⇔ Ff =

2

5
·M1 · a

Plugging this expression into the equation of Newton’s second law for linear motion provides us with
an expression for the acceleration a:

−
[

2

5
·M1 · a

]
+M1 · g · sin θ = M1 · a ⇔ a =

5

7
· g · sin θ

The distance xs across which bowling ball 1 rolls on ramp 1 without slipping is equal to:

v2
s − v2

0 = 2 · a · xs ⇔ xs =
v2
s − v2

0

2 · a
=

[√
5·g
4

]2

− 02

2 ·
[

5
7
· g · sin θ

] =
7

8
· 1

sin θ

Since the total distance d that bowling ball 1 travels when releasing it from a height h is equal to
d = h

sin θ
, the remaining distance xr during which the ball slips until it reaches the ground is then

equal to:

xr = d− xs =
h

sin θ
− 7

8
· 1

sin θ
=

1

sin θ
·
(
h− 7

8

)

The acceleration ar during the distance xr is found by applying Newton’s second law to ball 1
(whereby ~Fk represents the kinetic friction force with magnitude Fk = µk · FN):

−Fk +FG = M1 · ar ⇔ −µk · (M1 · g · cos θ) +M1 · g · sin θ = M1 · ar ⇔ ar = g · (sin θ−µk · cos θ)

The expression for the final speed v1 with which ball 1 reaches the bottom of the ramp is then found
as follows:

v2 − v2
0 = 2 · a ·∆x ⇔ v2

1 − v2
s = 2 · ar · xr

⇔ v1 =

√
v2
s + 2 · g · (sin θ − µk · cos θ) · 1

sin θ
·
(
h− 7

8

)

=

√
v2
s + 2 · g · (1− µk · cot θ) ·

(
h− 7

8

)
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At this point, ball 1 collides at a speed v1 with bowling ball 2, which is at rest (v2 = 0 m/s). If we
consider the isolated system of “bowling ball 1 plus bowling ball 2”, then the total linear momentum
~ptot is conserved as well as the total kinetic energy Ek,tot, given that their collision occurs perfectly
elastically. We can therefore write:


M1 · v1 = M1 · v′1 +M2 · v′2

M1 · v2
1 = M1 · v

′2
1 +M2 · v

′2
2

Rearranging the equations and subsequently dividing one by the other, we find a relation between
the three speeds v1, v′1, and v′2. If we then insert the newly found expression for the speed v′1 into
the equation related to the conservation of linear momentum, we obtain an expression for the speed v′2:


M1 · (v1 − v′1) = M2 · v′2

M1 · (v1 − v′1) · (v1 + v′1) = M2 · v
′2
2

⇒ v1 + v′1 = v′2

⇒ M1 · v1 = M1 · [v′2 − v1] +M2 · v′2

⇔ v′2 =
2 ·M1

M1 +M2

· v1

The speed v′2 is the speed with which ball 2 starts rolling uphill (without slipping) on the second
ramp. The minimum requirement of ball 2 tilting the ramp is that its speed is greater than zero when
the ball is at the middle of the ramp. If the speed were equal to zero, the ball would come to a halt
and roll back down. If the speed vm represents the speed of ball 2 at the middle of the ramp, and with
the acceleration a equal to a = −5

7
·g·sinφ, the requirement in mathematical language reads as follows:

v2
m − v

′2
2 = 2 · a · L

2
⇔ v2

m − v
′2
2 = a · L ⇔ v2

m − v
′2
2 =

[
−5

7
· g · sinφ

]
· L

⇔ v
′2
2 = v2

m +
5

7
· g · sinφ · L

⇔ v
′2
2 >

5

7
· g · sinφ · L

If we now insert the previously obtained expressions for v′2 and v1 into the above requirement, we
find the minimum height hmin from which bowling ball 1 must be released if Martin and his friends
want bowling ball 2 to tilt the second ramp and strike the pins:
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v
′2
2 >

5

7
· g · sinφ · L

⇔
[

2 ·M1

M1 +M2

· v1

]2

>
5

7
· g · sinφ · L

⇔
(

2 ·M1

M1 +M2

)2

· v2
1 >

5

7
· g · sinφ · L

⇔
(

2 ·M1

M1 +M2

)2

·

[√
v2
s + 2 · g · (1− µk · cot θ) ·

(
h− 7

8

) ]2

>
5

7
· g · sinφ · L

⇔
(

2 ·M1

M1 +M2

)2

·
[
v2
s + 2 · g · (1− µk · cot θ) ·

(
h− 7

8

)]
>

5

7
· g · sinφ · L

⇔ h >
7

8
+

5 · g · sinφ · L · (M1 +M2)2 − 28 · v2
s ·M2

1

56 · g ·M2
1 · (1− µk · cot θ)

⇔ h >
7

8
+

5 · 9.81 · sin(14.6◦) · 5.00 · (2.54 + 5.22)2 − 28 ·
[√

5·g
4

]2

· 2.542

56 · 9.81 · 2.542 · [1− 0.102 · cot(25.2◦)]

⇔ h > 1.42 m
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Exercise 6

Problem Statement

Figure 6

In his village Qafmollë in Albania,
Agim is known as someone who
pretty much always goes against the
grain. At this moment, he is welding
a new weathercock to put on the roof
of his 18th century old house, but in-
stead of placing the cock (mc = 4.67
kg) in the middle of the horizon-
tal iron rod (mr = 1.12 kg), Agim
feels that it belongs at one end of
the rod, so that it can proudly gaze
into the wind. At the other end of
the L = 85.0 cm long rod, Agim
attached a copper ball (with mass
mb = 2.15 kg and radius rb = 3.86
cm) as counterweight. After trying
out various positions along the rod, he finds that the weathercock is most agile and receptive to the
wind when a second rod, which acts as the rotation axis, is placed vertically at the center of mass of
the first rod. As Agim wants to fully comprehend why this is the case, he emails his son Spiro, who
is pursuing a bachelor’s degree in physics at the University of Tirana, asking him for a mathematical
explanation. Later that day, Agim receives a response from Spiro. What did the email say?

Solution

Hi Dad,

I see you’ve took on a new project? Cannot wait to see the final result this weekend!

As to your question, it has everything to do with the (mass) moment of inertia I of the entire weath-
ercock. To be most agile and receptive to the wind means that the weathercock should experience the
least amount of rotational inertia when rotating about its axis of rotation for a given wind force—you
could interpret inertia as a kind of resistance to motion due to the object’s total mass as well as the
spatial distribution of that mass with respect to the rotation axis.

According to Newton’s second law for rotation, i.e., τnet = I · α, and keeping in mind the definition
of the torque τ , i.e., τ = F⊥ ·∆x, you can see that for a constant wind force F a smaller rotational
inertia I results in a larger rotational acceleration α, which translates into a greater agility of your
weathercock.

Before diving into the math, let me also add that the weathercock’s agility, and stability, is greatest
when the rotation axis is placed at its center of mass, because then the net torque in the xy-plane
(i.e., the rotation around the z-axis, which comes out of your screen) will be zero. Otherwise, it would
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start to wobble when rotating in the xz-plane (i.e., around the y-axis) instead of rotating smoothly.

Time for some math. You can determine the ideal position of the rotation axis if you minimize the
total moment of inertia Itot of the weathercock. So, let us first find the expression for Itot, which is
equal to the sum of the three individual moments of inertia, i.e., that of the cock (Ic), the rod (Ir),
and the copper ball (Ib). If we assume that the ideal position is located at some distance d to the left
of the middle of the iron rod (after all, the cock is heavier than the rod and the ball combined), and
applying the parallel-axis theorem, we find the following expressions for Ic, Ir, and Ib, respectively:



Ic = Ic,CM +mc ·
(
L

2
− d
)2

Ir =
mr · L2

12
+mr · d2

Ib =
2

5
·mb · r2

b +mb ·
(
L

2
+ d

)2

As the shape of the cock is quite irregular, we don’t know the exact expression of its moment of
inertia Ic,CM whereby the axis is located at the cock’s center of mass. Anyway, for the purpose of
our exercise, this term is irrelevant since it will vanish when we take the derivative of Itot, because
Ic,CM does not depend on the distance d. Adding them all up, we find the following expression for
Itot:

Itot = Ic+Ir+Ib =

[
Ic,CM +mc ·

(
L

2
− d
)2
]

+

[
mr · L2

12
+mr · d2

]
+

[
2

5
·mb · r2

b +mb ·
(
L

2
+ d

)2
]

Taking the derivative of Itot with respect to the distance d and setting it equal to zero allows us
to find the distance d from the axis for which Itot is minimal:

dItot
d(d)

= 0 ⇔ − 2 ·mc ·
(
L

2
− d
)

+ 2 ·mr · d+ 2 ·mb ·
(
L

2
+ d

)
= 0

⇔ d =
(mc −mb) · L

2 · (mc +mr +mb)
=

(4.67− 2.15) · 0.85

2 · (4.67 + 1.12 + 2.15)
= 13.5 cm

If we now calculate the position of the center of mass xc according to the definition of the cen-
ter of mass, we should obtain the same result! With the origin of our coordinate system located at
the center of mass, we indeed find the same expression for the distance d:

xc = 0 =
−mc ·

(
L
2
− d
)

+mr · d+mb ·
(
L
2

+ d
)

mc +mr +mb

⇔ d =
(mc −mb) · L

2 · (mc +mr +mb)
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As a final check, we can verify whether the net torque in the xy-plane is indeed zero when you put
the axis at the weathercock’s center of mass:

τnet = mc · g ·
(
L

2
− d
)
−mr · g · d−mb · g ·

(
L

2
+ d

)

= 4.67 · 9.81 ·
(

0.85

2
− 0.135

)
− 1.12 · 9.81 · 0.135− 2.15 · 9.81 ·

(
0.85

2
+ 0.135

)

= 0 N·m

So, Dad, if you put the rotation axis 13.5 cm to the left of the middle of the iron rod, it should
hopefully all work out.

See you this weekend!
Spiro
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Exercise 7

Problem Statement

Figure 7

Emily has been living her whole
life in Vallée de l’Ernz, Luxem-
bourg, where she owns 45 hectares
of farmland on which she has built
her house and a large barn, used to
store grain and straw bales (mb =
20.0 kg per bale). The bales are
kept in a separate section 6.00 m
above the ground and Emily uses
an iron platform (Mpl = 66.3 kg)
attached to a large pulley system
to lower the bales to the ground
floor. When she puts two bales
on the platform, it takes t = 2.55
s for the platform to reach the
ground. Directly above the plat-
form, a large wheel, which has a diameter of dw1 = 91.8 cm and a total mass of mw1 = 21.4 kg, which
includes the mass of six steel spokes (ms1 = 1.45 kg per spoke), guides the cable that is holding
the platform towards a disk-shaped pulley with a mass and radius of md = 1.50 kg and rd = 11.6
cm, respectively. The cable then continues straight downwards, round a second wheel, which has
a diameter of dw2 = 63.4 cm, a w = 4.50 cm wide edge, and a total mass of mw2 = 13.6 kg (this
includes the mass ms2 of four iron spokes), and finally back up vertically where it is attached to the
ceiling. Serving as a counterweight of this pulley system, a granite block (Mgb = 129 kg) is hanging
from the center of the second wheel. Emily notices that one of the iron spokes shows a crack, and she
replaces it straight away, otherwise the entire pulley system can come crashing down. If you know
that the frictional torque caused by the bearings of the first wheel, the disk, and the second wheel
are equal to τf1 = 7.23 N·m, τf2 = 2.19 N·m, and τf3 = 5.41 N·m, respectively, what is the mass
of the iron spoke that Emily has just fixed? Assume that the cable does not slip when the pulley
system is in motion and that counterclockwise is the positive direction of rotation.

Solution

If we choose upwards as the positive y-direction and if the ground level is equal to y = 0 m, then the
following equation of motion provides the acceleration apl of the platform carrying two bales of straw:

y = y0 +
apl
2
· t2 ⇔ apl =

2 · (y − y0)

t2
=

2 · (0− 6.00)

2.552
= −1.85 m/s2

As the acceleration apl is negative, the platform descends, and the granite block goes upwards.
We can find the acceleration agb of the block by considering a constraint related to the length of the
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cable. Given that the total length of the cable does not change, Fig. 7 then tells us that the segment
“y1 + 2 · y2” also has to remain constant. Put another way, y1 + 2 · y2 = c, with c some constant.
Taking the second derivative with respect to time of this constraint gives us the following relation
between the acceleration apl and agb:

d2y1

dt2
+ 2 · d

2y2

dt2
=
d2c

dt2
⇔ apl + 2 · agb = 0 ⇔ agb = −apl

2
= −(−1.85)

2
= 0.923 m/s2

In a next step, we apply Newton’s second law to both the granite block and the loaded platform
(regarding the platform, keep in mind that the total mass MP is equal to MP = Mpl + 2 · mb =
66.3 + 2 · 20.0 = 106 kg), which gives us the following two equations:


Platform: −MP · g + T1 = MP · apl

Block: −Mgb · g + T5 = Mgb · agb

We now want to apply Newton’s second law for rotation to the two wheels and the disk. We first
write the moment of inertia of each of the rotating objects. Regarding the first wheel, the outer
thin ring has a mass of motr = mw1 − 6 · ms1 = 21.4 − 6 · 1.45 = 12.7 kg and radius equal to
rw1 = dw1

2
= 91.8

2
= 45.9 cm. With respect to the second wheel, the outer thick edge has a mass

of mote = mw2 − 4 · ms2 and an outer and inner radius equal to rw2o = dw2

2
= 63.4

2
= 31.7 cm and

rw2i = rw2o − w = 31.7− 4.50 = 27.2 cm, respectively. The moments of inertia then become:



First wheel: Iw1 = motr · r2
w1 + 6 · ms1 · r2

w1

3
= 12.7 · 0.4592 + 6 · 1.45 · 0.4592

3
= 3.29 kg·m2

Disk: Id =
md · r2

d

2
=

1.50 · 0.1162

2
= 1.01× 10−2 kg·m2

Second wheel: Iw2 =
(mw2 − 4 ·ms2)

2
· (r2

w2o + r2
w2i) + 4 · ms2 · r2

w2i

3

Given that the cable does not slip when passing over the pulleys, we know that the tangential
acceleration is equal to the acceleration of the cable, which in turn is equal to the acceleration apl
of the loaded platform. As the platform moves downwards, both the first wheel and the disk rotate
clockwise, whereas the second wheel rotates counterclockwise. Keeping in mind that apl is negative
and that counterclockwise is the positive direction of rotation, applying Newton’s second law for
rotation (τnet = I · α) to each of the pulleys, we obtain the following three relations (also remember
that the tangential acceleration a is equal to a = R · α):
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First wheel: − T1 · rw1 + T2 · rw1 + τf1 = Iw1 ·
apl
rw1

Disk: − T2 · rd + T3 · rd + τf2 = Id ·
apl
rd

Second wheel: T3 · rw2o − T4 · rw2o − τf3 = −Iw2 ·
apl
rw2o

To find the mass ms2 of the spoke of the second wheel, we need to calculate the magnitude of
the tension forces ~T3 and ~T4, so that we can use the above equation for the second wheel to obtain
ms2. For that, we must first determine the magnitude of the tension forces ~T1 and ~T2. The value of
the former is calculated via the equation for the platform:

T1 = MP · (apl + g) = 106 · (−1.85 + 9.81) = 847 N

Using the equation for the first wheel, we find the value for T2:

T2 = T1 + Iw1 ·
apl
r2
w1

− τf1

rw1

= 847 + 3.29 · (−1.85)

0.4592
− 7.23

0.459
= 802 N

The equation for the disk provides us with the value of T3:

T3 = T2 + Id ·
apl
r2
d

− τf2

rd
= 802 + 1.01× 10−2 · (−1.85)

0.1162
− 2.19

0.116
= 782 N

Before we can calculate the value of T4, we determine the value of T5 through the equation of
the granite block:

−Mgb · g + T5 = Mgb · agb ⇔ T5 = Mgb · (g + agb) = 129 · (9.81 + 0.923) = 1, 385 N

The value of T4 is then found when applying Newton’s second law to the second wheel:

T3 + T4 −mw2 · g − T5 = mw2 · agb ⇔ T4 = mw2 · (g + agb) + T5 − T3

= 13.6 · (9.81 + 0.923) + 1, 385− 782

= 749 N

30



Physics Exercises on Rotational Motion Olivier Loose

The mass ms2 is then found through the equation of Newton’s second law for rotation with respect
to the second wheel:

T3 · rw2o − T4 · rw2o − τf3 = −Iw2 ·
apl
rw2o

⇔ T3 · rw2o − T4 · rw2o − τf3 = −
[

(mw2 − 4 ·ms2)

2
· (r2

w2o + r2
w2i) + 4 · ms2 · r2

w2i

3

]
· apl
rw2o

⇔ ms2 =

(
[(T3 − T4) · rw2o − τf3] · rw2o

apl
+ mw2

2
· [r2

w2o + r2
w2i]
)

2 ·
(
r2
w2o +

r2w2i

3

)

=

(
[(782− 749) · 0.317− 5.41] · 0.317

(−1.85)
+ 13.6

2
· [0.3172 + 0.2722]

)
2 ·
(
0.3172 + 0.2722

3

)
= 1.24 kg

If Emily replaces the cracked iron spoke with a spoke of the same mass ms2 as the other three
spokes, then the pulley system will continue to operate safely.
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Exercise 8

Problem Statement

Figure 8

Gracjan finally put his
two kids to bed and is
now cleaning up. Ear-
lier this afternoon, Grac-
jan threw a creative birth-
day party for his seven-
year-old daughter Joanna
and her friends whereby
an art teacher was invited
to show them all kinds of
neat tricks with coloured
cardboard paper. Gracjan
promised Joanna to take
her the next day to the beach in Ustka, Poland, which is a two-hour drive from their home in
Szczecinek. When he sees during the cleanup a bunch of cut out isosceles triangles (with a mass of
mt = 24.5 g per piece) he gets the idea of creating a frisbee for Joanna that she can take with her
to the beach tomorrow. Gracjan tapes eight triangles together to form an octagon (with a combined
area of A = 3, 230 cm2) and to ensure stability during its flight, he glues a rubber band (mrb = 42.0
g) onto the outer edge of each triangle. Gracjan then takes the octagonal frisbee for a test flight in
the backyard and he is pleased with the result. When he grabs the frisbee at one edge (not at a
vertex point), it takes t = 0.620 s to launch it, whereby it is given a frequency of 384 rpm. What

is the magnitude of the perpendicular force ~F⊥ due to the friction between his hand and the frisbee
that provides the frisbee with its initial spin?

Solution

Since an octagon consists of eight isosceles triangles, each triangle carves out an angle of 360◦

8
= 45.0◦

within the octagon. Therefore, the angle θ in Fig. 8 is equal to θ = 45.0◦

2
= 22.5◦. Given that the

area A of the octagon is equal to A = 3, 230 cm2, we find the radius r as follows:

A = 8 · (h · d) = 8 · [(r · cos θ) · (r · sin θ)] ⇔ r =

√
A

8 · sin θ · cos θ

=

√
3, 230

8 · sin(22.5◦) · cos(22.5◦)

= 33.8 cm

It follows then that h = r ·cos θ = 33.8·cos(22.5◦) = 31.2 cm and d = r ·sin θ = 33.8·sin(22.5◦) = 12.9
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cm. Next, let us find an expression for the moment of inertia Iht of a half triangle (with a mass equal
to mht = mt

2
= 24.5

2
= 12.3 g) rotating around the origin of our coordinate system. The limits of

integration run from 0 to h (for the x-direction) and from 0 to y (for the y-direction), whereby y
represents the equation of the straight line y = d

h
· x. The moment of inertia Iht is then found as

follows (remember that the area density ρ is equal to ρ = dm
dx·dy ):

Iht =

∫
R2 · dm = ρ ·

∫ h

0

dx′ ·
∫ d

h
·x

0

(x
′2 + y

′2) · dy′ = ρ ·
∫ h

0

dx′ ·

[(
x
′2 · y +

y3

3

)∣∣∣∣ dh ·x
0

]

= ρ ·
∫ h

0

(
x
′2 · d

h
· x′ + d3

3 · h3
· x′3

)
· dx′

= ρ · d
h3
·
(
h2 +

d2

3

)
·
∫ h

0

x
′3 · dx′

= ρ · d
h3
·
(
h2 +

d2

3

)
·

[(
x4

4

∣∣∣∣h
0

)]

= ρ · d · h
4
·
(
h2 +

d2

3

)

=

[
2 ·mht

h · d

]
· d · h

4
·
(
h2 +

d2

3

)

=
mht

2
·
(
h2 +

d2

3

)

In a next step, we determine an expression for the moment of inertia Ihrb of one half of a rub-
ber band that rotates around the origin of the coordinate system at a distance h from that origin.
With the help of the parallel-axis theorem, we obtain:

Ihrb =

(
mrb

2

)
· d2

3
+
(mrb

2

)
· h2 =

mrb

2
·
(
d2

3
+ h2

)

The total moment of inertia If of the octagonal frisbee is then equal to equal to:

If = 16 · (Iht + Ihrb) = 16 ·
[
mht

2
·
(
h2 +

d2

3

)
+
mrb

2
·
(
d2

3
+ h2

)]

= 8 · (mht +mrb) ·
(
h2 +

d2

3

)
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= 8 · (0.0123 + 0.0420) ·
(

0.3122 +
0.1292

3

)

= 4.47× 10−2 kg·m2

Given that it takes t = 0.620 s to provide the frisbee with its initial spin, we calculate its angular
acceleration α as follows (whereby the initial angular velocity ω0 is equal to ω0 = 0 rad/s):

ω = ω0 + α · t ⇔ α =
ω − ω0

t
=

[
2 · π 384

60

]
− 0

0.620
= 64.9 rad/s2

In a final step, bearing in mind that Gracjan holds the frisbee at an outer edge, which is located at a
distance h from the axis of rotation, the magnitude of the perpendicular force ~F⊥ that Gracjan gives
to the frisbee is then found with the assistance of Newton’s second law for rotation (if we assume
that Gracjan throws the frisbee with his right hand and that anticlockwise is the positive direction
of rotation, then the net torque τnet will be negative):

~τnet = I · ~α ⇔ −F⊥ · h ·~iz = −If · α ·~iz ⇔ F⊥ =
If · α
h

=
4.47× 10−2 · 64.9

0.312
= 9.29 N
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Exercise 9

Problem Statement

Figure 9

In the field of chem-
istry, organic compounds
are defined as compounds
that contain the chemical
element carbon (C). Hy-
drocarbons are an exam-
ple of organic compounds
and only consist of the
elements carbon and hy-
drogen (H). The hydrocar-
bons can be further sub-
divided into the homol-
ogous series alkanes and
alkenes, whereby the lat-
ter are uniquely character-
ized by a double carbon
bond (which the alkanes do not possess). An example of an alkane and an alkene is methane (CH4)

and ethene (CH2 CH2 or C2H4), respectively. The methane compound has a tetrahedral structure,
which means that the angle θ = 6 HCH between two H atoms equals θ = 109.47◦. The length LCHm
of the C-H bond in methane is measured to be LCHm = 109.4 pm. The six atoms of the compound
ethene are coplanar and due to the presence of the double carbon bond, the length LCHe of the C-H
bond is slightly shorter relative to methane, i.e., LCHe = 108.7 pm. The angle φ = 6 HCC between
an H atom and the double bond is equal to φ = 121.7◦. If we let the compound ethene rotate about
the axis that runs right through the middle of the double C-C bond and lies within the plane of the
compound and if the methane compound rotates about the axis that connects an H atom with the
central C atom, then the moment of inertia Ie of ethene is larger than that of methane (Im) by a
factor of 5.276. What is then the length LCC of the double carbon bond in the compound ethene?
Remember that 1 picometer is equal to 1 pm = 10−12 m, that the mass of an H and a C atom is
equal to mH = 1.00797 amu and mC = 12.011 amu, respectively, and that 1 atomic mass unit is
equivalent to 1 amu = 1.66054× 10−27 kg.

Solution

Let us in a first instance express the masses of the atoms in terms of kilograms:


mH = 1.00797 · 1.66054× 10−27 = 1.674× 10−27 kg

mC = 12.011 · 1.66054× 10−27 = 1.994× 10−26 kg

In order to find the expression for the moment of inertia of the compounds ethene and methane, we
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can see from Fig. 9 that both C2H4 and CH4 rotate about the y-axis. With respect to the moment
of inertia Im of CH4, the perpendicular distance from an H atom to the rotation axis is equal to
LCHm ·sin θ, given that the sine of the angle θ is equal to the sine of its supplementary angle 180◦−θ.
Since neither the H atom along the y-axis or the C atom contribute to Im, we can write:

Im = 3 ·mH · (LCHm · sin θ)2 = 3 · 1.674× 10−27 · [1.094× 10−10 · sin(109.47◦)]2 = 5.342× 10−47 kg·m2

Given that Ie = 5.276 · Im, we can calculate the value of ethene’s moment of inertia Ie:

Ie = 5.276 · Im = 5.276 · 5.342× 10−47 = 2.818× 10−46 kg·m2

In a next step, we write down the expression for Ie. The C atom is at a distance LCC
2

away from the

rotation axis, whereas the four H atoms find themselves at a distance LCC
2
− LCHe · cosφ from the

axis. Since the angle φ is greater than 90◦, its cosine is negative, which explains the minus sign in
the latter expression for the distance. We then obtain the following expression:

Ie = 2 ·mC ·
(
LCC

2

)2

+ 4 ·mH ·
(
LCC

2
− LCHe · cosφ

)2

⇔
[
1 +

mC

2 ·mH

]
· L2

CC − [4 · LCHe · cosφ] · LCC +

[
4 · L2

CHe · cos2 φ− Ie
mH

]
= 0

⇔
[
1 +

1.994× 10−26

2 · 1.674× 10−27

]
· L2

CC −
[
4 · 1.087× 10−10 · cos(121.7◦)

]
· LCC +

[
4 · (1.087× 10−10)2 · cos2(121.7◦)− 2.818× 10−46

1.674× 10−27

]
= 0

The physically sensible (i.e., the value of the distance must be greater than or equal to zero) so-
lution to the above quadratic equation is equal to LCC = 1.339× 10−10 m or 133.9 pm.
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Exercise 10

Problem Statement

Figure 10

Roslyn is strolling about the differ-
ent shops on Main Street in Ar-
dara, Ireland, until her interest is sud-
denly drawn to a mysterious object
in the display window of the shop
All Kinds of Everything. In front of
the object a label is placed with the
words:“Perpetual Motion Machine”.
What Roslyn sees is a round platform
with a diameter of d = 9.50 cm posi-
tioned at a certain height from the ob-
ject’s base, and from a hole in the mid-
dle of the platform a metal ball (with
mass mb = 375 g and radius Rb = 9.50
mm) falls down along a slide, which
curls back up after touching the base,
so that the ball eventually gets flung back onto the platform. Roslyn enters the shop, buys the in-
triguing device, and heads back home. It doesn’t take Roslyn much time to figure out that a magnet
hidden within the base is providing the required energy (and acceleration) to the ball to reach the
platform—otherwise, the laws of thermodynamics would have been violated. When taking a closer
look, Roslyn observes that the ball undergoes two types of motion on the slide: during the first part,
the ball slides and slips (µk = 0.354) along a L = 20.2 cm long straight segment tilted by φ = 27.4◦

and then follows a circular-shaped path (with a radius of Rc = 6.50 cm) whereby it now rolls without
slipping, until the ball leaves the slide at the point where the tangent is making an angle of θ = 75.0◦

with the horizontal. If Roslyn switches off the magnet, how far, in terms of vertical distance, is the
ball now removed from the platform while being at its highest point mid-air, if at all?

Solution

In a first step, we determine the speed v1 of the metal ball as it reaches the end of the straight
segment L. As the metal ball experiences kinetic friction while slipping along this first part of the
slide, the magnitude of the kinetic friction force ~Fk is equal to Fk = µk · (mb · g · sinφ). Applying the
work-energy theorem, we find the following speed v1 (keep in mind that at its initial position on the
slope, the ball’s center of mass is positioned at a distance Rb · sinφ above the platform):

Wtot,1 = Wext +Wc,1 ⇔ ∆Ek,1 = −Fk · L−∆Ep,1

⇔ mb · v2
1

2
− mb · v2

0

2
= −µk · (mb · g · sinφ) · L −

[mb · g · (Rc − (Rc −Rb) · sinφ)−mb · g · (Rb · sinφ+ L · cosφ+Rc · (1− sinφ))]
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⇔ mb · v2
1

2
− mb · 02

2
= −µk · (mb · g · sinφ) · L+mb · g · L · cosφ

⇔ v1 =
√

2 · g · L · (cosφ− µk · sinφ)

=
√

2 · 9.81 · 0.202 · [cos(27.4◦)− 0.354 · sin(27.4◦)]

= 1.69 m/s

Next, we find the speed v at which the metal ball leaves the slide. As we assume that the ball
does not experience any friction during the circular-shaped second segment of the slide, we obtain
the speed v with the help of the work-energy theorem (remember that the moment of inertia Ib of
the metal ball and the angular velocity ω are equal to Ib = 2

5
·mb ·R2

b and ω = v
Rb

, respectively):

Wtot,2 = Wc,2 ⇔ ∆Ek,2 = −∆Ep,2

⇔
(
mb · v2

2
+
Ib · ω2

2

)
−
(
mb · v2

1

2
+
Ib · ω2

1

2

)
=

− [mb · g · (Rc + (Rc −Rb) · cos θ)−mb · g · (Rc − (Rc −Rb) · sinφ)]

⇔
(
mb · v2

2
+

1

5
·mb ·R2

b ·
v2

R2
b

)
−
(
mb · v2

1

2
+

1

5
·mb ·R2

b ·
v2

1

R2
b

)
=

mb · g · (Rb −Rc) · (cos θ + sinφ)

⇔ 7

10
·mb · v2 =

7

10
·mb · v2

1 +mb · g · (Rb −Rc) · (cos θ + sinφ)

⇔ v =

√
v2

1 +
10

7
· g · (Rb −Rc) · (cos θ + sinφ)

=

√
1.692 +

10

7
· 9.81 · (9.50× 10−3 − 6.50× 10−2) · [cos(75.0◦) + sin(27.4◦)]

= 1.52 m/s

The maximum height hmax that the metal ball attains after it has left the slide is calculated as
follows (remember that at hmax the corresponding speed vmax is zero):

v2
max − (v · sin θ)2 = 2 · (−g) · hmax ⇔ hmax =

(v · sin θ)2

2 · g
=

[1.52 · sin(75.0◦)]2

2 · 9.81
= 11.0 cm
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The minimum vertical distance hmin that the metal ball should travel through the air if it wishes to
end up back on the platform (which is only possible if Roslyn switches on the magnet) is expressed
as follows:

hmin = Rb + L · cosφ− [Rc · sinφ+ (Rc −Rb) · cos θ]

= L · cosφ+Rb · (1 + cos θ)−Rc · (cos θ + sinφ)

= 0.202 · cos(27.4◦) + 9.50× 10−3 · [1 + cos(75.0◦)]− 6.50× 10−2 · [cos(75.0◦) + sin(27.4◦)]

= 14.5 cm

The metal ball would need another hmin − hmax = 14.5 − 11.0 = 3.45 cm to reach the platform.
Bear in mind that in this exercise we assumed no friction during the circular-shaped path. In a
real-life example, however, the metal ball experiences friction with the slide during the entire path
and would most likely not even have sufficient energy to leave the slide.
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Exercise 11

Problem Statement

Figure 11

Liam and Robert are
having fun with their
kids at the Greenview
Playground in Edmonton,
Canada, on a chilly, yet
sunny day. After three
hours of entertainment on
the hopping stools, the
monkey bars, the various
slides, the chain ladders,
the rope webs, the climb-
ing forest, the swings, the
spinners, and the climb-
ing dome, the kids are now
resting on the merry-go-
round. That is, until their
fathers suggest they go and get an ice-cream. With unprecedented excitement and loud cheering, they
dash off to collect their well-deserved afternoon snack. As they jump off the merry-go-round, which
has a radius of R = 2.55 m, they leave it spinning counterclockwise at a constant angular velocity of
ω = 0.455 rad/s. Because of all the screaming, the squirrel, who was enjoying her own snack up in
the tree, is startled and drops her acorn (ma = 105 g), which lands on the merry-go-round d = 55.0
cm from the edge and it rolls with an initial speed of v0 = 1.24 m/s at an angle of θ = 156◦ with the
radial line segment that intersects with the landing spot of the acorn. (1) How long does the acorn
stay on the merry-go-round before flying off of it? (2) What are the coordinates of the acorn’s point
of exit (as seen from the rotating reference frame)? Ignore any kind of kinetic friction for this problem.

Solution

(1) Since the acorn is moving within a non-inertial, rotating frame of reference, the forces acting

upon the acorn are the normal force ~FN , the gravitational force ~FG, the centrifugal force ~FCF , and
the Coriolis force ~FC . As we will consider the acorn’s motion in the xy-plane, ~FN and ~FG are irrele-
vant to our problem. The acorn’s horizontal motion is thus affected by the following net force ~Fnet
(with ~r = x ·~ix′ + y ·~iy′ representing the acorn’s position vector, ~v = vx ·~ix′ + vy ·~iy′ its velocity vec-

tor, ~a = ax ·~ix′+ay ·~iy′ its acceleration vector, and ~ω = ω ·~iz′ its angular velocity vector, respectively):

~Fnet = ~FCF + ~FC ⇔ ma · ~a = [ma · ~ω × (~r × ~ω)] + [2 ·ma · (~v × ~ω)]

As the angular velocity vector ~ω points upwards (out of your screen) along the z-axis, we can deduce

from the cross products that the centrifugal force ~FCF acts radially outwards and the Coriolis force
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~FC , when looking into the direction of the velocity vector ~v, to the right. If we work out the cross
products, we obtain the following equation:

~a =
[
ω2 · x ·~ix′ + ω2 · y ·~iy′

]
+ 2 ·

[
ω · vy ·~ix′ − ω · vx ·~iy′

]

In component form, this becomes:


ax = ω2 · x+ 2 · ω · vy

ay = ω2 · y − 2 · ω · vx

In order to obtain an expression for the time variable t, we have to solve these two differential
equations. To simplify our calculations, let us introduce a new, complex variable rc = x + i · y,
which represents the position vector in the complex field, whereby i2 = −1 (do not confuse i with the
unit vectors ~ix′ and ~iy′). Taking the first and second derivative of rc, we then obtain the respective
complex equivalents of the velocity and acceleration vectors, i.e., vc = vx + i · vy and ac = ax + i · ay.
Using the above two equations, we now write:

ac = ax + i · ay =
[
ω2 · x+ 2 · ω · vy

]
+ i ·

[
ω2 · y − 2 · ω · vx

]
= ω2 · (x+ i · y)− 2 · i · ω · (vx + i · vy)

= ω2 · rc − 2 · i · ω · vc

⇔ d2rc
dt2

+ 2 · i · ω · drc
dt
− ω2 · rc = 0

To solve this differential equation, let us try the solution rc = eλ·t, which we insert into the above
equation:

d2

dt2
(
eλ·t
)

+ 2 · i · ω · d
dt

(
eλ·t
)
− ω2 ·

(
eλ·t
)

= 0

⇔ λ2 + 2 · i · ω · λ− ω2 = 0

⇔ λ =
1

2
·
[
−2 · i · ω ±

√
(2 · i · ω)2 − 4 · 1 · (−ω2)

]
= −i · ω

Therefore, our two solutions have the same form: rc = e−i·ω·t. A general solution to our differ-
ential equation consists of a linear combination of these two solutions, which we write as rc =

41



Physics Exercises on Rotational Motion Olivier Loose

c1 · e−i·ω·t + c2 · t · e−i·ω·t, with c1 and c2 two constants. Notice that we multiplied the second term by
“t”, which we have to do if we wish to avoid non-sensical answers when implementing the two initial
conditions of our problem, i.e., the acorn’s (complex) initial position rc,0 = L+ i · 0 = L (with L the
initial position of the acorn equal to L = R − d = 2.55 − 0.550 = 2.00 m) and its (complex) initial
velocity vc,0 = (v0 · cos θ) + i · (v0 · sin θ). To find the value of the two constants c1 and c2, we apply
the two initial conditions to our general solution at t = 0 s:



rc,0 = L ⇔ c1 · e−i·ω·0 + c2 · 0 · e−i·ω·0 = L

⇔ c1 = L

vc,0 = (v0 · cos θ) + i · (v0 · sin θ)

⇔ d

dt

(
c1 · e−i·ω·t + c2 · t · e−i·ω·t

)∣∣∣∣
t=0

= (v0 · cos θ) + i · (v0 · sin θ)

⇔
[
−c1 · i · ω · e−i·ω·0 + c2 · e−i·ω·0 − c2 · i · ω · 0 · e−i·ω·0

]
= (v0 · cos θ) + i · (v0 · sin θ)

⇔ c2 = (v0 · cos θ) + i · (v0 · sin θ + L · ω)

The final general solution has then the following complex form (remember Euler’s formula, whereby
eβ·i = cos β + i · sin β):

rc = c1 · e−i·ω·t + c2 · t · e−i·ω·t

= [L] · e−i·ω·t + [(v0 · cos θ) + i · (v0 · sin θ + L · ω)] · t · e−i·ω·t

= L · [cos(ωt)− i · sin(ωt)] + [(v0 · cos θ) + i · (v0 · sin θ + L · ω)] · t · [cos(ωt)− i · sin(ωt)]

= ( L · cos(ωt) + [v0 · cos θ · cos(ωt) + (v0 · sin θ + L · ω) · sin(ωt)] · t ) −

i · ( L · sin(ωt) + [v0 · cos θ · sin(ωt)− (v0 · sin θ + L · ω) · cos(ωt)] · t )

Since rc has the form rc = x + i · y, the x- and y-coordinate of the acorn’s position vector ~r are
the following:


x(t) = L · cos(ωt) + [v0 · cos θ · cos(ωt) + (v0 · sin θ + L · ω) · sin(ωt)] · t

y(t) = −L · sin(ωt)− [v0 · cos θ · sin(ωt)− (v0 · sin θ + L · ω) · cos(ωt)] · t
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The time the acorn stays on the merry-go-round is equal to the time during which the distance of the
acorn from the origin has become equal to the radius R of the merry-go-round. In a next moment,
the acorn will fall off of the merry-go-round, as it will be at a distance from the origin that is greater
than R. This condition is mathematically translated in the following way:

x2 + y2 = R2

⇔ ( L · cos(ωt) + [v0 · cos θ · cos(ωt) + (v0 · sin θ + L · ω) · sin(ωt)] · t )2 +

( −L · sin(ωt)− [v0 · cos θ · sin(ωt)− (v0 · sin θ + L · ω) · cos(ωt)] · t )2 = R2

⇔
[
v2

0 + 2 · L · v0 · ω · sin θ + L2 · ω2
]
· t2 + [2 · L · v0 · cos θ] · t+

[
L2 −R2

]
= 0

⇔
[
1.242 + 2 · 2.00 · 1.24 · 0.455 · sin(156◦) + 2.002 · 0.4552

]
· t2 +

[2 · 2.00 · 1.24 · cos(156◦)] · t+
[
2.002 − 2.552

]
= 0

The physically sensible (i.e., t > 0) solution to the above quadratic equation is equal to t = 1.80 s.
From the moment that the acorn fell onto the merry-go-round until right before it falls off of it due to
the inertial forces ~FCF and ~FC , the acorn has spent a total time of t = 1.80 s on the merry-go-round.

(2) After having traveled along the path marked by the white dashed line in Fig. 11 for a total of
t = 1.80 s, the acorn finds itself at the following coordinates (with respect to the rotating reference
frame):



x(t) = L · cos(ωt) + [v0 · cos θ · cos(ωt) + (v0 · sin θ + L · ω) · sin(ωt)] · t

= 2.00 · cos

(
0.455 · 1.80 · 180◦

π

)
+

[
1.24 · cos(156◦) · cos

(
0.455 · 1.80 · 180◦

π

)
+

]
[
[1.24 · sin(156◦) + 2.00 · 0.455] · sin

(
0.455 · 1.80 · 180◦

π

)]
· 1.80

= 1.84 m

y(t) = −L · sin(ωt)− [v0 · cos θ · sin(ωt)− (v0 · sin θ + L · ω) · cos(ωt)] · t

= −2.00 · sin
(

0.455 · 1.80 · 180◦

π

)
−
[
1.24 · cos(156◦) · sin

(
0.455 · 1.80 · 180◦

π

)
−
]

[
[1.24 · sin(156◦) + 2.00 · 0.455] · cos

(
0.455 · 1.80 · 180◦

π

)]
· 1.80

= 1.77 m
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Exercise 12

Problem Statement

Figure 12

Two large asteroids (with
mass m1 = 2.62 × 1012

kg and m2) are tumbling
through the vast empti-
ness of space with a speed
of v1 = 88, 394 km/h
and v2 = 52, 872 km/h,
respectively, whereby as-
teroid 2 is following a
straight path at an angle
of θ = 76.5◦ with respect
to the straight path of as-
teroid 1 and both move
in the same plane. The
shape of both asteroids
can be approximated by a
cuboid, i.e., a rectangular prism, with length l1 = 38.1 km, width w1 = 20.6 km, and height h1 = 90.3
km for asteroid 1 and length l2 = 155 km, width w2 = 53.8 km, and height h2 = 72.4 km for asteroid
2. Asteroid 1 rotates every 6.50 hours clockwise around the z-axis through its center of mass, while
asteroid 2, which spins counterclockwise around an axis that runs parallel to the z-axis and along
one of the four edges, requires 22.3 hours to complete one revolution. Moreover, asteroid 2 has a
hole of cuboidal shape at its center that stretches across the entire height h2 and whereby its length
and width are about one fifth of that of the asteroid. At one point, the two asteroids collide and
merge their mass into one spherical-like object, which has a radius of R = 53, 750 m and rotates
about an axis running through its center of mass. If you know that the consolidated asteroid is
headed into the direction that makes an angle of α = 58.9◦ relative to the original path of the first
asteroid, (1) what was the mass m2 of asteroid 2? (2) At which speed is the newly assembled asteroid
hurtling through space? (3) How long does it take the spherical asteroid to spin just once around
its rotation axis? Assume that no mass is lost during the collision and transformation of the asteroids.

Solution

(1) In the vast emptiness of space, the only force acting upon each asteroid is the gravitational force
~FG manifested by the presence of the other asteroid. However, in the isolated system “asteroid 1
plus asteroid 2”, these two forces cancel each other out, so that the total linear momentum ~ptot is
conserved. We can therefore write:


x : (m1 · v1) + (m2 · v2 · cos θ) = (m1 +m2) · vf · cosα

y : m2 · v2 · sin θ = (m1 +m2) · vf · sinα
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If we formulate an expression for the final speed vf based on the equation of the y-direction and plug
it into the equation of the x-direction, we find the mass m2:

m2 · v2 · sin θ = (m1 +m2) · vf · sinα ⇔ vf =
m2 · v2 · sin θ

(m1 +m2) · sinα

⇒ (m1 · v1) + (m2 · v2 · cos θ) = (m1 +m2) ·
[

m2 · v2 · sin θ
(m1 +m2) · sinα

]
· cosα

⇔ m2 =
m1 · v1

v2 · (cotα · sin θ − cos θ)
=

2.62× 1012 · 2.46× 104

1.47× 104 · [cot(58.9◦) · sin(76.5◦)− cos(76.5◦)]

= 1.24× 1013 kg

(2) The final speed vf of the spherical-like asteroid post-collision is then calculated with the as-
sistance of the expression obtained in part (1):

vf =
m2 · v2 · sin θ

(m1 +m2) · sinα
=

1.24× 1013 · 1.47× 104 · sin(76.5◦)

(2.62× 1012 + 1.24× 1013) · sin(58.9◦)
= 1.38× 104 m/s or 49, 600 km/h

(3) Only at the moment when the two asteroids come together and start their transformation process
is the net torque of the system “asteroid 1 plus asteroid 2” zero—before that, there is a non-zero net
torque due to the gravitational force ~FG exerted upon asteroid 2 by asteroid 1, because the rotation
axis does not run through its center of mass. As a result, the total angular momentum ~Ltot of the
system is conserved only at the start of their transformation. Given that asteroid 1 spins clockwise
and asteroid 2 counterclockwise, we write the following equation:

~Ltot,i = ~Ltot,f ⇔ (−I1 · ω1) + (I2 · ω2) = If · ωf

Let us first determine the different moments of inertia. With regard to asteroid 1, the origin of the
coordinate system sits at its center of mass and the asteroid rotates around the z-axis. Therefore,
asteroid 1 rotates within the xy-plane, so that only the width w1 and the length l1 impact its moment
of inertia I1, which can be calculated as follows:

I1 =
m1

12
·
(
w2

1 + l21
)

=
2.62× 1012

12
·
[(

20.6× 103
)2

+
(
38.1× 103

)2
]

= 4.10× 1020 kg·m2

With respect to asteroid 2, it is also rotating within the xy-plane, so, similarly, only its length
l2 and width w2 are relevant to its moment of inertia I2. However, the rotating axis r runs parallel to

the z-axis at a distance d =
√(

w2

2

)2
+
(
l2
2

)2
. With the help of the parallel-axis theorem, the moment

of inertia I2,full of the asteroid, disregarding the hole in the middle, is therefore equal to:
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I2,full =
m2

12
·
(
w2

2 + l22
)

+m2 · d2 =
m2

12
·
(
w2

2 + l22
)

+m2 ·

[(w2

2

)2

+

(
l2
2

)2
]

=
m2

3
·
(
w2

2 + l22
)

To find I2 we have to subtract the moment of inertia Ih of the hole from I2,full. Given that the width
and length of the cuboidal-shaped hole are one fifth of that of the asteroid, the missing mass mh

of the hole relative to m2 can be determined by the ratio of the respective volumes in the following
way:

mh

m2

=
Vh
V2

=
w2

5
· l2

5
· h2

w2 · l2 · h2

⇔ mh =
m2

25

The moment of inertia Ih is then expressed as:

Ih =
m2

25
· 1

12
·

[(w2

5

)2

+

(
l2
5

)2
]

=
m2

7, 500
·
(
w2

2 + l22
)

The value of the moment of inertia I2 of asteroid 2 can now be calculated as follows:

I2 = I2,full − Ih =
m2

3
·
(
w2

2 + l22
)
− m2

7, 500
·
(
w2

2 + l22
)

=
2, 499 ·m2

7, 500
·
(
w2

2 + l22
)

=
2, 499 · 1.24× 1013

7, 500
·
[(

53.8× 103
)2

+
(
155× 103

)2
]

= 1.11× 1023 kg·m2

Based on the above equation related to the conservation of angular momentum, we can determine
the period of rotation P of the spherical-shaped merged asteroid:

(−I1 · ω1) + (I2 · ω2) = If · ωf =

[
2

5
· (m1 +m2) ·R2

]
· ωf

⇔ ωf =
5

2
·
[

(−I1 · ω1) + (I2 · ω2)

(m1 +m2) ·R2

]
=

5

2
·


(
−4.10× 1020 · 2·π

6.50·3,600

)
+
(

1.11× 1023 · 2·π
22.3·3,600

)
(2.62× 1012 + 1.24× 1013) · 53, 7502


= 4.95× 10−4 rad/s

⇔ P =
2 · π

ωf · 3, 600
=

2 · π
4.95× 10−4 · 3, 600

= 3.52 hours

Since the magnitude of the angular velocity ~ωf of the newly assembled asteroid is positive, the

magnitude of its angular momentum ~Lf is also positive, so that the asteroid is spinning anticlockwise.
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Exercise 13

Problem Statement

Figure 13

Nina is pursuing her PhD
in Theoretical Astrophysics
at the Lorentz Institute in
Leiden, The Netherlands,
and she is specifically in-
terested in studying binary
systems of spinning black
holes, a.k.a. Kerr black
holes. A binary system con-
sists of two massive bodies
orbiting each other around
their common center of mass
called the barycenter. When
a spinning object is orbiting around a certain point in space, its total angular moment ~Ltot is com-
posed of two terms, i.e., the orbital angular momentum ~Lorb = ~r×~p and the spin angular momentum
~J = I · ~Ω. For her doctoral thesis, Nina is currently investigating the galaxy NGC 7674, which
is located within the Pegasus constellation about 400 million light years away and houses a binary
system of supermassive black holes. Nina finds that the magnitude of the orbital angular momentum
~Lorb is equal to Lorb = M1 ·

√
G · d1 ·M2, with d1 the distance of black hole 1 from the barycenter

and M1 and M2 the mass of the black hole 1 and 2, respectively. How did Nina obtain this result?
Make the assumption that the orbits are circular in nature.

Solution

Since no net torque is present in the system “black hole 1 plus black hole 2”, the orbital angular
momentum ~Lorb is conserved, which means that ~Lorb is a constant vector and thus maintains its
direction and magnitude at all times. As a result, both the position vector ~r and the velocity vector
~v always remain perpendicular to Lorb. Put another way, the orbital motion of the two black holes
occur in a plane, i.e., the xy-plane, as ~Lorb points in the z-direction (out of your screen).

Given that the black holes are orbiting the barycenter in an anticlockwise fashion, their respective
velocities within our (co-rotating) coordinate system are equal to ~v1 = −v1 ·~iy and ~v2 = v2 ·~iy (in the

specific position of Fig. 13). The orbital angular momentum ~Lorb of the system is then formulated
as follows:

~Lorb = ~Lorb,1 + ~Lorb,2 = (~r1 × ~p1) + (~r2 × ~p2)

=
[(
−d1 ·~ix)× (−M1 · v1 ·~iy)

)]
+
[(
d2 ·~ix)× (M2 · v2 ·~iy)

)]
=
(
M1 · d1 · v1 ·~iz

)
+
(
M2 · d2 · v2 ·~iz

)
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In the co-rotating frame of reference, we know that the centrifugal force ~FCF must be balanced by
the gravitational force ~FG, if we want the black holes to remain in their respective orbit. For the two
supermassive black holes, we therefore obtain the following expression for their orbital speed v1 and
v2, respectively:

FCF = FG ⇔


M1·v21
d1

=
G·M1·M2

(d1+d2)2
⇔ v1 =

√
G·M2·d1

(d1+d2)

M2·v22
d2

=
G·M1·M2

(d1+d2)2
⇔ v2 =

√
G·M1·d2

(d1+d2)

If we insert these two expressions into the magnitude of the orbital angular momentum ~Lorb, we
obtain the following expression for Lorb:

Lorb = (M1 · d1 · v1) + (M2 · d2 · v2) =

(
M1 · d1 ·

[√
G ·M2 · d1

(d1 + d2)

])
+

(
M2 · d2 ·

[√
G ·M1 · d2

(d1 + d2)

])

Based on the definition of the center of mass, we can write d1 and d2 as follows:

d1 =
(d1 + d2) ·M2

(M1 +M2)
d2 =

(d1 + d2) ·M1

(M1 +M2)

We now insert these two expressions into the above expression for Lorb and we find Nina’s result:

Lorb =

(
M1 · d1 ·

[√
G ·M2 · d1

(d1 + d2)

])
+

(
M2 · d2 ·

[√
G ·M1 · d2

(d1 + d2)

])

=

M1 ·
[

(d1+d2)·M2

(M1+M2)

]
·

√
G·M2·

[
(d1+d2)·M2
(M1+M2)

]
(d1+d2)

+

M2 ·
[

(d1+d2)·M1

(M1+M2)

]
·

√
G·M1·

[
(d1+d2)·M1
(M1+M2)

]
(d1+d2)



=

[
M1 ·M2

2

(M1 +M2)
·

√
G · (d1 + d2)

(M1 +M2)

]
+

[
M2 ·M2

1

(M1 +M2)
·

√
G · (d1 + d2)

(M1 +M2)

]

= M1 ·M2 ·

√
G · (d1 + d2)

(M1 +M2)

= M1 ·M2 ·

√
G ·
[
d1

M2

]

= M1 ·
√
G · d1 ·M2
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Exercise 14

Problem Statement

Figure 14

The sub-Antarctic island
of South Georgia, which
belongs to the British
Overseas Territories, is
home to the world’s largest
colony of King Penguins.
During the winter, many
are often found more south-
wards along the coastal re-
gions of the Antarctic con-
tinent. On one of the
Antarctic islands called
Spert Island, three King
Penguins feel particularly
playful today and they
suddenly notice a floating
piece of ice near the shore. Two of them (mp1 = 12.3 kg and mp2 = 17.6 kg) are quick to react, make
their way towards the ice platform and jump onto it. Right before the third penguin (mp3 = 23.2
kg) also jumps onto the platform, the ice shelf is rotating slowly in the clockwise direction around
its center of mass at a rate of 1 revolution every 1.22 minutes. The shape of the platform is a square
prism (with length l = 2.00 m and height h = 5.00 cm) onto which an isosceles right-angled triangu-
lar prism of corresponding dimensions is attached to one of its sides. When visualizing the triangular
prism at the right-hand side of the square prism, then the two penguins are standing d1 = 35.5
cm and d2 = 82.7 cm from the top left and bottom left corner under an angle of θ1 = 50.6◦ and
θ2 = 38.2◦ with the horizontal, respectively. If you know that the density of ice is equal to ρ = 917
kg/m3 and that the third penguin lands right at the center of mass, at what rate is the ice platform
now rotating? Treat the ice shelf as a thin plate and the penguins as solid cylinders with an internal
radius equal to r1 = 16.9 cm, r2 = 19.1 cm, and r3 = 22.3 cm, respectively.

Solution

For this problem, we consider the isolated system “ice platform plus the three penguins”, so that we
can disregard any potential wobbling of the platform due to the water. In a first step, we determine
the total mass mtot of the ice shelf. The total volume Vtot of the platform is equal to the sum of the
volume Vsq of the square prism and the volume Vtri of the right triangular prism:

Vtot = Vsq + Vtri =
(
l2 · h

)
+

(
l2

2
· h
)

=
3

2
· l2 · h =

3

2
· 2.002 · 5.00× 10−2 = 0.300 m3

The total mass is then equal to mtot = ρ · Vtot = 917 · 0.300 = 275 kg. The mass msq and
mtri of the square and triangular prism, respectively, are equal to msq = ρ · Vsq = ρ · (l2 · h) =
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917 · (2.002 · 5.00× 10−2) = 183 kg and mtri = mtot−msq = 275− 183 = 91.7 kg. Now that we know
the mass of the ice shelf, we will treat the platform as a thin plate from now onwards.

In a next step, we calculate the distances xCM and yCM , which are the distances from which the
platform’s center of mass—this includes the mass of penguin 1 and 2—is positioned from its bottom
left corner in the x- and y-direction, respectively. If we now relocate for a moment the origin of our
coordinate system to the bottom left corner of the ice shelf (at the level of the surface), then we know
that the point ~s1, which corresponds to the center of mass of the square prism, has the coordinates
~s1 = (1.00, 1.00). The center of mass of the triangular prism is positioned at ~s2 =

(
8
3
, 4

3

)
. The center

of mass ~rc of the ice platform without the two penguins is therefore located at:

~rc = (xc, yc) =

(
s1,x ·msq + s2,x ·mtri

mtot

,
s1,y ·msq + s2,y ·mtri

mtot

)
=

(
1.00 · 183 + 8

3
· 91.7

275
,
1.00 · 183 + 4

3
· 91.7

275

)

= (1.56, 1.11)

The center of mass ~rCM of the ice platform including the two penguins (this corresponds to the red
dot in Fig. 14) is then calculated in a similar fashion:

~rCM =

(
xc ·mtot + (d1 · cos θ1) ·mp1 + (d2 · cos θ2) ·mp2

mtot +mp1 +mp2

,
yc ·mtot + (l − d1 · sin θ1) ·mp1 + (d2 · sin θ2) ·mp2

mtot +mp1 +mp2

)

=

(
1.56 · 275 + [0.355 · cos(50.6◦)] · 12.3 + [0.827 · cos(38.2◦)] · 17.6

275 + 12.3 + 17.6
,

)
(

1.11 · 275 + [2.00− 0.355 · sin(50.6◦)] · 12.3 + [0.827 · sin(38.2◦)] · 17.6

275 + 12.3 + 17.6

)
= (1.45, 1.10)

The distances xCM and yCM are thus equal to xCM = 1.45 m and yCM = 1.10 m, respectively. For
the remainder of this exercise, we place the origin of the coordinate system at the platform’s center
of mass.

Since in our isolated system “ice platform plus the three penguins” the net torque is equal to the null
vector—the gravitational force ~FG acts on the platform’s center of mass which is also the location
of the rotation axis—we know that the total angular momentum ~Ltot remains constant, so that the
rotational motion of the ice shelf occurs in a plane, i.e., the xy-plane. If the moment of inertia Iice
represents the moment of inertia of the ice platform containing two penguins, we can then write
(with ~ωf the final angular velocity after the third penguin has jumped onto the ice shelf):

~Ltot,i = ~Ltot,f ⇔ Iice · ~ωi =

(
Iice +

mp3 · r2
3

2

)
· ~ωf

The moment of inertia Iice consists of four sub-moments of inertia, i.e., those related to the two
penguins, one for the square prism (Lsq), and one for the triangular prism (Ltri). Regarding Lsq, we
can write the moment of inertia for a rectangular prism (with equal length and width) and apply the
parallel-axis theorem across the distance between the platform’s center of mass and the point ~s1:
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Isq =
msq

12
·
(
l2 + l2

)
+msq ·

[√
(xCM − 1)2 + (yCM − 1)2

]2

=
183

12
·
(
2.002 + 2.002

)
+ 183 ·

[√
(1.45− 1)2 + (1.10− 1)2

]2

= 161 kg·m2

With respect to Itri, we derived in Exercise 8 the formula for the moment of inertia of a right-angled

triangle rotating around one of its two vertices adjacent to the hypotenuse, i.e. Iv = mtri
2
·
(
l2 + l2

3

)
.

Before we can obtain Itri, we need to find the moment of inertia It,CM of the triangular prism at its
center of mass ~s2. If we consider the bottom left vertex of the triangle as the point of rotation and
if we refer to dtri as the distance between that point and ~s2, we can then write:

Iv = It,CM +mtri · d2
tri ⇔ It,CM = Iv −mtri · d2

tri

=
mtri

2
·
(
l2 +

l2

3

)
−mtri ·

√( l
3

)2

+

(
2 · l
3

)2
2

=
mtri · l2

9

The moment of inertia Itri of the triangular prism rotating about the platform’s center of mass, which
is located at a distance |~s2| away from the prism’s center of mass, is then calculated as follows:

Itri = It,CM +mtri · |~s2|2

=
mtri · l2

9
+mtri ·

√( l
3

+ (l − xCM)

)2

+

(
2 · l
3
− yCM

)2
2

=
91.7 · 2.002

9
+ 91.7 ·

√(2.00

3
+ (2.00− 1.45)

)2

+

(
2 · 2.00

3
− 1.10

)2
2

= 182 kg·m2

The moment of inertia Iice of the platform containing the two penguins is then equal to:

Iice = Isq + Itri +

(
mp1 · r2

1

2

)
+

(
mp2 · r2

2

2

)
= 161 + 182 +

(
12.3 · 0.1692

2

)
+

(
17.6 · 0.1912

2

)

= 343 kg·m2

In a final step, based on the above equation for the conservation of the angular momentum, we
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determine the magnitude of the angular velocity ~ωf after the third penguin has made its way onto
the ice platform (given the choice of our coordinate system, note that the clockwise direction is the
negative direction of rotation):

Iice · ~ωi =

(
Iice +

mp3 · r2
3

2

)
· ~ωf ⇔ Iice · [−ωi]~iz =

(
Iice +

mp3 · r2
3

2

)
· ωf ·~iz

⇔ ωf = − Iice · ωi(
Iice +

mp3·r23
2

)

= −
343 ·

[
2·π

1.22·60

](
343 + 23.2·0.2232

2

)
= −8.58× 10−2 rad/s

The ice shelf barely slows down after the third penguin jumped onto the platform; it is still taking
t = 2·π

|ωf |·60
= 2·π

8.58×10−2·60
= 1.22 minutes to complete one revolution. The difference in rotational

motion is only noticeable on the millisecond scale. Whereas the rotational period of the ice shelf is
initially equal to 1 min 13.2 s, the final period is measured as 1 min 13.2274 s. In other words, the
ice shelf has slowed down its rate of rotation by 27.4 ms.
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Exercise 15

Problem Statement

Figure 15

Laniyan is one of the Cameroo-
nian artists who are invited to
exhibit their work at the tem-
porary exposition “l’Asymétrie
et la Rotation” at the contem-
porary art center doul’art at
Douala, Cameroon. Laniyan
designed his own creative ver-
sion of a newly discovered,
young planetary system of six
planets. Instead of orbiting
within a fixed plane, the plan-
ets are spatially arranged in a
stepwise fashion whereby their
total angular momentum ~Ltot is
tilted by an angle of θ = 23.2◦

relative to the axis of rotation, i.e., the y-axis. Planet 1 (m1 = 6.55 kg), which is the planet in the
highest orbit, is located at a distance of Dx = 92.2 cm horizontally and Dy = 66.6 cm vertically
from the planet in the lowest orbit, i.e., Planet 6 (m6 = 8.21 kg), at the other end of the planetary
system. Planet 2 (m2 = 7.60 kg) is positioned d1 = 42.5 cm to the south of Planet 1, and Planet
3 (m3 = 4.35 kg), which finds itself d2 = 24.4 cm to the east of Planet 2, is the planet closest to
the origin of the coordinate system at a distance of d3 = 15.0 cm, making thereby an angle α with
the rotation axis. Planet 4 (m4) is orbiting at d4 = 26.4 cm to the east of the origin, and d5 = 13.9
cm away from Planet 4 in the direction east of south at an angle β is the location of the orbit of
Planet 5 (m5 = 3.67 kg). Finally, Planet 6 is positioned d6 = 26.7 cm further to the east relative to
Planet 5. If you know that in Laniyan’s planetary system the planets are not spinning and rotate
counterclockwise, what is the mass m4 of Planet 4? Neglect the mass of the connecting rods between
the planets.

Solution

To find the mass m4 of Planet 4 through the definition of the orbital angular momentum ~Ltot = ~r×~p,
we will need to know the coordinates of every position vector ~r of the six planets (at the moment
shown in Fig. 15). Therefore, let us in a first instance determine the value of the angles α and β.
Based on the two constraints Dx = 92.2 cm and Dy = 66.6 cm, we obtain the following two equations:

x : Dx = d2 + d3 · sinα + d4 + d5 · sin β + d6 y : Dy = d1 + d3 · cosα + d5 · cos β

⇔ (Dx − d2 − d4 − d6) = d3 · sinα + d5 · sin β ⇔ (Dy − d1) = d3 · cosα + d5 · cos β

⇔ c1 = d3 · sinα + d5 · sin β ⇔ c2 = d3 · cosα + d5 · cos β
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whereby c1 = (Dx − d2 − d4 − d6) = (92.2− 24.4− 26.4− 26.7) = 14.7 cm and c2 = (Dy − d1) =
(66.6− 42.5) = 24.1 cm. Rearranging and subsequently squaring the two equations and then adding
them together as well as bearing in mind that the linear combination of a cosine and a sine func-
tion, i.e., “a · cos γ + b · sin γ”, can be replaced by a single cosine function “z · cos(γ + δ)”, whereby
z = sgn(a)

√
a2 + b2 and δ = tan−1(− b

a
), allows us to find the value for the angle β:


[c1 − d3 · sinα]2 = [d5 · sin β]2

[c2 − d3 · cosα]2 = [d5 · cos β]2
⇒ c2

1 + c2
2 − 2 · d3 · (c1 · sinα + c2 · cosα) + d2

3 = d2
5

⇔ c2
1 + c2

2 − 2 · d3 ·
(√

c2
1 + c2

2 · cos

[
α + tan−1

(
−c1

c2

)])
+ d2

3 = d2
5

⇔ cos

[
α + tan−1

(
−c1

c2

)]
=

(c2
1 + c2

2 + d2
3 − d2

5)

2 · d3 ·
√
c2

1 + c2
2

⇔ α = cos−1

[
(c2

1 + c2
2 + d2

3 − d2
5)

2 · d3 ·
√
c2

1 + c2
2

]
− tan−1

(
−c1

c2

)

= cos−1

[
(0.1472 + 0.2412 + 0.1502 − 0.1392)

2 · 0.150 ·
√

0.1472 + 0.2412

]
− tan−1

(
−0.147

0.241

)
= 43.3◦

Based on the constraint related to, for instance, the x-direction, we then obtain the value for the
angle β:

c1 = d3 · sinα+d5 · sin β ⇔ β = sin−1

[
c1 − d3 · sinα

d5

]
= sin−1

[
0.147− 0.150 · sin(43.3◦)

0.139

]
= 18.5◦

We can now calculate the coordinates of all the position vectors (at the moment shown in Fig. 15):



~r1 = (x3 − d2, y3 + d1, 0) = (−10.3− 24.4, 10.9 + 42.5, 0) = (−34.7, 53.4, 0) cm

~r2 = (x1, y3, 0) = (−34.7, 10.9, 0) cm

~r3 = (−d3 · sinα, d3 · cosα, 0) = (−15.0 · sin(43.3◦), 15.0 · cos(43.3◦, 0) = (−10.3, 10.9, 0) cm

~r4 = (d4, 0, 0) = (26.4, 0, 0) cm

~r5 = (d4 + d5 · sin β,−d5 · cos β, 0) = (26.4 + 13.9 · sin(18.5◦),−13.9 · cos(18.5◦), 0) = (30.8,−13.2, 0) cm

~r6 = (x5 + d6, y5, 0) = (30.8 + 26.7,−13.2, 0) = (57.5,−13.2, 0) cm

Given that the total orbital angular momentum vector ~Ltot is the sum of the angular momenta of
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the six planets, we can write:

~Ltot = ~L1 + ~L2 + ~L3 + ~L4 + ~L5 + ~L6

Given a counterclockwise rotation, the orbital velocity vectors ~v1, ~v2, and ~v3 of the Planets 1, 2, and 3,
respectively, are pointing, at the moment shown in Fig. 15, out of your screen (represented by the sym-
bol �), whereas the orbital velocity vectors ~v4, ~v5, and ~v6 of the Planets 4, 5, and 6, respectively, are
pointing into your screen (represented by the symbol ⊗). Therefore, the orbital angular momentum

of Planet 1 is equal to ~L1 = ~r1×~p1 = (−x1, y1, 0)×[m1 · (0, 0, v1)] = (m1 · y1 · v1)·~ix+(m1 · x1 · v1)·~iy.
Note that here x1, y1, and v1 represent only the magnitude of the respective vector (e.g., x1 = 0.347
and not x1 = −0.347). For the remaining five planets, we find:

~L2 = ~r2 × ~p2 = (−x2, y2, 0)× [m2 · (0, 0, v2)] = (m2 · y2 · v2) ·~ix + (m2 · x2 · v2) ·~iy

~L3 = ~r3 × ~p3 = (−x3, y3, 0)× [m3 · (0, 0, v3)] = (m3 · y3 · v3) ·~ix + (m3 · x3 · v3) ·~iy

~L4 = ~r4 × ~p4 = (x4, 0, 0)× [m4 · (0, 0,−v4)] = (m4 · x4 · v4) ·~iy

~L5 = ~r5 × ~p5 = (x5,−y5, 0)× [m5 · (0, 0,−v5)] = (m5 · y5 · v5) ·~ix + (m5 · x5 · v5) ·~iy

~L6 = ~r6 × ~p6 = (x6,−y6, 0)× [m6 · (0, 0,−v6)] = (m6 · y6 · v6) ·~ix + (m6 · x6 · v6) ·~iy

Since the magnitude of the orbital velocity ~vi is equal to vi = xi · ω, the total orbital angular mo-
mentum vector ~Ltot then becomes:

~Ltot = [m1 · y1 · x1 +m2 · y2 · x2 +m3 · y3 · x3 +m5 · y5 · x5 +m6 · y6 · x6] · ω ·~ix +

[
m1 · x2

1 +m2 · x2
2 +m3 · x2

3 +m4 · x2
4 +m5 · x2

5 +m6 · x2
6

]
· ω ·~iy

To simplify our calculations let us first calculate the value of the x-component of ~Ltot:

Lx = [m1 · y1 · x1 +m2 · y2 · x2 +m3 · y3 · x3 +m5 · y5 · x5 +m6 · y6 · x6] · ω

= [6.55 · 0.534 · 0.347 + 7.60 · 0.109 · 0.347 + 4.35 · 0.109 · 0.103 + 3.67 · 0.132 · 0.308 +]

[8.21 · 0.132 · 0.575] · ω

=2.32 · ω (kg·m2/s)

Given that the total orbital angular momentum vector ~Ltot is tilted by an angle θ = 23.2◦ with
respect to the rotation axis, we know that tan θ = Lx

Ly
, so that we can calculate the mass m4 of Planet

4 as follows:
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tan θ · Ly = Lx

⇔ tan θ ·
[
m1 · x2

1 +m2 · x2
2 +m3 · x2

3 +m4 · x2
4 +m5 · x2

5 +m6 · x2
6

]
· ω = 2.32 · ω

⇔ m4 =
2.32

x2
4 · tan θ

− [m1 · x2
1 +m2 · x2

2 +m3 · x2
3 +m5 · x2

5 +m6 · x2
6]

x2
4

=
2.32

0.2642 · tan(23.2◦)
− [6.55 · 0.3472 + 7.60 · 0.3472 + 4.35 · 0.1032 + 3.67 · 0.3082 + 8.21 · 0.5752]

0.2642

= 8.67 kg
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Exercise 16

Problem Statement

Figure 16

Neylan is trekking with
her friend Eldar through
the national park Bozdaǧ
Milli Parkı, which is
located east of Konya,
Turkey, and they just
made a stop since Ney-
lan wishes to practice
her Robin Hood archery
skills. Eldar finds a thin
wooden board of length
L = 82.5 cm and mass
mb = 855 g, balances
it upright on two fingers,
and throws it up in the
air. The board spins in a
counterclockwise direction around the axis perpendicular to its length and parallel to its width at
210 rpm, whereby the angular velocity vector points southwards. From a distance of ∆x = 55.0 m
away, Neylan shoots an arrow of length d = 61.6 cm and mass ma = 40.6 g with an initial speed of
v = 89.3 m/s eastwards towards the spinning board. When the arrow is at its highest point during
its trajectory, it hits the uppermost end of the board, which is at that precise moment vertically ori-
ented, right in the middle. If you know that the arrow remains stuck after hitting the wooden board,
at what rate does the combined object now spin and in which direction? Treat the arrow as a long rod.

Solution

When disregarding drag forces, objects in free fall are subject to only one force, i.e., the gravitational
force ~FG, which acts at their center of mass in a downward direction. Therefore, ~FG is unable to
manifest any torque, so that the total angular momentum ~Ltot remains constant. Also, note that the
z-axis is the axis of rotation and that, since the arrow hits the wooden board right in the middle,
the board will not spin around the y-axis.

Before we determine the initial and final angular momentum of the collision between the arrow and
the wooden board, let us calculate the distances xc and yc, which represent the magnitude of the x-
and y-component of the position vector ~ra, respectively, between the total center of mass of the two
objects combined, i.e., the location of the origin of our coordinate system, and the arrow’s center of
mass. Based on the definition of the center of mass, we can write:

x : 0 =
−ma · xc +mb ·

(
d
2
− xc

)
ma +mb

⇔ xc =
mb · d

2 · (ma +mb)
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y : 0 =
ma · yc −mb ·

(
L
2
− yc

)
ma +mb

⇔ yc =
mb · L

2 · (ma +mb)

The magnitude of the position vectors ~ra and ~rb, respectively, is then equal to:

ra =

√[
− mb · d

2 · (ma +mb)

]2

+

[
mb · L

2 · (ma +mb)

]2

=
mb ·
√
d2 + L2

2 · (ma +mb)

rb =

√[
d

2
− xc

]2

+

[
yc −

L

2

]2

=

√[
d

2
− mb · d

2 · (ma +mb)

]2

+

[
mb · L

2 · (ma +mb)
− L

2

]2

=
ma ·
√
d2 + L2

2 · (ma +mb)

The initial total angular momentum ~Ltot,i is the sum of the spin angular momentum ~Lb,i of the

rotating wooden board and the orbital angular momentum ~La,i of the arrow with respect to the
perpendicular distance to the total center of mass (keep in mind that, as the board does not rotate
around the y-axis, its moment of inertia ICM,b is equal to that of a long, uniform rod, and, further-
more, that the arrow’s velocity at the highest point in its trajectory has a zero y-component):

~Ltot,i = ~Lb,i + ~La,i = [ICM,b · ~ωi] + [~ra × ~pi]

=

[(
mb · L2

12
· ωi
)
·~iz
]

+

[(
− mb · d

2 · (ma +mb)
,

mb · L
2 · (ma +mb)

, 0

)
×ma · (v, 0, 0)

]

=

[(
mb · L2

12
· ωi
)
·~iz
]

+

[
−ma ·mb · v · L

2 · (ma +mb)
·~iz
]

The final total angular momentum ~Ltot,f of the combined object is the sum of the total angular

momenta ~Ltot,a and ~Ltot,b of the arrow and the board, respectively, which in turn each consist of a
spin angular momentum around their own center of mass and an orbital angular momentum of their
individual center of mass rotating around the total center of mass (we will make the assumption that
the combined system rotates clockwise):

~Ltot,f = ~Ltot,a + ~Ltot,b

= [ICM,a · ~ωf + (~ra × ~pa)] + [ICM,b · ~ωf + (~rb × ~pb)]

=

[(
−ma · d2

12
· ωf
)
·~iz +ma · (−ra · sin θ, ra · cos θ, 0)× (va · cos θ, va · sin θ, 0)

]
+

[(
−mb · L2

12
· ωf
)
·~iz +mb · (rb · sin θ,−rb · cos θ, 0)× (−vb · cos θ,−vb · sin θ, 0)

]

=

[(
−ma · d2

12
· ωf
)
·~iz − (ma · ra · va) ·~iz

]
+

[(
−mb · L2

12
· ωf
)
·~iz − (mb · rb · vb) ·~iz

]
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Given that ~va and ~vb represent the respective orbital velocity of the arrow and the board around the
total center of mass, their magnitude is equal to va = ωf · ra and vb = ωf · rb, respectively. The final

total angular momentum ~Ltot,f then becomes:

~Ltot,f =

[(
−ma · d2

12
· ωf
)
·~iz −

(
ma · r2

a · ωf
)
·~iz
]

+

[(
−mb · L2

12
· ωf
)
·~iz −

(
mb · r2

b · ωf
)
·~iz
]

= −

ma · d2

12
+
mb · L2

12
+ma ·

[
mb ·
√
d2 + L2

2 · (ma +mb)

]2

+mb ·

[
ma ·
√
d2 + L2

2 · (ma +mb)

]2
 · ωf ·~iz

= −
[
ma · d2

12
+
mb · L2

12
+
ma ·mb · (d2 + L2)

4 · (ma +mb)

]
· ωf ·~iz

The same result would have been obtained if, instead of contemplating the orbital angular momentum
of the individual centers of mass, the parallel-axis theorem was directly applied. The conservation of
total angular momentum then allows us to calculate the final angular velocity ωf (as we assumed that
the system rotates clockwise, which means that ~ωf points into the negative z-direction, a positive
value for ωf would confirm our assumption; a negative value would mean that the system rotates
counterclockwise):

~Ltot,i = ~Ltot,f

⇔
[
mb · L2

12
· ωi −

ma ·mb · v · L
2 · (ma +mb)

]
·~iz = −

[
ma · d2

12
+
mb · L2

12
+
ma ·mb · (d2 + L2)

4 · (ma +mb)

]
· ωf ·~iz

⇔ mb · L2

12
· ωi −

ma ·mb · v · L
2 · (ma +mb)

= −
[
ma · d2

12
+
mb · L2

12
+
ma ·mb · (d2 + L2)

4 · (ma +mb)

]
· ωf

⇔ ωf =
mb · L · [6 ·ma · v − L · ωi · (ma +mb)]

(ma · d2 +mb · L2) · (ma +mb) + 3 ·ma ·mb · (d2 + L2)

=
0.855 · 0.825 ·

[
6 · 0.0406 · 89.3− 0.825 · 2·π·210

60
· (0.0406 + 0.855)

]
(0.0406 · 0.6162 + 0.855 · 0.8252) · (0.0406 + 0.855) + 3 · 0.0406 · 0.855 · (0.6162 + 0.8252)

= 6.02 rad/s or 57.5 rpm

As we obtained a positive value for the magnitude of the final angular velocity ~ωf , we know that
the combined object of the arrow stuck within the wooden board indeed rotates in the clockwise
direction, even though the board started out rotating counterclockwise.
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Exercise 17

Problem Statement

Figure 17

When stars exhaust their nuclear
fuel at the end of their lifetime,
they shed off their outer layers, of-
ten accompanied by a supernova ex-
plosion, and the stellar core rem-
nant converts, broadly speaking,
into a white dwarf, a neutron star,
or a black hole. About 2.6 bil-
lion years ago, this process created
a rapidly spinning neutron star—
called a pulsar—which goes by the
name PSR J0348+0432. (1) If we
suppose that the original star had a
mass, diameter, and rotational pe-
riod ofMi = 4.68·Ms, di = 2.56×104

km, and Ti = 1.05 days, respec-
tively, that during the formation of the pulsar a total of 57% of its mass was lost (without dissipating
any angular momentum) and that the star’s diameter shrunk by 99.9%, at what rate is the pulsar
now spinning? (2) Suppose that a rock (mr = 1.87 × 104 kg) is following a synchronous, circular
orbit around the pulsar PSR J0348+0432 and is suddenly hit by an asteroid from outer space along
the radial direction of the rock’s orbit. As a result of the collision, the rock is sent straight down
towards the pulsar’s surface at a velocity of ~v0 = −15.5 ·~iy km/s. If you know that the rock at the
moment of impact is positioned above the pulsar’s southern hemisphere at a latitude of 51◦18′4.04′′S,
by how much is the rock deflected due to the Coriolis effect when it hits the pulsar’s surface? Use the
average value of the gravitational field strength g between the orbital height and the pulsar’s surface,
and remember that the universal gravitational constant G is equal to G = 6.67× 10−11 m3/(kg· s2)
and that one solar mass measures Ms = 1.99× 1030 kg.

Solution

(1) Apart from the internal forces at play during the transformation of the star into a pulsar, there
are no net external forces giving rise to any net torque within the isolated system “the original star
converting into a pulsar”, so that the total angular momentum ~Ltot is constant under the assumption
that the system is not dissipating any angular momentum while ejecting mass. Given that the mass
and the radius of the pulsar are equal to Mf = (1 − 0.57) ·Mi = (1 − 0.57) · 4.68 ·Ms = 2.01 ·Ms

and Rf = (1 − 0.999) · di
2

= (1 − 0.999) · 2.56×104

2
= 12.8 km, respectively, we can therefore write

(suppose that ~ω is pointing in the positive direction of the upwards oriented rotation axis r, which
is not drawn in Fig. 17):

~Ltot,i = ~Ltot,f ⇔ Ii · ~ωi = If · ~ωf ⇔

[
2

5
·Mi ·

(
di
2

)2
]
·
(

2 · π
Ti

)
·~ir =

[
2

5
·Mf ·R2

f

]
· ωf ·~ir
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⇔ ωf =
Mi ·

(
di
2

)2 ·
(

2·π
Ti

)
Mf ·R2

f

=
4.68 ·Ms ·

(
2.56×107

2

)2

·
(

2·π
1.05·86,400

)
2.01 ·Ms · 12, 8002

= 161 rad/s

In other words, whereas the original star rotated every 1.05 days once around its axis, it is taking
the pulsar only Tf = 2·π

ωf
= 2·π

161
= 39.0 ms. Put another way, the pulsar is able to complete 25.6

revolutions in just one second.

(2) Let us in a first instance determine some facts about the rock’s orbit. Given that the rock follows
a synchronous orbit, which exhibits the same period as that of the pulsar, we find the rock’s orbital
height h with the help of Kepler’s third law:

T 2
f =

4 · π2

G ·Mf

· (Rf + h)3 ⇔ h =
3

√
T 2
f ·G ·Mf

4 · π2
−Rf

=
3

√
0.03902 · 6.67× 10−11 · 2.01 · 1.99× 1030

4 · π2
− 12, 800

= 205 km

Viewed from an inertial reference frame, the rock’s orbital speed is then equal to vorb = (Rf + h)·ωf =
(12, 800 + 2.05× 105) · 161 = 3.50 × 104 km/s. Also, as the asteroid only provides the rock with a
velocity ~v0 in the radial direction (along the y-axis), the rock’s motion is left undisturbed in the two
other spatial directions, so that the rock is still moving within its orbital plane after the impact.

In the co-rotating coordinate system (x,y,z), the orbital speed, represented by the x-component of
the rock’s velocity, is equal to zero. Note furthermore that the co-rotating coordinate system is fixed
with respect to the pulsar’s surface—in other words, the latitude angle θ remains constant—and
does therefore not rotate within the inclined orbital plane of the rock. This means that, from the
perspective of someone standing at the origin of the co-rotating coordinate system, the rock is moving
up and down along an arched path with the same curvature as an imaginary sphere of radius Rf +h.
The vertical velocity ~vv from the rock’s lowest to the highest point in its orbit (and vice versa) has
therefore both a y- and a z-component which oscillate as the rock travels along its inclined orbit. In
fact, the y-component of the velocity ~vv is negatively (positively) oriented when the rock is ascending
(descending), whereas the z-component is pointing in the positive (negative) direction as the rock is
ascending (descending). Both the components are zero when the rock is located at its lowest and
highest point in orbit.

Given that the angle θ is equal to θ = 51 + 18
60

+ 4.04
3600

= 51.3◦, that the vertical distance dv between
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the orbit’s lowest and highest point measures dv = 2 · (Rf + h) · sin θ = 2 · (12, 800 + 2.05× 105) ·
sin(51.3◦) = 340 km, that the time passed between these two points is equal to half the period Tf ,
and that the oscillating behaviour as described above is reflected by the sine function “sin(ωf t)”, the
vertical velocity ~vv can then be expressed as follows:

~vv =

[
−
(

2 · dv
Tf
· sin(ωf t)

)
sin θ

]
·~iy +

[(
2 · dv
Tf
· sin(ωf t)

)
cos θ

]
·~iz

Since the asteroid collides with the rock in the radial direction, the rock’s velocity in the tangential
direction (viewed from an inertial frame) is left undisturbed and therefore also the harmonic motion
of the vertical velocity ~vv in the co-rotating reference frame. The rock’s inwards, radial motion in the
negative y-direction as a result of the collision with the asteroid can be described as a free fall towards
the pulsar’s surface, whereby the final velocity ~va at time t when the rock hits the pulsar’s surface is
expressed as ~va = −(v0 + g · t) ·~iy. Given the angular velocity ~ω = (−ωf · sin θ) ·~iy + (ωf · cos θ) ·~iz,
we find the following expression for the acceleration in the x-direction due to the Coriolis effect:

~Fcor = 2 ·mr · (~v × ~ω) = 2 ·mr · [ (0, va + vvy, vvz)× (0,−ωf · sin θ, ωf · cos θ) ]

⇔ ~acor = 2 · [(va + vvy) · ωf · cos θ + vvz · ωf · sin θ] ·~ix

= 2 ·
[ [
−(v0 + g · t)−

(
2 · dv
Tf
· sin(ωf t)

)
sin θ

]
· ωf · cos θ +

]
[[(

2 · dv
Tf
· sin(ωf t)

)
cos θ

]
· ωf · sin θ

]
·~ix

= −2 · ωf · (v0 + g · t) · cos θ ·~ix

As the two components of the vertical velocity ~vv each manifest a Coriolis effect equal in magnitude
but opposite in direction, they cancel each other out so that only the radial velocity ~va is responsible
for causing a net Coriolis acceleration. Integrating the above expression twice and taking into account
the fact that the initial position and speed of the rock in the x-direction of the co-rotating frame are
equal to x0 = 0 m and vx,0 = 0 m/s, respectively, at t = 0 s, we find the following expression for the
deflection xcor due to the Coriolis effect:

acor =
dv

dt
⇔

∫ vcor

vx,0

dv′ = −2 · ωf · cos θ

[ ∫ t

0

(v0 + g · t′) · dt′
]

⇔
(
v|vcorvx,0=0

)
= −2 · ωf · cos θ ·

[(
v0 · t+

g

2
· t2
)∣∣∣t

t=0

]

⇔ vcor = −2 · ωf · cos θ ·
(
v0 · t+

g

2
· t2
)
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vcor =
dx

dt
⇔

∫ xcor

x0

dx′ = −2 · ωf · cos θ ·
[ ∫ t

0

(
v0 · t′ +

g

2
· t′2
)
· dt′

]

⇔
(
x|xcorx0=0

)
= −2 · ωf · cos θ ·

[(v0

2
· t2 +

g

6
· t3
)∣∣∣t

t=0

]

⇔ xcor = −ωf · cos θ ·
(
v0 · t2 +

g

3
· t3
)

At this point, we still have to determine the value of the average gravitational field strength g and
the time t it takes the rock to reach the pulsar’s surface before we can calculate the value of the
deflection xcor. Regarding the former, since the field strength gh and gs at the orbital height h and
the pulsar’s surface are equal to gh =

G·Mf

(Rf+h)
2 and gs =

G·Mf

R2
f

, respectively, we find the average field

strength g as follows:

g =
(gh + gs)

2
=

1

2
·

[
G ·Mf

(Rf + h)2 +
G ·Mf

R2
f

]

=
G ·Mf

2
·

[
1

(Rf + h)2 +
1

R2
f

]

=
6.67× 10−11 · 2.01 · 1.99× 1030

2
·
[

1

(12, 800 + 2.05× 105)2 +
1

12, 8002

]

= 8.18× 1011 m/s2

With respect to the time t, we have to bear in mind that in the co-rotating frame there are two com-
ponents to the velocity in the y-direction, i.e., ~va and ~vvy. Adding these two components together
and integrating the sum, we obtain an expression for the position of the rock in function of the time t:

dy

dt
= vy = va + vvy = −v0 − g · t−

2 · dv
Tf
· sin θ · sin(ωf t)

⇔
∫ 0

h

dy′ =

∫ t

0

(
−v0 − g · t′ −

2 · dv
Tf
· sin θ · sin(ωf t

′)

)
· dt′

⇔
(
y|0h
)

= −v0 ·
(
t|t0
)
− g ·

(
t2

2

∣∣∣∣t
0

)
− 2 · dv

Tf
· sin θ ·

(
− 1

ωf
cos(ωf t)

∣∣∣∣t
0

)

⇔ 0 = h− v0 · t−
g

2
· t2 +

2 · dv
Tf · ωf

· sin θ · (cos(ωf t)− 1)
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If we want to extract t from the above expression, we first have to rewrite the cosine function
“cos(ωf t)” with the assistance of the Maclaurin series expansion, which is a Taylor expansion around
the point t = 0. If we expand to the second order, the cosine function can be written as follows:

cos(ωf t) ≈
1∑

k=0

(−1)k · (ωf t)2k

(2k)!
=

(−1)0 · (ωf t)2·0

(2 · 0)!
+

(−1)1 · (ωf t)2·1

(2 · 1)!
= 1−

ω2
f · t2

2

Inserting this expression for “cos(ωf t)” back into the above equation of motion (in the y-direction),
we find:

0 = h− v0 · t−
g

2
· t2 +

2 · dv
Tf · ωf

· sin θ ·
([

1−
ω2
f · t2

2

]
− 1

)
= h− v0 · t−

[
g

2
+
dv · ωf
Tf

· sin θ
]
· t2

⇔ 0 = 2.05× 105 − 1.55× 104 · t−
[

8.18× 1011

2
+

3.40× 105 · 161
2·π
161

· sin(51.3◦)

]
· t2

The physically sensible (t > 0) solution to the above quadratic equation is equal to t = 7.07×10−4 s.
In a final step, we calculate the value of the deflection xcor of the rock in the x-direction as a result
of the Coriolis effect:

xcor = −ωf · cos θ ·
(
v0 · t2 +

g

3
· t3
)

= −161 · cos(51.3◦) ·
[
1.55× 104 ·

(
7.07× 10−4

)2
+

8.18× 1011

3
·
(
7.07× 10−4

)3
]

= −9.69 km

The Coriolis effect causes the rock to deflect by 9.69 km into the same direction as the pulsar’s spin,
i.e., eastwards (or counterclockwise). This distance corresponds to |xcor|

2·π·Rf
= 9,690

2·π·12,800
= 12.0% of the

pulsar’s circumference. Within an inertial frame of reference and disregarding the Coriolis effect,
the rock has traveled a distance of d = vorb · t = 3.50 × 107 · 7.07 × 10−4 = 24.8 km along its orbit
during time t. Adding the Coriolis effect, the total distance covered by the rock is then equal to
xtot = d+ |xcor|= 24.8 + 9.69 = 34.4 km.

We can also calculate the height hz of the rock within the co-rotating coordinate system at the mo-
ment when the rock hits the pulsar’s surface (which we implicitly assumed as being equal to y = 0):

hz = vvz · t =

[
2 · dv
Tf
· sin(ωf t) cos θ

]
· t

=

[
2 · 3.40× 105

2·π
161

· sin
(

161 · 7.07× 10−4 · 180◦

π

)
cos(51.3◦)

]
· 7.07× 10−4

= 873 m
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Exercise 18

Problem Statement

Figure 18

Tarif is living in the one
house that stands some-
what isolated from the
rest of the houses in his
village Al-Mani’a in Al-
geria. Everywhere in
and around his house
Tarif has spinning ob-
jects hanging from the
ceiling or from the roof
of his veranda, since
he believes that rotating
objects produce pow-
erful vortices of spiri-
tual energy and attract
benevolent spirits. In
the Saharan cypress tree in his backyard, Tarif has tied two ropes to a branch, whereby two rods of
length D = 62.0 cm are each attached to the free end of a rope. Towards the free end of each rod
a spherical-like object is mounted that is able to spin around the rod. The object consists of two
copper rings welded together in such a way so that the rod passes through the center of one ring and
makes up the central diameter of the other ring. The rings of object 1 are w1 = 9.30 cm wide and
the left side of the object is located at a distance of d1 = 7.50 cm from the rod’s free end. Object
2 is d2 = 15.2 cm away from its rod’s free end and its rings have a width of w2 = 8.60 cm. When
holding the free end of the rod, Tarif gives object 1 a clockwise initial spin of 12 rps, whereas object 2
receives an anti-clockwise initial spin of 960 rpm. When he subsequently lets go of the respective rod,
both objects start to precess. As Tarif is fascinated by periodic relations, he wants the first object
to precess at half the rate of the second object. He achieves this configuration by gently touching a
metal ring with a stick for about t = 3.50 s, producing thereby an angular deceleration of α = 16.7
rad/s2. (1) When looking from above, what is the direction of precession of both objects? (2) If you
know that object 1 precesses initially at a higher rate, to which object does Tarif has to apply his
angular deceleration technique? (3) If you know that the radius R1 of the two metal rings of object
1 measures R1 = 14.2 cm, what is the radius R2 of the two metal rings of object 2?

Solution

(1) The point of origin around which the objects precess is located at the intersection between the
rope and the rod. The position vectors ~r1 and ~r2 (not drawn in Fig. 18) point from the origin towards
the center of mass of the object and have a magnitude of |~r1|= r1 and |~r2|= r2, respectively. The

torque ~τ1 = ~r1 × ~FG of object 1 points out of your screen and since Tarif gives object 1 a clockwise
spin (as seen from below) the angular momentum ~L1 = I1 · ~ω1 points towards the point of origin.

As the change in angular momentum d~L1 has the same direction as the torque ~τ1, it then follows
that the angular momentum ~L1 will change its direction in a clockwise fashion (as seen from above),
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which marks the direction of the precession of object 1.

By the same reasoning, given that the torque ~τ2 = ~r2 × ~FG of object 2 points into your screen and
that the angular momentum ~L2 = I2 · ~ω2 is directed away from the point of origin, it follows that the
direction of precession of object 2 is counterclockwise (as seen from above).

(2) Since Tarif wants object 1 to precess at half the rate of object 2 and given that, initially, object
1 precesses at a higher rate (Ω1 > Ω2), it means that Tarif must increase the precession rate Ω2 of
object 2 by slowing down its spinning rate ω2.

(3) To determine the radius R2 of the metal rings of object 2, we use the constraint that the rate of
precession Ω2 of object 2 will be twice that of object 1 (Ω2 = 2 · Ω1), once Tarif applies his angular
deceleration technique to object 2. We now need to calculate the distances r1 and r2, the moments
of inertia I1 and I2, and the angular velocities ω1 and ω2 of object 1 and 2, respectively. Note that
the precession rate does not depend on the mass of the object, so we do not need to calculate their
masses.

The angular velocity ω1 of object 1 is equal to ω1 = 2 · π · 12 = 75.4 rad/s, and that of object 2
under the condition that Ω2 = 2 · Ω1 is calculated to be ω2 = ωi − α · t = 2·π·960

60
− 16.7 · 3.5 = 42.1

rad/s. From Fig. 18 we can furthermore see that the distance r1 is equal to r1 = D − d1 − R1 =
62.0− 7.50− 14.2 = 40.3 cm.

With respect to their mass moment of inertia, we know that the moment of inertia of a thin ring
whereby the rotation axis runs through its center point is equal to Icp = M ·R2 and that the moment

of inertia of a thin ring with the central diameter as its rotation axis is equal to Icd = M ·R2

2
+ M ·w2

12

(with w the width of the ring), so that the moment of inertia I of the object as described in our
problem can be expressed as follows:

I = Icp + Icd = M ·R2 +
M ·R2

2
+
M · w2

12
=
M

12
·
(
18 ·R2 + w2

)
Based on the constraint Ω2 = 2 · Ω1 we find the following quadratic expression for the radius R2 of
the metal rings of object 2 (keep in mind that the objects consist of two metal rings, so we need to
multiply the mass of the object in the numerator by a factor of 2):

Ω2 = 2 · Ω1 ⇔ 2 ·M2 · r2 · g
I2 · ω2

= 2 · 2 ·M1 · r1 · g
I1 · ω1

⇔ 2 ·M2 · [D − d2 −R2] · g[
M2

12
· (18 ·R2

2 + w2
2)
]
· ω2

= 2 · 2 ·M1 · r1 · g[
M1

12
· (18 ·R2

1 + w2
1)
]
· ω1

⇔ [36 · r1 · ω2] ·R2
2 +

[
ω1 ·

(
18 ·R2

1 + w2
1

)]
·R2 +

[
2 · r1 · ω2 · w2

2 − (D − d2) · ω1 ·
(
18 ·R2

1 + w2
1

)]
= 0

⇔ [36 · 0.403 · 42.1] ·R2
2 +

[
75.4 ·

(
18 · 0.1422 + 0.09302

)]
·R2 +

[
2 · 0.403 · 42.1 · 0.08602 − (0.620− 0.152) · 75.4 ·

(
18 · 0.1422 + 0.09302

)]
= 0

The physically sensible (R2 > 0) solution to the above quadratic equation is equal to R2 = 12.4 cm.
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Exercise 19

Problem Statement

Figure 19

Yulissa decided to take her five-year-
old nieces Camila (m1 = 20.6 kg) and
Sofia (m2 = 18.3 kg) to the play-
ground in the Parque Central Juan
Pablo Duarte in Nagua, The Do-
minican Republic, so that their par-
ents could celebrate their eighth wed-
ding anniversary during a lunch at
the seafood restaurant Junior Natura.
The first attraction to which Camila
and Sofia run off when they arrive
at the Parque Central is the seesaw,
which has a length and mass of L =
4.50 m and M = 12.5 kg, respectively,
and makes an angle of θ = 9.50◦ with
the horizontal when one side touches
the ground. After only 10 minutes, Camila, who is the cheekiest of the two sisters, gets bored and
climbs on the nearby Disney tower. From up there, she sees that Sofia is still sitting on the seesaw
and without hesitation Camila jumps from a height of h = 2.25 m onto her empty seat. To Camila’s
great delight (and also Sofia’s), Sofia is being ejected out of her seat for just a brief moment in time.
(1) Where exactly does Sofia land? (2) How high did she go? Assume that the average force of
impact that Camila exerts upon her empty seat is about twice her kinetic energy (per unit length)
right before landing on the seesaw.

Solution

(1) As Camila jumps down from the Disney tower, the conservative gravitational force ~FG is the
only force acting upon Camila, so that her total mechanical energy remains constant. Right before
landing in her empty seat, Camila’s kinetic energy is equal to:

Etot,i = Etot,f ⇔ m1 · g · h = Ek +m2 · g · d

⇔ Ek = m1 · g · (h− d) = m1 · g · (h− L · sin θ)

= 20.6 · 9.81 · [2.25− 4.50 · sin(9.50◦)]

= 305 J

Given that the force of impact ~FC of Camila landing in her seat is twice her kinetic energy (per unit

length l = 1 m), the magnitude of ~FC is then equal to FC = 2 · Ek
l

= 2 · 305
1

= 609 N.
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In a next step, let us determine the net torque ~τn of the seesaw, which is the sum of the torques ~τS
and ~τC manifested by the weight of Sofia and the impact force of Camila, respectively. With the
origin of our coordinate system located at the center of the seesaw, we write:

~τn = ~τS + ~τC =
[
~rS × ~FG,S

]
+
[
~rC × ~FC

]

=

[(
−L

2
, 0, 0

)
× (−m2 · g · sin θ,−m2 · g · cos θ, 0)

]
+

[(
L

2
, 0, 0

)
× (−FC · sin θ,−FC · cos θ, 0)

]

=
L

2
· (m2 · g − FC) · cos θ ·~iz

=
4.50

2
· (18.3 · 9.81− 609) · cos(9.50◦) ·~iz

= −954 ·~iz N·m

In other words, the seesaw will turn clockwise. From the moment Camila lands on her seat, the
seesaw’s angular velocity ~ω starts increasing and points into your screen, and so does the angular
momentum ~L. The vector ~L does not change direction—it remains directed into your screen in
the negative z-direction—but constantly changes its magnitude, i.e., it increases, so that the vector
related to the change in angular momentum d~L runs parallel, as it should, to the net torque ~τn
pointing into your screen.

Before we calculate the angular acceleration ~α of the seesaw, let us determine its mass moment of
inertia I. We find:

I =
M · L2

12
+m1 ·

(
L

2

)2

+m2 ·
(
L

2

)2

=
L2

12
· [M + 3 · (m1 +m2)]

=
4.502

12
· [12.5 + 3 · (20.6 + 18.3)]

= 218 kg·m2

The angular acceleration ~α then becomes:

~τn = I · ~α ⇔ ~α =
~τn
I

=
−954

218
·~iz = −4.37 ·~iz rad/s2
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What we need to find is the initial velocity ~v0 of Sofia when Camila’s end of the seesaw touches the
ground. Therefore, let us first calculate the magnitude of the angular velocity ~ω with the help of the
following rotational equation of motion (bear in mind that Sofia has rotated over an angle 2θ right
before being sent flying into the air):

ω2 − ω2
0 = 2 · α · θ ⇔ ω =

√
ω2

0 + 2 · α · (2θ) =

√
02 + 2 · 4.37 ·

(
2 · 9.50◦ · π

180◦

)
= 1.70 rad/s

Since the angular velocity vector ~ω points into the negative z-direction, we find the initial velocity
~v0 as follows:

~v0 = ~ω × ~rS = (0, 0,−ω)×
(
−L

2
, 0, 0

)
= ω · L

2
·~iy = 1.70 · 4.50

2
·~iy = 3.83 ·~iy m/s

The time t Sofia spend in the air can be calculated with the assistance of the (linear) equation of
motion in the y-direction:

y = y0 +v0 · t+
ay
2
· t2 ⇔ 0 = 0+v0 · t−

g · cos θ

2
· t2 ⇔ t =

2 · v0

g · cos θ
=

2 · 3.83

9.81 · cos(9.50◦)
= 0.792 s

The (linear) equation in the x-direction then gives us the location on the seesaw where Sofia lands
after her brief aerial adventure:

x = x0 +v0 · t+
ax
2
· t2 ⇔ x = −L

2
+0 · t+ g · sin θ

2
· t2 = −4.50

2
+

9.81 · sin(9.50◦)

2
·0.7922 = −1.74 m

In other words, Sofia landed s = L
2

+ x = 4.50
2
− 1.74 = 50.8 cm to the right of her seat.

(2) During this short moment of free fall, Sofia attained a maximum height hmax of (as viewed from
the perspective of our coordinate system):

v2 − v2
0 = 2 · ay · hmax ⇔ hmax =

v2 − v2
0

2 · (−g · cos θ)
=

02 − 3.832

2 · [−9.81 · cos(9.50◦)]
= 75.9 cm

Viewed from a coordinate system fixed to the ground, at her highest point Sofia was a vertical distance
D removed from the seesaw, which can be calculated as follows with the help of some trigonometry:

D =

[
− (v0 · cos θ)2

2 · (−g)

]
+
[s

2
· sin θ

]
=

[
− [3.83 · cos(9.50◦)]2

2 · (−9.81)

]
+

[
0.508

2
· sin(9.50◦)

]
= 77.0 cm
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Exercise 20

Problem Statement

Figure 20

The local council of the
city of Bruges in Bel-
gium is calling tenders
for the construction of
a new pedestrian draw-
bridge over one of the
city’s many canals. The
bridge has to be Lb =
12.0 m long and two gal-
vanized steel cables will
have to do the impor-
tant job of safely draw-
ing up the bridge. Two
large iron disk-shaped
pulleys with a radius
and mass of R = 57.5
cm and Mp = 165 kg, respectively, are rolling up the cables as the bridge is being lifted. Bart is
one of the engineers responsible for listing the technical details for one of the tenders. According to
his conservative calculations, the cables combined could lift a bridge of no more than M = 4, 250
kg. When the bridge is down the cables make an angle of θ = 42.0◦ with the horizontal, and Bart
estimates that the small boats could easily pass under the bridge when it is drawn up at an angle of
φup = 65.0◦ with the horizontal. Bart furthermore assesses that the motor that rotates the pulleys

can comfortably provide a torque of ~τ0 = 8, 985 ·~iz N·m at the initial moment when the bridge is
being lifted (position 0), whereas at an angle of φ = 45.0◦ (position 1)—that is, when the process of
drawing up the bridge is slowing down—a minimum torque of 54.5% of its initial value is required.
(1) What angle do the cables make with the bridge when it is in position 1? (2) What is the length

of the visible part of the cables at that moment? (3) What is the magnitude of the tension forces ~T0

and ~T1 in the cables when the bridge is in position 0 and 1, respectively? (4) What is the average
amount of time needed for the bridge to reach position 1?

Solution

(1) The angle that we need to find is the angle β. When applying the sine rule on the triangle ABLC,
we can write the following equations:

A

sin β
=

B

sin γ
=

LC
sinλ

To determine angle β, let us focus on the left-hand side of the above equation and find an expression
for the angle γ in terms of the angle β. If we consider the large triangle made up of the brick wall,
the cables, and the bridge (in position 1), we can write:
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δ = 180◦ − (90.0◦ − φ)− β = 180◦ − (90.0◦ − 45.0◦)− β = 135◦ − β

If we consider the triangle when the bridge is in position 0, we then find:

δ − γ = 90.0◦ − θ = 90.0◦ − 42.0◦ = 48.0◦ ⇔ δ = γ + 48.0◦

Combining the above two expression for the angle δ, we find an expression for the angle γ in terms
of the angle β:

δ = 135◦ − β = γ + 48.0◦ ⇔ γ = 87◦ − β

We find an expression for the angle β by solving the left-hand side equation of the sine rule (whereby
we make use of the angle subtraction theorem “sin(θ1 − θ2) = sin θ1 · cos θ2 − cos θ1 · sin θ2”) :

A

sin β
=

B

sin γ
⇔ A · sin γ = B · sin β ⇔ A · sin(87◦ − β) = B · sin β

⇔ A · [sin(87◦) · cos β − cos(87◦) · sin β] = B · sin β

⇔ tan β =
A · sin(87◦)

A · cos(87◦) +B

⇔ β = tan−1

[
A · sin(87◦)

A · cos(87◦) +B

]

To find the value of the angle β, we need to determine the lengths A and B. Let us first calculate
the x-coordinate (relative to the coordinate system related to position 0) of the intersection between
the two straight lines represented, on the one hand, by the cables when the bridge is in position 0,
and, on the other hand, by the bridge in position 1. We find:


cables: y = Lb · tan θ − tan θ · x

bridge: y = x
⇔ x =

Lb
1 + cot θ

=
12.0

1 + cot(42.0◦)
= 5.69 m

The lengths A and B are then equal to:


A =

x

cos θ
=

5.69

cos(42.0◦)
= 7.65 m

B = Lb −
x

cosφ
= 12.0− 5.69

cos(45.0◦)
= 3.96 m
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The value of the angle β then becomes:

β = tan−1

[
A · sin(87◦)

A · cos(87◦) +B

]
= tan−1

[
7.65 · sin(87◦)

7.65 · cos(87◦) + 3.96

]
= 60.3◦

(2) The length of the cables when the bridge is in position 1 is represented by the length Lc. Given
that the angle λ is equal to λ = 180◦−φ− θ = 180◦− 45.0◦− 42.0◦ = 93.0◦, we can use the sine rule
equation established in part (1) to determine the value of Lc:

A

sin β
=

LC
sinλ

⇔ LC = sinλ · A

sin β
= sin(93.0◦) · 7.65

sin(60.3◦)
= 8.80 m

(3) As we have to determine the magnitude of the tension forces ~T0 and ~T1 per cable and given that
the drawbridge is supported by two cables, the mass M = 4, 250 kg of the bridge will be equally
divided between the two cables. We will therefore work with the mass Mb = M

2
= 4,250

2
= 2, 125 kg

to find the tension in one cable.

The tension forces can be determined using Newton’s second law for the rotational motion of the
bridge, but to find the angular acceleration of the bridge, we will in a first instance have to write
an expression for the acceleration of the cables. With respect to the cables when the bridge is in
position 0, the magnitude of the acceleration ~a0, which runs tangential to the rotating pulley, can be
expressed as follows by applying Newton’s second law for rotation to the pulley:

~τnet = ~τ0 +
(
~R× ~T0

)
= I · ~α0 ⇔ τ0 −R · T0 =

(
Mp ·R2

2

)
·
(a0

R

)
⇔ a0 =

2

Mp ·R
· (τ0 −R · T0)

In position 1, the motor is providing 54.5% of its initial torque to the pulley, so that the torque ~τ1

related to the motor is equal to ~τ1 = 0.545 · ~τ0 = 0.545 · 8, 985 ·~iz = 4, 897 ·~iz N·m. The magnitude
of the acceleration ~a1 of the cables is then expressed as:

~τnet = ~τ1 +
(
~R× ~T1

)
= I · ~α1 ⇔ τ1 −R · T1 =

(
Mp ·R2

2

)
·
(a1

R

)
⇔ a1 =

2

Mp ·R
· (τ1 −R · T1)

In a next step, we apply Newton’s second law for rotation to the bridge in position 0. As we placed
the origin of our coordinate system at the pivot point, the forces acting on the bridge due to the
bearings at the foot of the brick wall will not contribute to the net torque. Note furthermore that
the magnitude of the tangential acceleration ~a0,t of the bridge is equal to a0,t = a0 · sin θ. We can
therefore write (with ~r1 = (Lb, 0, 0) and ~r2 =

(
Lb
2
, 0, 0

)
):

~τnet =
(
~r1 × ~T0

)
+
(
~r2 × ~FG

)
= I · ~α0

⇔ (T0 · sin θ) · Lb − (Mb · g) · Lb
2

= I ·
(a0,t

R

)
=

(
Mb · L2

b

3

)
·
(

[a0 · sin θ]
Lb

)

=

(
Mb · L2

b

3

)
·
([

2

Mp ·R
· (τ0 −R · T0)

]
· sin θ

Lb

)
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⇔ T0 =
Mb

2 ·R · sin θ
·
[

3 · g ·Mp ·R + 4 · sin θ · τ0

3 ·Mp + 2 ·Mb

]

=
2, 125

2 · 0.575 · sin(42.0◦)
·
[

3 · 9.81 · 165 · 0.575 + 4 · sin(42.0◦) · 8, 985

3 · 165 + 2 · 2, 125

]

= 15, 600 N

Similarly, the magnitude of the tangential acceleration ~a1,t of the bridge in position 1 is equal to

a1,t = a1 · sin β, so that we calculate the magnitude of the tension force ~T1 as follows:

~τnet =
(
~r1 × ~T1

)
+
(
~r2 × ~FG

)
= I · ~α1

⇔ (T1 · sin β) · Lb − (Mb · g · cosφ) · Lb
2

= I ·
(a1,t

R

)
=

(
Mb · L2

b

3

)
·
(

[a1 · sin β]

Lb

)

=

(
Mb · L2

b

3

)
·
([

2

Mp ·R
· (τ1 −R · T1)

]
· sin β

Lb

)

⇔ T1 =
Mb

2 ·R · sin β
·
[

3 · g ·Mp ·R · cosφ+ 4 · sin β · τ1

3 ·Mp + 2 ·Mb

]

=
2, 125

2 · 0.575 · sin(60.3◦)
·
[

3 · 9.81 · 165 · 0.575 · cos(45.0◦) + 4 · sin(60.3◦) · 4, 897

3 · 165 + 2 · 2, 125

]

= 8, 510 N

(4) The distance over which the bridge accelerates to reach position 1 is equal to the arc length
s = Lb ·φ = 12.0 ·

(
45.0◦ · π

180◦

)
= 9.42 m. As we are interested in finding the average amount of time

t, we use the following magnitude of the average acceleration ~aav for our calculations:

aav =
a0,t + a1,t

2
=

1

2
·
[

2 · sin θ
Mp ·R

· (τ0 −R · T0) +
2 · sin β
Mp ·R

· (τ1 −R · T1)

]

=
1

2
·
[

2 · sin(42.0◦)

165 · 0.575
· (8, 985− 0.575 · 15, 600) +

2 · sin(60.3◦)

165 · 0.575
· (4, 897− 0.575 · 8, 510)

]

= 1.97× 10−2 m/s2

The following equation of motion then allows us to calculate the average amount of time t the bridge
needs to reach position 1:

s =
aav
2
· t2 ⇔ t =

√
2 · s
aav

=

√
2 · 9.42

1.97× 10−2
= 30.9 s
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